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Linkage between a Marker Locus and a Quantitative Trait of Sibs

C. CLARK COCKERHAMI AND B. S. WEIR

SUMMARY

Several variations of a method for detecting linkage between a marker
locus and a quantitative trait in full sib families are presented along with
computational details. All variations are based on contrasts within quali-
fying families of three or more sibs. The empirical powers of the various
test statistics, evaluated by simulation, were very similar, and also similar
to that of Smith. These single-generation tests are likely to be successful
only for many families and relatively tight linkage.

INTRODUCTION

Previously [1], a method of checking for linkage between two characteristics, each
of which could be continuously or discretely distributed, was presented. It was
essentially an extension of Penrose's [2] graded sib-pair method to include func-
tions of three and four full sibs. With the introduction of comparisons within
families of sibs, effects of fortuitous linkage disequilibria and certain environmen-
tal correlations could be eliminated, with the restriction, however, that only fami-
lies of three or more sibs could be utilized. It was concluded that the method had
most promise for detecting linkage between a marker locus and a quantitative
trait.
The purpose of our study is to translate these theoretical considerations into sim-

plified computational formulas and to provide an approximate test of significance.

BACKGROUND

We motivate this section by introducing computational formulas of interest.
Let the two characteristics be scored as X and Y, and distinct sibs within a family
be denoted by ij, k, and 1. The three initial functions of interest for a family of
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size n are as follows: average two-sib function,

C2 = f - j)2(yi- Yj)'In(n- 1);
iA iJ

average three-sib function,

C3 = XI j)2(yi- Yk)2/n(n- 1)(n -2);
i #1 #k

average four-sib function,

C4 = I I Xj)2(Yk - Y,)2/n(n - 1)(n - 2)(n -3)
i 6j $6k# I

C2 is Penrose's [2] sib-pair function, and C3 and C4 are extensions of the same
function to include three and four sibs, respectively.
Two comparisons within a family are considered: H3 = C2 - C3; H4 = C2-

2C3 + C4; H4 requiring at least four sibs.
Now, let the genotypes at the marker locus be scored as X as follows:

AA AA AA

Codominant ........2 1 0

Recessive ............100

where allele A has frequency p, and A, meaning not A, has frequency 1 - p. The
expectations, 9, ofH3 and H4 (given in [1] as X'H3 = L3*, XH4 = L4*) over all
families are: eH3 = 5AIr ab + X2ra2b2 + A2k; XH4 = 4X2 2ab + X2 'a2b2 +
X2k; where the linkage parameter X is one minus twice the recombination fraction,
and is zero with free recombination. Consequently, H3 and H4 are expected to be
zero when there is no linkage. While ?,2ab and ?a2b2 (detailed in [1]) involve
linkage disequilibrium between the marker locus and a locus affecting the quantit-
ative trait, they do not contribute to H3 and H4 unless the loci do not recombine
freely. The term k involves additive variance, 2Ub2, and dominance variance, cc2,
for the quantitative locus; k = p(l - p)(2Ub2 + (uc2) for a codominant marker
gene; and k = p2(1 - p2)(2ub2 + uc2) + (X2/4)p2(1 - p)2uc2 for a recessive
marker gene (X2k = 4K in [1]).
The computational formula can be simplified considerably by utilizing devia-

tions from family means denoted as x and y. Three terms suffice with the following
coefficients for each function:
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Yxj2 ly j2

2 2 4
C2 n- n(n-1) n(n-1)

1 3n-2 -4

n- I n(n- 1)(n-2) n(n- I)(n-2)
-4 4(n2-3n + 1) 8

C4........ (n-2)(n-3) n(n - 1)(n-2)(n - 3) n(n- 1)(n-2)(n-3)
1 -(n+2) 4

H3....... n-I n(n- I)(n-2) n(n - 2)
-4 4 4

H4 .
(n -2)(n-3) n(n- I)(n-2)(n-3) n(n-3).

