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Selection-Mutation Balance for Two Nonallelic Recessives
Producing an Inferior Double Homozygote

FREDDY BUGGE CHRISTIANSEN1 AND OVE FRYDENBERG2

Many examples of hereditary human frailties which do not segregate in accordance
with simple monogenic expectations are known. The abnormal variants are often rarer
than expected, and their segregation appears to vary from family to family. Limited
penetrance has been held responsible for this deficiency, implying an interaction
between the supposed monogenic genotype and environmental factors. However, odd
and irregular segregations are also expected when a trait depends on two or more
genes. The latter explanation, though currently popular, reduces our knowledge of the
population dynamics of a number of genetic disorders from a state of well explored
theory to one of unwarranted guesses at a time when population genetics is most crucial
for evaluation of the hazards of increasing mutation rates [1].

Inspired by the current debate about ionizing radiation and human illness, we have
studied a model for a disorder caused by the simultaneous homozygosity of two
recessive genes. This model is similar to those considered by Fisher [2] and Nei and
Roychoudhury [3] in their discussions of evolution at duplicate loci. Although our
model is no more simplified than those commonly accepted for single genes, it is still
very crude. However, some surprising properties relevant to human genetics in general
and to the question of mutational burdens in particular have been revealed.

THE MODEL

Definition and Basic Assumptions

Consider in a random mating population two loci, each with two alleles (A, a
and B, b) and recombination frequency r. Assume that mutations are effectively
unidirectional with frequencies /i for A -> a and v for B -* b. Assume further that all
genotypes have normal phenotypes (with a fitness of unity), except the disabled
double homozygote, aabb, whose fitness is 1 - s (O < s ' 1). Define the gametic
frequencies in a given generation as xl = freq(AB), x2 = freq(Ab), x3 = freq(aB),
and X4 = freq(ab). Then the gene frequencies are PA = freq(A) = x1 + x2;
qa = freq(a) = x3 + X4 = 1-PA; PB = freq(B) = x1 + X3; and qb = freq(b) =
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CHRISTIANSEN AND FRYDENBERG

X2 + X4 = 1 - PB* Possible departures from random association of alleles in the
gametes will be measured by the linkage disequilibrium, d = x1x4 -x2x3, or by the
squared gametic correlation, 42 = d2/(pA qa pBqb). The mean fitness of the population
is w = 1-s x42.

Recurrence Equations

Assume that the frequencies of gametes in an arbitrary generation are X1, X2, X3, and
X4. Neglecting mutation for the moment, this generation will produce gametes with the
following frequencies:

xl* = (xl - rd)Iw; (la)

X2*= (x2 + rd)/w; (lb)

X3* = (X3 + rd)Iw; and (lc)
X4* = (X4 -SX42- rd)Iw. (Id)

However, mutation has changed these frequencies into the actual frequencies of the
gametes of the next generation:

xl' = (1-) (1-v) xl*; (2a)
x2 = (1 -U)x2* + (1 -A) vxI*; (2b)

X3= (1 -V) X3* + (1 - v) pmxj*; and (2c)

X4= X4* + IIvxI* + Ax2* + VX3*. (2d)

The equations (2a)-(2d) with X1*, X2*, X3*, and X4* from equations (la)-(ld)
constitute a system of recurrence equations linking the gametic frequencies in the
offspring generation to those in the parent generation. By adding equations (2a) and
(2b), we obtain a recurrence equation in the gene frequency ofA from equations (la)
and (lb):

PA' (1- A) (Xi* + x2*) = ( ) PAIW- (3)

Similarily, we can get a recurrence equation in the frequency of B, so that the gene
frequencies in the offspring generation are:

PA' = (1 -A) PAIW; (4a)

PB' = (1 - V)PBIW (4b)

Stable Equilibrium when ju / v

Neglecting the trivial equilibriumPA = PB = 0 and taking the ratio of equations (4a)
and (4b) gives

