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How Many Polymorphic Genes Will It Take
to Span the Human Genome?

KENNETH LANGE' AND MICHAEL BOEHNKE

SUMMARY

It is desirable to know how many polymorphic marker loci will be re-
quired so that every human genetic locus can be mapped by classical
pedigree methods to a specific region of a specific chromosome. Assum-
ing a total autosomal map length of 33 morgans, it would take only
about 33/(2d) evenly spaced markers for every locus to be within d
morgans of a marker. Taking into account that the markers will fall
randomly along the genome, we show that a much larger number of such
loci will have to be isolated and tested before the goal of a saturated gene
map is reached.

Surely, one of the dreams of the human genetics community is to find a sufficient
number of polymorphic marker loci so that any new genetic locus can be mapped
by family studies to a specific region of a specific chromosome. It is of interest to
establish how many marker loci it will take to span the entire genome.
A simple approach to this problem is to argue that, under the best circum-

stances, the marker loci should be evenly spaced along the genome. To avoid the
complications of edge effects, one can imagine the 22 human autosomes placed
end-to-end so as to cover the circumference of a circle. For simplicity, take the
circumference to have unit length. If we want any point on the circle to be within a
distance d from a marker, then the markers should be a distance 2d apart. Pro-
vided (2d)-1 is an integer, it will take exactly (2d)-' markers to cover the circle.
Thus, if we accept Renwick's [1] sex-averaged map length of 33 morgans for the
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autosomal portion of the genome, and we want every gene to be within .1 morgan
of a marker, d = .1/33, and it takes 165 markers to span the genome.

This result is appealing because of its simplicity and because of the manageable
number of markers it entails. If polymorphisms based on DNA restriction frag-
ment lengths are as common as hoped [2-7], then it is just a matter of time until we
have 165 markers. The problem with the simple argument is that it ignores the fact
that the markers will occur randomly over the genome, with tight clusters and
sizable gaps appearing. As a consequence, considerably more than (2d)-1 markers
will be necessary to guarantee a minimum distance d.
To get some idea of what proportion of the genome can be covered, consider a

fixed point on the circle [8-10]. If there are n markers, each one will fall beyond
the minimum distance from the unit with probability 1 - 2d. Hence, all n will fall
beyond the minimum distance with probability (1 - 2d)". For n = (2d)-', we
therefore expect a proportion

(I - 2d)2d e-l

= .368

of the genome to be uncovered. In general, for n = k/2d, we expect an approxi-
mate proportion e-k of the genome to be uncovered. Thus, with n = 114 and
d = .1/33, about half the genome is uncovered; with n = 493, only about 5% is
uncovered. When one takes into account that there are 22 separate autosomes, the
uncovered portion of the genome should be larger since the influence of a marker
cannot extend beyond the autosome on which it falls. It is still possible to solve the
coverage problem with the complication of edges. Using the formula in [11], the
proportion of the genome uncovered is .381 ford = .1/33 and n = (2d)- mark-
ers. As the minimum distance d gets smaller, the circle approximation naturally
gets better.

Another way of approaching the covering problem is to ask how many markers
n it will actually take to cover the circle so that no gap is greater than 2d. n is now a
random variable. Flatto and Konheim [12] have proved that the average value of n
is

[(2d)- (']d~-
E(n) = I + (-lyl (I-2d)

p-I ~(j2d)'~'

where [(2d)-'] is the integer part of (2d)-'. There is, in fact, a whole asymptotic
theory for the moments and the limiting distribution of n as d - 0 [13-18]. In
table 1, we list the mean ± the standard deviation for n for selected values of d
[14]. It is obvious that the simple argument provides a serious underestimate of the
number of marker loci necessary to cover the genome.
To assess the magnitude of edge effects on E(n), we also carried out a computer

simulation of how markers fall on the genome. In this simulation, we assumed as
in [ 1] that markers are distributed independently and uniformly with respect to
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physical length along the chromosomes. A weighted average of the mitotic chromo-
some lengths reported at the Paris Conference [19] was used. We also assumed
that map distance in morgans is proportional to physical distance. The results of
the simulation are reported in table 1. Inspection of the table reveals that edge
effects are not altogether trivial and only diminish the chances of complete
coverage.
New techniques developed by Gusella et al. [20] permit the search for DNA

restriction fragment length polymorphisms to be confined to one human chromo-
some at a time. These techniques exploit somatic cell hybrids between man and
rodent; occasionally, the hybrid cells will have preferentially lost all but a single
human chromosome or a fragment of a human chromosome. These techniques
provide a much more economical approach to spanning the human genome with
markers. Once a chromosome is spanned by markers, one can eliminate it and
thus avoid many redundant markers.
The number n of markers required to span the human genome can then be

expressed as
22

n==ni
i=I

where ni is the number necessary for the ith autosome and where the ni are now
independent random variables. Cooke [14] gives appropriate formulas for the
mean and variance of each ni based on a probabilistic model of random points
falling on a line segment rather than on a circle. The last column of table 1 displays
our calculations applying these formulas. The results are clearly encouraging, and
we anticipate even better results if chromosome fragments are systematically used.

In summary then, the original argument promotes too optimistic a view of how
much work it will take to span the human genome with polymorphic markers.
Adopting a divide and conquer strategy of proceeding chromosome-by-chromo-
some helps matters considerably. Still, human geneticists will need patience, per-
sistence, luck, and a willingness to settle for a less than complete genetic map.
Filling the last few gaps of the map will be a slow, frustrating enterprise.

TABLE I

No. MARKER Loci REQUIRED TO SPAN THE HUMAN GENOME

Minimum distance
to marker Markers required for Markers required for Markers required for 22
locus (morgans)* circular genomet 22 autosomest isolated autosomes§

.1 .......... 1273 + 238 1528 + 349 766 + 66

.2 .......... 570 + 119 743 + 182 330 + 33

.3 ........... 354 + 80 493 + 131 201 + 22

.4 .......... 252 + 60 365 + 103 141 + 16

* To convert to d divide by 33 morgans.
t Expected nos. marker loci required to span a circular autosomal genome ± 1 SD.
$ Expected nos. marker loci required to span the 22 autosomes ± 1 SD, arrived at by

computer simulations of 1,000 trials each.
§ Expected nos. marker loci required to span the 22 isolated autosomes ± 1 SD.
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