EXPECTATIONS AND VARIANCES UNDER THE NULL HYPOTHESIS

For these developments under the null hypothesis of X = 0, we consider the x's
to be known without error and the y's to have mean zero, variances (n - 1)U2/n,
and covariances -u2/n, where a2 is the variance of Y's within families. Then

.' Yxi2yiy = (n- 1-)(Xxj1)u1n
i i

. YxiEYyil = (n - 1)(&xj1)u
i i i

X ( yXiyi)l = (XCxy2)a
i i

leading to XH3 = XH4 = 0 as expected.
Derivations of the variances V3, V4 ofH3, H4 are given in APPENDIX A. They

are functions of the central moments a4 = [X ( y g y)2]2, /4 = X ( y-_ Y)4
within families. Note that Y values are independent within families, and that
Y4 = 3U4 for a normally distributed trait.

COMBINING INFORMATION OVER FAMILIES

Ordinarily we would weight H's with the reciprocal of their variances in com-
bining over families. We want the weights to increase as family size increases and
as X variation within families increases. Only the first of these properties is met by
the variances V3 and V4, and a possible solution is to adopt a regression approach.
For example, if we were to regress (yi - yj)2 on (xi - xj)2, the regression coeffi-
cient would be

B2 = j- -yj)2/X (Xi -Xj)4

Hence, B2 = SC2, where

X(xi-Xj)4 = 2n Xxi4 + 6( XXi2)2
~~~~i5 i i

Yx,2y,2
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Proceeding in the same manner for the three- and four-sib functions, B3 = SC3,
B4 = SC4, so that these new comparisons within families also have simple relations
to the previous ones: H6 = B2 - B3 = SH3, H8 = B2 - 2B3 + B4 = SH4-
The corresponding variances are: V6 = 52 V3, V8 = S2 V4.
We assume a normally distributed trait in order to compare the various H's. With

normality

V3 = V3*a4,

V4 = V4*a4,

V6 = 52V3* G4 = V6*a4

V8 = S2V4*U4 = V8*u4,

where

V3* =

V4* =

2[(12n - n- 12)(Ixi2)2 + n(n2 + 4n - 4) xi4]
i i

n2(n - -)(n-2)

32[(n2 - 3n + 3)(IX12)2 - n(n--)Yx4]
i i3

n2(n - 1)(n -2)(n - 3)2

In table 1, we display the V*'s for families of size 3, 4, and 5, and a representative
of every possible marker genotypic array. It can be shown that H4 = H8 = 0 and
that V4* = V8* = 0 when only one X is distinct from the others in a family.
Except for possible other idiosyncrasies, it was thought that H4 or H8 would be the
preferred comparison in families of four or more because of the symmetry in-
volved. We can see in table 1, however, that this is not the case. While V4* does
decrease as family size increases, it increases as marker variation within families

TABLE 1

VARIANCES OF THE H'S FOR SELECTED FAMILY SIZES AND MARKER GENOTYPE ARRAYS

NO.

n, X = 2 X = I X = 0 Var(X) v* t* V* V*

3 ....... 2 1 0 0.333 1.000 2.250
I I I 1.000 9.000 0.250 ... ...

2 0 1 1.333 16.000 0.141 ... ...

4....... 3 1 0 0.250 0.333 1.333 0 0
2 2 0 0.333 0.333 0.750 1.333 3.000
1 2 1 0.667 2.111 0.190 1.333 0.120
1 1 2 0.917 3.444 0.101 5.333 0.157
1 0 3 1.000 5.333 0.083 0 0
2 0 2 1.333 5.333 0.047 21.333 0.188

5 ....... 4 1 0 0.200 0.167 1.042 0 0
3 2 0 0.300 0.170 0.472 0.320 0.889
1 3 1 0.500 0.837 0.173 0.320 0.066
2 2 1 0.700 1.290 0.089 1.173 0.081
4 0 1 0.800 2.667 0.065 0 0
3 1 1 0.800 1.847 0.045 1.280 0.031
2 1 2 1.000 1.980 0.043 3.413 0.074
3 0 2 1.200 2.720 0.030 5.120 0.056
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increases, and this is not overcome by the regression quantity V8*. The three-sib
function V3* has the same properties, but V6* decreases as within-family variation
increases. Since V6* still decreases as family size increases, it appears that V6 will
provide a desirable weighting function over families. We will not consider H4 or
H8 any further.

For any of the H functions, then, we can form either weighted or unweighted
sums over families. Normal deviates may be formed, approximately, as these sums