PA' A PA ()
PB' V PB

which immediately generalizes to

PA ( 1 L )n PA (6)
PB 1 -v PB
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(i.e., the ratio of the gene frequencies of the alleles A and B evolves independently of
selection). In the realistic situation where , * v, we get the simple results that if A >
v, thenPA n) - 0 when n -- 00, and if ,u< v, then PB(n) 0 when n --+ o. Therefore,
when ,u * v, there is global convergence toward a one-locus boundary. Therefore,
whatever the initial state, the population will evolve toward a stable equilibrium at
which the "healthy" allele (A or B) with the higher mutation rate is eliminated.

If the stable equilibrium is at 'A = 0, because ,u > v, the equilibrium frequency of
b, the recessive allele still segregating can be found from equation (4b), which at
equilibrium reads w' = 1 - v or 1 -sx42 = 1-v. SinceX4=b whenPA =0, the
equilibrium is given by

X4 = qb = \/V/ (7)

Similarly, if 4 < v, the segregating mutant has the equilibrium frequency

X4
=qa=V'1/s (8)

So at equilibrium, the frequency (x42) of the deleterious genotype is pi1s or vis,
whichever is smaller, and the disorder has turned into a monogenic condition.

Equilibria when /, = v = T

Consider the case where the two mutation rates are identical and equal to T.
Although this situation may be unrealistic, except with a duplicated locus [4], it
provides a useful basis for analysis in which the mutation rates are indeed different.
When the mutation rates are equal, equation (6) reveals that the ratio of the gene

frequencies, PAIPB, remains unchanged. This reflects the fact that the equations (4a)
and (4b) are identical, and we then have exactly two equations to determine
equilibrium [i.e., equation (4) and the one remaining independent gametic recurrence
equation, for instance equation (2a)]. From equation (4) we get as before

X4 = V7-/;, (9)
When we insert this into equation (2a) and parameterize with the gene frequencies
instead of the gamete frequencies, we get

[, + (1 - r)r] (PA + PB) (1 - r)rPAPB (10)

=[ + (1-)r](1 -v S),
which defines a hyperbola of equilibria in the (PA,PB) plane as shown in figure 1. [The
two single gene equilibria are given as the intercepts (1- ,\/, 0) and (0.1- V77sY.]

Since we know that the ratio PA/PB is preserved, a population initiated at an arbitrary
point, (PA,PB), is restricted to a line through this point and the origin. Since the origin
and the PA = 1 and PB = 1 boundaries are evidently unstable, the population will
evolve along a straight line toward the intersection with the equilibrium hyperbola.
Any equilibrium on the hyperbola is stable in all directions except along the hyperbola
itself. Whenever a population departs from the hyperbola, it returns to it. Once on the
curve, the population is free to drift along it. (For a discussion of the genetic drift in
this case see reference [3].)

In the present case, it should be noted from equation (9) that the equilibrium
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PB

0 PA1
FIG. 1.-The change in gene frequencies through time when the mutation frequencies are equal at the two

loci (T = 10-3, r = . 1, s = 1). Trajectory of any population is restricted to a straight line through origin and
point of initial ene frequencies. Po uation will converge to a point on the hyperbola arching between the
points (1-VI/s, 0) and (0, 1 -As).

frequency of the deleterious genotype equals that of a single locus recessive for the
whole continuum of equilibria.
The description of the equilibria in terms of the gene frequencies in figure 1 is of

course insufficient, but as long as r is large compared to mutation rate r, the correlation
between the two loci is negligible. To see this, consider the linkage disequilibrium at
an equilibrium: a = -qa qb which from equation (10) may be shown to be d =-
TPA PB /[T + (1 -T) r], which is always negative. When the mutation rate is assumed
small compared to r, we get the approximation

d TTpAAPB/r, (11)

which produces an approximate expression for the squared gametic correlation: 42 =
(-lr)2 (1APB)I(qaqb). From equation (11) the linkage disequilibrium is negative
(viz., X4 < qaqb). Using this, the gametic correlation may be evaluated as 141 <
(T/r)/(X4)i = T" S114)/r. Thus, the gametic correlation between the two loci is less
than the square root of the mutation rate.