divided by their standard deviations. Denoting families by f: unweighted test
statistics,

t3= H3E/\/YI t6, = il ff
f f f f

weighted test statistics,

1= (H3f/1P3f)/\/ ), t6w = 6 / 6f) -
f f f f

In APPENDIX B, we show how V3j, V6f may be estimated as ;3f and D6f
These test statistics can be used to test the null hypothesis that X (or H3 or H4) is

zero against the one-sided alternative that X (or H3 or H4) is positive.

SMITH'S TEST

A test with some similarities to the above procedure, in that quantities are
measured within families and then summed over families, was given by Smith [3]
and discussed further by Bener et al. [4]. In a notation consistent with the present
case, the procedure is as follows. If the nr individuals in a family with an X value of
r(r = 0, 1, 2 for a codominant marker) have y values totaling Sr, then

n = 9r O= ISr,
r r

and we set

N2 =) nr2 N3 = nr3, Qf = Sr2.
r r r

The quantity fQ is the basis of the test, and under the hypothesis of no linkage, it
has the same expectation as

= (n - N2/n)Yyi2/(n - 1)

and variance estimated as

PS = [N2(y,2)2 + 3(3 - N2) yi4]/3 - 72 n = 3
i i

= [aX2(~Yi2)2 + a4Xyi4]/n(n - 1)(n -2)(n - 3) - r 1 . 4
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where a2 = 6(n - 1)(N2 - n2) + n4 + 3N22 - 4nN3 and a4 = 2n3 - 2n(n + 1)
X N2 - 6N22 + 8nN3. An unweighted test statistic is constructed over families (f)
as

-i= ( - f),/VT'%.
f f
SIMULATION STUDY

The various test statistics were compared by a simulation study. A codominant
marker locus with alleles A, A in frequencies p, 1 - p was supposed linked to an
extent X to a trait locus with alleles B,B in frequencies q and 1 - q. Parents were
formed with random union of gametes that had frequencies pq + A for AB, etc.,
where A is the linkage disequilibrium between genes A and B. For each pair of
parents drawn at random, a family of three, four, or five sibs was generated.
Sufficient pairs of parents were drawn to provide 100 families, in each of which the
X values were not all the same (33 families of size 3, 34 of size 4, and 33 of size 5).
The marker locus values were 2, 1, 0 for genotypes AA, AA, AA, respectively, while
the trait values had a random normal deviate of mean 0 and variance 2q(1 - q) X
(1 - h)/h added to the values 2, 1, 0 for genotypes BB, BB, BB, where h
is the heritability of the trait. Under this system, for every family, XH3 =
X2[5A2 + (1 - 2p)(1 - 2q)A + 2p(l - p)q(l - q)].
For a nominal significance level of 5%, the hypothesis of no linkage was rejected

when any test statistic was greater than 1.645. In table 2, we show the proportion
of such rejections from 500 replicates of the 100 family situations. In particular,

TABLE 2

EMPIRICAL POWERS (A = 0, h = 0.5)

UNWEIGHTED WEIGHTED

3 ,, t6,, SMITH
A P q N* Et N E N E N E is

0 .......5 .5 .06 .06 .05 .05 .05 .05 .05 .06 .06
.5 .9 .09 .07 .06 .05 .06 .05 .08 .06 .04
.9 .5 .05 .05 .05 .05 .06 .06 .06 .06 .06
.9 .9 .07 .07 .08 .07 .09 .07 .10 .08 .08

.5 ...... .5 .5 .14 .14 .12 .13 .16 .15 .16 .16 .16
.5 .9 .18 .15 .15 .12 .18 .14 .22 .18 .17
.9 .5 .16 .16 .18 .18 .21 .21 .22 .20 .20
.9 .9 .18 .15 .19 .17 .22 .19 .23 .21 .20

.9 ...... .5 .5 .36 .36 .37 .37 .45 .44 .49 .48 .46
.5 .9 .44 .41 .41 .38 .48 .41 .54 .48 .43
.9 .5 .45 .46 .48 .48 .57 .58 .57 .56 .58
.9 .9 .47 .43 .47 .43 .56 .50 .56 .52 .51

1.0 .......5 .5 .69 .70 .73 .74 .86 .86 .82 .82 .86
.5 .9 .76 .73 .73 .70 .80 .76 .82 .79 .79
.9 .5 .80 .79 .85 .84 .93 .93 .90 .90 .92
.9 .9 .85 .83 .88 .85 .92 .90 .93 .92 .92

* N: Moments estimated assuming normally distributed trait.
t E: Moments estimated not assuming normally distributed trait.
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TABLE 3