Dynamics when a = v

Consider the equilibrium hyperbola (10) for tk = v = r, and imagine that v is
increased slightly. This is obviously not going to influence the intercept of the
hyperbola with the PA-axis, while it switches the intercept with the PB-axis from (0, 1
- v\/§7) to the slightly lower point but higher mutant frequency (0, 1 -Vr7). At the
same time, all points on the perturbed curve become subject to the global convergence
(6) toward the intercept with the first axis.
The hyperbola of equilibria (10) in the case of 1i = v = X may be considered a

trajectory of zero velocity between the points (1 - A/i7l, 0) and (0, 1- NV'_Is). When
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v is increased, this trajectory is deformed slightly; a popultion on it will move toward
the point (1- V';7;, 0). Close to the point (0, 1 - vs), the trajectory between the
two one-locus equilibria will be near the hyperbola (10) for X = v, and close to (1 -
Vu, 0), it will be near equation (10) for T = A; at any point the trajectory will run
between these two hyperbolas. These bounding hyperbolas are indicated by dashed
curves in figure 2 in which the trajectory is seen.
The movement along the trajectory between the equilibria on the one-locus

boundaries is governed by equation (5). Thus the angular movement in each generation,
starting in any point (PA, PB) in the plane, is given by

0' - 0 = arctan (PA'/PB') - arctan (PA/PB) (12)

PAPB(I.L - V)I(PA2 + PB2),
when g and v are small. This rate is maximized when PA = PB, where the rate is (pu-
v)12. For any point, the absolute angular rate is indeed small. Reference to figure 2,
which shows a number of trajectories calculated for v = 2,g, reveals that all the points
in the plane are drawn toward the "fundamental trajectory" connecting the equilibrium
points on the two axes. The fact that all other trajectories are nearly straight lines
except when close to the fundamental trajectory implies that'the rate of movement
towards it overwhelms the angular movement for all points outside its immediate
vicinity.
As when u = v, the trajectories starting at points with high frequency of the

deleterious genotype follow very close to the straight line through the origin and the

P. N

A
\

FIG. 2. -The change in gene frequencies through time when the mutation frequencies are different at the
two loci (v = 21i, au = 10-3, r = . 1, s = 1). Population will converge to the globally stable equilibrium (I
-BVis, 0). Population will converge rather fast to fundamental trajectory arching between points (I -

/,ukls, O) and (O. 1-Nl), and once on this trajectory, convergence to globally stable equilibrium is very
slow. Fundamental trajectory runs between hyperbolas from figure I corresponding to X = ,u and X = 2,u
v. These boundaries are shown as dashed curves.
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initial point (PA, PB). However, starting with the deleterious genotype at very low
frequency (i.e., above or to the right of the fundamental trajectory in figure 2), the
trajectory is initially very close to a straight line now with the slope

PA' - PA 1 - / - W PA == A PA
PB' PB 1 V - W PB V PB

which has been calculated using equation (4), and where the last approximation is valid
for X4 close to zero. In the case considered above with < v, the trajectories starting
from the PA = 0 or the PB = 0 boundary will be a factor v/lu steeper than trajectories
starting at high values of X4 (fig. 2).

It can be concluded from the above analysis that a population which starts at an
arbitrary point, (PA,PB), will be pushed rapidly toward the fundamental trajectory
which it will approach with a gene frequency ratio of the "healthy" alleles similar to
the initial ratio of PA:PB. Once close to or on the fundamental trajectory, further
movement, now directed toward the monogenic stable equilibrium, is extremely slow.
In fact, as the rate is at most (L - v)/2, it is likely to be negligible compared to random
movements in most realistic cases.

RESULTS

Predictionsfrom the Model
If digenic systems complying with our model have emerged in the course of human

evolution, a few may have reached their global equilibrium (i.e., entered the realm of
ordinary monogenic systems). We are only concerned here with those systems that are
still digenic.
The model predicts that these systems will be close to the fundamental trajectory

arching toward final global equilibrium. The fundamental trajectory in figure 2 has
been drawn for an extremely high mutation rate, IL = 10-3, to make room for the
trajectories on the mutation boundaries. For smaller and more realistic mutation rates,
the fundamental trajectory almost clings to the two mutation boundaries. Except for a
small stretch in the upper right corner, characterized by low mutant frequencies in both
loci, all other points on the trajectory have a low mutant frequency in one locus and
intermediate gene frequencies in the other. Thus, our model predicts that most of the
digenic systems due to balance between mutation and selection will have a typically
idiomorphic mutant frequency in one locus and typically polymorphic frequencies in
the other locus. In a disorder resulting from such a digenic system, we will observe a
locus with a deleterious recessive in mutation-selection equilibrium, where the
deleterious genotype has a limited penetrance. The incidence of affected individuals in
a family where both parents can produce the gamete ab may be deviant from the
expected (1/4) with a simple recessive disease.

Incidence ofAffected Individuals in Families
Suppose that the alleles B and b occur at polymorphic frequencies in the population

and that the allele a occurs at a low frequency corresponding to the mutation selection
balance on the fundamental trajectory. The individuals capable of producing the
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gamete ab are then AB/ab, AblaB, and Ablab, and they occur approximately in the
relative frequencies PB/(1 + PB), PBI(1 + PB), and qbl(l + PB), respectively. The
frequencies with which the three types of individuals produce the gamete ab is (1 -
r)/2, r/2, and 1/2, respectively. Thus, the individuals with the potential of producing
ab do so with a mean frequency of 1/[2(l + PB)], such that the incidence of affected
individuals from parents which can potentially produce ablab offspring will be

rl = [4(1 + PB)2]17. (14)

This ratio will be 1/4 at the globally stable equilibrium where PB = 0 and will become
1/16 at the other extreme where PB is close to unity (table 1).

TABLE 1

FAMILY INCIDENCE AND VARIANCE INCREASE FACTOR

VARIANCE INCREASE FACTOR E

GENE FREQUENCY (PB) INCIDENCE r = 1/2 r = 0

1*...063 .25 .20
.5 .......................... .111 .21 .16
.25 ......................... .160 .15 .11
.1 .......................... .207 .080 .055
.05 ......................... .227 *.045 .030
.025 ................... ..... .238 .024 .016
.01 ......................... .245 .010 .007
0 ........................... .250 0 0

* Interesting only as a limit case.

The different segregation ratios in different families would be hardly detectable in
humans. However, the variance in the segregation ratios will be larger than that
expected for a binomial distribution with probability parameter H, namely HI(l - 1)/n
in a sibship of n. It can be shown that the variance Vn of segregation ratios is increased
by a factor [1 + (n - 1)E] in sibships of n, so

Vn = [1I(1 - 11)/n] [1 + (n - I)E] (15)
where E is a positive function of r and PB, increasing in PB and decreasing in r (see
Appendix A). Some specific values of the function E are given in table 1. It is
apparently rather insensitive to changes in r, whereas it depends heavily on PB.
The deviation of Vn from the binomial variance increases with n. In humans,

however, extensive data cannot be expected for n larger than two, so that the function E
gives a good indication of the increase in the observed variance relative to the expected
binomial variance. In most cases, the incidence would be observed as deviant from
1/4, and heterogeneity in the segregation ratios would hardly be detected. (For
example, with a total sample of 1,000 offspring and using a 5% significance level, a
deviation corresponding to PB = .05 would be detected with probability .5, whereas
the increased variance among segregation ratios, if all offspring were from sibships of
size n = 2, would be detected only ifPB were larger than about .2.)