EMPIRICAL POWERS (P = q = 0.5, h = 0.5)

UNWEIGHTED WEIGHTED

ttu t6,, t . '6. SMITH

A A N* Et N E N E N E ts

.0....... -.25 .09 .09 .02 .04 .02 .02 .09 .09 .02
.00 .03 .04 .05 .04 .05 .04 .04 .05 .03

+.25 .00 .00 .01 .01 .03 .03 .06 .06 .04
.5 ....... -.25 .58 .58 .43 .43 .45 .46 .68 .68 .47

.00 .12 .13 .10 .10 .11 .12 .12 .18 .12
-.25 .57 .60 .42 .41 .47 .51 .65 .65 .53

.75 ....... -.25 .98 .98 .96 .94 .98 .96 1.00 1.00 .99
.00 .32 .30 .32 .36 .48 .47 .40 .40 .48

+.25 1.00 .99 .95 .94 .96 .96 .99 1.00 .98
1.00. -.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.00 .69 .71 .71 .70 .84 .86 .80 .82 .85
+.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

N: Moments estimated assuming normally distributed trait.
t E: Moments estimated not assuming normally distributed trait.

table 2 shows the effects of linkage and gene frequencies when there is no linkage
disequilibrium and heritability is .5.

In table 3, we show the effects of linkage disequilibrium in the extreme situation
of A = ±.25 when p = q = .5. Here the empirical powers are based on 100
replicates. A further set of simulations with the extreme heritability of 1.0 when
p = q = .5 and A = 0, and with 100 replicates, gave the empirical powers for
various A values shown in table 4.

DISCUSSION

The procedure outlined provides a measure within a family of sibs for the
detection of linkage between genes at a marker locus and genes affecting a quan-
titative trait. Families must be of size 3 or larger and must contain at least two
distinct genotypes at the marker locus. Thus, all noninformative matings at the

TABLE 4

EMPIRICAL POWERS (p = q = 0.5, A = 0, h = 1.0)

UNWEIGHTED WEIGHTED

t_ '681 66* '6. SMITH

A N* Et N E N E N E is

.0 ...... .05 .05 .06 .07 .10 .05 .10 .07 .06

.5 ...... .58 .53 .54 .51 .73 .65 .76 .66 .63

.75 .......75 .96 .95 .95 .99 .97 1.00 .99 .97
1.0. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

* N: Moments estimated assuming normally distributed trait.
t E: Moments estimated not assuming normally distributed trait.
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marker locus are eliminated at the outset. As a consequence of the within-sibship
comparison, a positive result cannot stem from fortuitous linkage disequilibria
alone. A positive result can stem from direct or pleiotropic effects of the marker
gene on the quantitative trait, in which case X = 1 and is indistinguishable by this
method from tight linkage. It does not matter that genotypes may be in different
linkage phases in different families; the quadrivariate nature of the measure dic-
tates a positive contribution with linkage.

Multiple alleles at the marker locus cause no problems as long as there are no
more than two alleles within a family. An allele in each family is chosen and
scored. With multiple alleles in a family, one can choose the allele with the fre-
quency nearest .5 and ignore the others.
The numerical results point out the low power of these single-generation proce-

dures. The great similarity among the test statistics considered is disappointing. It
was thought that weighted ones would be much more powerful, with an additional
improvement with the regression approach. There is a very slight improvement
with weighting and regression, but t6w is judged to have no advantage of power
over Smith's test statistic.
The tests assuming normality or nonnormality also gave very comparable re-

sults. The simulated noise variation was normal, but the other variation was not.
The computations simplify considerably when normality is assumed, but this is no
real advantage when a computer is used, and the estimation of both JA and a4 is
recommended, which was what Smith did.

It is somewhat surprising that the assumption that the test statistics behave as