In the calculation of H and Vn, we have neglected the problem of ascertainment of
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families. The probability that a mating capable of producing the deleterious genotype
actually does so is very different for the different types of mating. Therefore, in any
observation where the matings are ascertained on the basis of the occurrence of the
deviant genotype, the matings involving an Ablab parent will be overrepresented. The
effect of this is to push the observed family incidence closer to 1/4 and to decrease the
level of heterogeneity, resembling a decrease in PB with complete ascertainment (see
Appendix B). In any case, a deleterious trait with a genetically determined penetrance
may give rise to odd segregation ratios without being detected as heterogeneous.
However, the exact distribution of segregation ratios for any ascertainment scheme and
any PB may be calculated and compared to an observed distribution.

The Effect ofIncreased Mutation Rates

The equilibrium population incidence of the disorder is in this model, as with
monogenic disorders, proportional to the mutation frequency, as seen from equations
(7) and (8) and figure 2. Therefore, the long term change in the frequency of the
disorder due to a change in the mutation frequency is the same for a monogenic and a
digenic trait.
The largest change in one generation due to a change in the mutation frequency

happens right after the change in the mutation frequency. Suppose we have a
monogenic disorder determined by the two alleles C and c, with C dominant and the
deviant genotype cc having the fitness 1 - s relative to 1 for the dominant phenotype
and suppose that the allele c is produced from C by mutation in the frequency T, then at
equilibrium we have q4 = /I7- Suppose now that the mutation frequency has
suddenly changed to T', so that the frequency of c in the following generation is q,' =
qC + (T' -T) PC/(l - s q then the change in the incidence of the disorder is
approximately

(q )-q = (q, -qc)(qc' + qc) 2(T' - qT)Ac (16)

Suppose now that a similar change occurs in our digenic system with equal mutation
rates at the two loci (i.e., ,u = v = T), then from equation (2d) we get X4' = X4 + (T2I
-T2) X1* + (T' -T)(X2* + X3*), which by neglecting terms of the order of squared
mutation frequencies reveals the approximate relation

X4 (' - T)(PA Jb + 'h PB)- (17)

If we now assume that the alleles B and b occur in polymorphic frequencies and qa
is small, then equation (17) may be written as

X4 - X4 = (T' T) q' b, (18)

giving the change in the population incidence corresponding to equation (16) as

(X4 )2 - X42 = 2((T' -) qbX4. (19)

Thus, the change in the population incidence of the disorder in the digenic system due
to an increase in the mutation frequency is less by a factor qb (the frequency of the
modification allele that allow expression) compared to an equivalent monogenic
system.
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DISCUSSION

The main conclusion from the considerations of this model is that the two-locus
disorder will resemble a one-locus disorder, possibly with limited penetrance. This
characteristic is shared by a larger class of models where the normal phenotype
emerges whenever just one of the loci is homozygous for the normal allele. In
particular, it emerges in a situation where the disorder appears to be a one-locus
dominant (Christiansen, in preparation).
The model considered here is possibly simplistic. However, consideration of models

aimed at the exploration of complex hereditary diseases is important enough to excuse
this. Models considering mutation-selection balance in complex genetic systems have
been considered by Karlin and McGregor ([5] and references therein) and Wills [6]
from the point of view of general evolutionary problems. Wills, in particular, considers
a model closely related to ours which provides a mechanism for evolution of sexual
isolation between populations.
Our model has two important simplifying assumptions, namely complete recessivity

of the gamete ab and absence of back mutations from the alleles a and b. These two
assumptions are parallel to the assumptions made in classical treatments of the
one-locus recessive model for a hereditary disease, and they give rise to the same kinds
of problems originating from the apparent degenerate behavior of the model.