normal deviates when A = 0 gave roughly the correct rejection percentage, al-
though there is some variation with different test statistics and parameters.
The results for different gene frequencies may at first appear surprising. One

would expect the powers to decrease as gene frequencies deviate from .5. The ex-
pected frequency of pairs of homozygous parents for the X's is [P2 + (1 - p)2]2 =
.25 for p = .5 and .67 for p = .9. Consequently, many more families had to be
generated forp = .9 than forp = .5 to have 100 with variation in the X's. Had
the number of families generated been held constant, the tests would have been
based on many fewer families forp = .9. The fact that the power did not decrease
for q = .9 as opposed to q = .5 is accounted for with a different reason. The noise
variable added into Y had a variance of 2q(1 - q)(1 - h)/h. With h = .5, this
variance is .5 for q = .5 and .18 for q = .9. The reduction in informative families
for Y from increasing q to .9 is offset by reduction in the noise variance. The noise
variance and gene frequencies could be varied independently of each other for a
fixed number of families generated, but we believe we have given a sufficiently
general picture of the results.

Power, of course, increases with heritability and linkage. Linkage disequilibri-
um enhances the power but does not mimic the effects of linkage since within-
family statistics are utilized.
On balance, we are forced to conclude that the use of sibs for detecting linkage

between a marker locus and a quantitative trait is unlikely to be of great practical
value. When information is available only on families of sibs, the procedure may
be used as an indicator of linkage.
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APPENDIX A

VARIANCES OF H3 AND H4

For a family, let

I xi' I yi2,
i i

so that H3 = W3'Z, H4 = W4'Z, with

w3 = n- '

f -4
=I(n - 2)(n - 3)

-(n + 2)
n(n - 1)(n - 2) '

4
n(n - l)(n - 2)(n - 3) '

Dropping the 3 or 4 subscripts, since the same argument holds in each case, var(H) =
w' ' z z' w. Required in the evaluation of 9' z z' are the expectations of fourth-order
functions of the y's in terms of P and U4. The coefficients of the moments in these expecta-
tions follow.

/14 C4

XYl2yj .............

rYi2YjYk ...........

XYiYjYkY..

(n - 1)(n2- 3n + 3)
n3

-(n2- 3n + 3)
n3

2n - 3
n3

n - 3
n3
-3
n3

3(n - 1)(2n - 3)
n3

-3(2n - 3)
n3

n- 2n2 - 3n + 9
n3

-(n + 3)(n - 3)
n3

3(n + 3)
n3

The evaluation is now straightforward but very tedious.

g ZZ' = Plxj4 + Q(Xx,2)2,
Iwe

where

(n - 2)A
n2

= O

A
n

0
A
n

0 0

0 14 -3a4
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and

A + B (n-3)u4 (n- 1)B B-A
n3 n n2 n2

(n - 1)B
n2

n2

(n - 1)B
n

B
n

B
n

3a4

with A = (n -2)4- (n - 6)U4, B = (n - 0)M4 + (n2 - 2n + 3)a4.

APPENDIX B

ESTIMATION OF THE MOMENTS A4 AND a4

The method of estimation is motivated by the following two expectations:
2(1A4 + 3a4) and X(yi - Yj)2(Yk - yl)2 = 4a4. Then, the sums

-(y_ yj)4 =

M = (yi-yj)4 = 6(y2)2 + 2n~y14

MA2 = Y - j) (Yk Yl)
i #1 $k# I

= 4(n2 - 3n + 3)(yj)2 - 4n(n - Iy,

have expectations XM, = 2n(n - 1)(A4 + 3a4) and XM2 = 4n(n - 1)(n - 2)(n - 3)a4.
Estimates are obtained from combining information over families (f)

a = Y. [(nf -3nf + 3 )( iYi2 )2 + nf(nf- 1)XYfi4]/"f
f i I f

X (nf- l)(nf - 2)(nf- 3)

.= [3( i7)2 + nffYfi4]/Ifnf(nf - 1) -3a
f , f

When there is reason to believe the trait is normally distributed, only one estimator
is needed:

or= IY. yfi211(nf- 1)
f i f

with o4 = (2)2, 84 = 3(a2)2
Either set of estimators is substituted into the expressions of APPENDIX A to provide

estimates of the variances of H3 and H4.
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