First, the back mutation rate from detrimental alleles to functional alleles is probably
at most an order of magnitude less than the rate of production of detrimentals. For the
one-locus mutation-selection balance, this rate is too small to have any effect. In the
two-locus model the effect is to move the globally stable equilibrium point from the
abscissa (fig. 2) by about 831(v - ), where f3 is the back mutation rate. Since the
general conclusion is founded on the observation that the population converges
extremely slowly to the equilibrium point, back mutation generally would support our
basic thesis.

Secondly, we have to consider the assumption of complete recessivity of the gamete
ab. As in the one-locus recessive mutation-selection balance model, this assumption is
crucial. However, certain types of deviation from the model give qualitatively similar
results (Christiansen, in preparation), but in general, we can only expect the
description to be valid if the deviations from the recessive model in terms of the
selection coefficients are less than the mutation rates. We will refrain from a discussion
of the general validity of recessive models and only naively exemplify the model as a
pair of regulated enzymes doing exactly the same job and produced in such small
quantities that the energy wasted on nonfunctional proteins is negligible. The model
can obviously not be related to the duplication series of human hemoglobins, as
defective mutants in such a locus most likely show dominance (e.g., like the sickle cell
trait).
As argued in the preceding section, the prospect of collecting indirect evidence for

the existence of two factor diseases in human populations seems discouraging, and to
attempt to ascertain the importance of digenic disorders in human mutational load
through analysis of segregation ratios is futile. Therefore, the model used here should
be viewed as providing a theoretical example of an irregularly inherited disorder with a
genetically determined penetrance. This model has two virtues. First, it points to a
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novel explanation of how genetically determined penetrance of rare disorders may
emerge, and second, it provides a tool for comparing predictions from single gene
disorders to a section of the larger universe of multi-gene disorders.
The change in the incidence of a disease caused by a double recessive condition

which follows a rise in mutation frequency has the same functional form as that of a
single factor disease. This is important when the hazards of increased radiation
exposure of human populations are evaluated. Since the immediate effect of increased
mutation frequency on the population incidence is small, recessive genetic disorders
may not be the most important object for studies. However, the present study is an
introduction to be followed by consideration of digenic disorders caused by alleles with
dominance and other kinds of epistatic interactions.

SUMMARY

A simple model for a disease caused by simultaneous occurrence of deleterious
recessives at two autosomal loci is suggested and analyzed. Except for the case of
equal mutation rates at the two loci, the system will through time converge to a state
where the deleterious allele is fixed at the locus with the higher mutation rate, and the
system will degenerate to a one-locus mutation-selection balance system. This
convergence, however, is very slow, and the system will in the convergence phase
resemble a one locus mutation-selection balance system with limited penetrance. The
possibility of observing this system in a human population is shown to be limited. The
characteristics of the system in a situation of change in mutation rate are discussed.
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APPENDIX A

TABLE Al
MEAN SEGREGATION RATIO FOR DIFFERENT MATING COMBINATIONS

Genotype of
parent AB/ab AblaB Ablab

AB/ab ......................... (I -r)2/4 r(l - r)/4 (1 - r)/4
Ab/aB ......................... r(l -r)/4 r2/4 r/4
Ablab ......................... (1- r)/4 r/4 1/4
Frequency in population .......... PB/(l + PB) PB/(l + PB) qb/(I + PB)

The calculation of the variance VO, of formula (15) proceeds as follows: V, = Var (mean
segregation ratio given genotypes of parents) + E (variance in segregation ratio given genotypes
of parents). The first term is readily calculated from table Al as
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[(1 - r)4/16 + 2r2(1 - r)2/16 + r4/16]pB2/(I + PB)2
+ [(1 - r)2/16 + r2/16] 2pBqb/(1 + PB)2 + (1/16) qb2/(1 + PB)2 - [12

= {[(1 - r)2 + ]PB/(1 + PB) + qb/(1 + PB)}2/16 - fl2-
The second term is the mean of the binomial variances corresponding to the segregation ratios of
table Al, thus it becomes

(i/n)({[(l - r)2/4][1- (1 - r)2/4] + 2[r(1 - r)/4][1 - r(I - r)/4]
+ [r2/4][1 - r2/4]}PB2/(1 + PB)2
+ {[(1- r)/4][1 - (1 - r)/4] + [r/4[1 - r/4]} 2PBqb/(l + PB)2
+ (1/4)[1 - (1/4)] qb /(1 + PB))

- H/n - [1/(16n)]{[(1 - r)2 + '] PB/(1 + PB) + qb/(1 + PB)}
In total we get

V= [(n - 1)/(16n)]{[(1 - r)2 + '] PB/(1 + PB) + qb/(1 + PB)}2
+ H/n - H2

= [11(1-l)/n][1 + (n -1)E],
where

E = ({[(i - r)2 + a] PB/(1 + PB) + qb/(1 + PB)}2 - 1612)/[16H(1 - 1)].

APPENDIX B

Effect ofLimited Ascertainment

The mean incidence of affected individuals is in equation (14) given under the assumption of
complete ascertainment of matings which can potentially produce ablab offspring. To investi-
gate the effect of limited ascertainment we will here discuss a simple model.

Suppose that a mating is always disclosed as segregating ablab offspring when the first
affected offspring occurs. With the segregation proportion a the probability of ascertainment of a
sibship of size n is therefore Pa(n) = I - (1 - a)n. Let us choose the simple procedure of
estimating the segregation proportion in ascertained sibships from the offspring following the
propositus. Assume further that the number of offspring n from a mating is poisson distributed
with mean X, such that the proportion of ascertained sibships with segregation proportion a is

PO( 1 - I (1 - a)n [Xn/n!]exp(-X) = 1 - exp(-aX).
n = o

The number of informative offspring (i.e., the number of offspring following propositus) is
dependent on the segregation ratio. Designate by na this number of offspring, then

P(na = i n, 0 < i < n) = a(1 - a)n - i - 1/[l - (1 - a)n]

Thus, the probability of observing a specific na from a mating with segregation ratio a becomes

P(n. = i) = E a(1 -a)" -a - 1 (Xn/n!) exp(-X),
n=i+ 1
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and the probability of not observing any is 1 - P,. From this the mean observed n0f may be
calculated:

Pf En, I Y ia(l- - i 1(Xn/n!) exp(-X )
i=o n = i+

x0 n- I

I E ia(l a)n -i -(Xn/n!) exp(-X)
n= 1 i=O

- E {[na - 1 + (1- a)]/a}(Xn/n!) exp(-X)
n = 1

=X - [1 - exp(-aX)]/a.

Suppose now that m types of matings exist in the population in the frequencies Oj, j = 1,2,
,m, and with the segregation ratios aj, j = 1,2, . m. If we identify nj with PaE n0f for a

= aj, then the expected number of observed offspring from mating type j is proportional to nfjAj,
and the expected number of observed ablab individuals for mating type j is proportional to
ajnj~j. Therefore we expect to observe the mean segregation ratio as

*=
( caJyj) /(. nj

= ( z {aX - [1 - exp(-ajiX)]}j) / {ajX - [1 - exp(-ajX)]Pjk/aj)

This segregation ratio may now be calculated and compared with equation (14) by using the
segregation ratios of table Al. Table B 1 shows the dependence of fI* on X for different values of
PB under the assumption that the two loci are unlinked (i.e., r = 1/2). The situation X = 00

corresponds to fI* = HI.

TABLE BI

FAMILY INCIDENCE WITH INCOMPLETE ASCERTAINMENT

MEAN OFFSPRING No.

GENE FREQUENCY (PB) 2 4 10 0

.5 .................... .138 .135 .129 .111

.25 ................... .188 .186 .180 .160

.1 .................... .224 .222 .219 .207

.05 ................... .237 .236 .234 .227

.01 ................... .247 .247 .247 .245
0 ..................... .250 .250 .250 .250
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