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Kinship Structure and Heterozygosity on Tristan da Cunha

E. A. THOMPSON1 AND D. F. ROBERTS2

SUMMARY

Although there are many factors influencing the genotype proportions in a
small population [1], a heterozygote excess, caused by avoidance of
incestuous matings, will often be the expected observation. In the population
of the small South-Atlantic island of Tristan da Cunha, such an excess is
observed [2], and we have investigated its origin, partitioning the population
by sex and by generation. Although for such a small population the test for
random pairing of genes [3, 4] is not sufficiently powerful to produce
significant results, the pattern of homozygote deficiency is suggestive of
avoidance of close matings. We have also investigated the effect of current
nuclear family structure and family-size distribution.

INTRODUCTION

The effect of a population's mating structure upon its genotypic structure has been of
long-standing interest. Wright [5] first considered matings between related individuals
in an infinite population. Using his "fixation index," he analyzed the excess
homozygosity that would arise over the Hardy-Weinberg prediction. When mating
occurs at random in a population, offspring genotypes are expected to arise in
Hardy-Weinberg proportions. In a large population, mates will, by virtue of social and
geographical proximity, tend to be more closely related to each other than two
randomly chosen individuals. An overall excess of homozygotes is, therefore,
expected, and where the mating structure results from geographical or social subdivi-
sion of the population, this excess may be measured in terms of the Wahlund variance
(see [6], p 54, for example). There are, however, many other factors that influence the
genotypic structure of a population, and even in a large population, an excess of
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heterozygotes may be observed. Smith [1] has considered theoretically several possible
explanations for such an observation.

In a small population, however, no such explanation is required. Often, because of
taboos on between-sibs or uncle-niece matings, for example, mates are less closely
related than two randomly chosen members of the population. In this case, an excess of
heterozygotes is the expected result, not an anomalous occurrence. Roberts [2]
computed the expected excess of homozygotes on the basis of kinship between mates.
Neel [7] also expected to see such an excess among American Indians, and Jacquard
and Bengtsson [8] have considered theoretically the expected level of such homozygote
excess. This excess is, however, relative to the founding population, and to the
(unknown) allele frequencies which are obtained within the founder group ([6], p 56).
Within the current population, the relevant factor is not the absolute value of kinship
between mates, relative to a founding gene pool, but this kinship's value relative to that
between random members of the population.

POPULATION THEORY

Jacquard ([9], p 221) introduces a coefficient 8 which measures deviation from
random mating in terms of its expected effect on genotypic proportions. The coefficient
is defined by the equation

GM= (1-8) Gp + 8GH, (1)

where GM is the genotypic structure of a gene pair from mates (i.e., the expected
genotypic structure of offspring produced); Gp, the panmictic Hardy-Weinberg
structure; and GH, the genotypic structure of a completely homozygous population
with the same allele frequencies. Where mating patterns are defined by genealogical
relationship, and not by genotype or phenotype, a linear relationship of the form of
equation (1) will always hold. If kinship between two random members of the
population, relative to some defined ancestral genealogy, is a, while that between
mates is a*, then equation (1) implies a* = (1 - 8) a + 8.1 or

(1 - a*) = (I - a) (1 - 8) . (2)
This equation has an obvious parallel in the classical equation of [10]:

(1 -FIT) = (1 -FsT) (I -Fs) , (3)
and can be so interpreted if we consider I as an individual resulting from a mating; S,
the particular subpopulation under consideration; and T, the totality of all populations
with the same underlying ancestral structure. The coefficient 8 may thus be interpreted
as a correlation between uniting gametes relative to the current genotypic structure of
the population and may be positive or negative: a and a* are necessarily positive.

Jacquard [9] has computed 8 for a discrete-generation population of size N, for
several cases of prohibition of matings between relatives. These provide a basis for
comparison with avoidance patterns in natural populations. In any population where
there is a net avoidance of matings between close relatives, and, hence, in any small
natural population such as that of Tristan da Cunha, 8 will be negative.
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TEST OF HARDY-WEINBERG PROPORTIONS

For any small population of interest, we may observe the current phenotypic or
genotypic frequencies at particular loci. We shall assume that the whole population is
surveyed and shall also restrict attention to loci with two codominant alleles, since for
such loci any excess or deficiency of homozygotes is most readily assessed. Since our
population is not a sample from an infinite population, nor in any sense a random
sample as it is one interrelated whole, what is the purpose of estimation and testing?
We do not wish to estimate an allele frequency; the allele frequency is that observed.
We may, however, wish to consider whether the observed number of homozygotes is
in accord with that expected under random mating. That is, given the 2n homologous
genes of the population, paired at random into n diploid individuals, what is the
probability of obtaining a number of homozygotes as small (or as large) as that
observed? We are, thus, in a situation in which the conditional test procedure of
Haldane [3] (see also [11]) is applicable (even though that procedure was based on a
sample from an infinite population). Levene [4] has provided the factorial moments of
the numbers of each genotype under the above random pairing, while Shanbhag and
Rao [12] have considered the asymptotic properties of Haldane's test and extended it to
multiple alleles. In the case of two codominant alleles, it is, of course, only necessary
to consider one genotype, since, given the numbers of each allele, the numbers of other
genotypes are then determined.

TRISTAN DA CUNHA KINSHIP STRUCTURE

For the small and isolated population of Tristan da Cunha, we have the complete
genealogy back to the few original founders as well as genetic data for almost the
complete 1961 population [13]. The population, therefore, provides an ideal situation
for the study of mating preference in a small population; some particular cases of
limitation in the choice of marriage partner, and the resulting inbreeding levels, have
been discussed previously [2]. Also in [2], levels of mean inbreeding, and random
kinship over the whole population at different points in history, were considered.
However, it proved difficult to see any parallel between them, largely because of the
population's heterogeneity caused by grouping together disparate generations.

Since we wish to compare inbreeding of offspring with kinship between potential
parents, we partitioned the population at each date into two generations. The offspring
generation at each date is considered to be individuals from birth to age 20. The parent
generation consists of males aged 21 to 60 and females 21 to 40. From the complete
genealogy of the relevant individuals we computed: (i) the average inbreeding
coefficient in each offspring generation; (ii) the average kinship coefficient over all
pairs in the parental generation; (iii) the average kinship coefficient between all nonsib
pairs; and (iv) the average kinship coefficient excluding all pairs with a value of this
coefficient greater than 1/8. Since potential parent couples are of primary interest, we
have also computed the kinship coefficients (ii), (iii), and (iv) for male-female pairs
only. The results are given in table 1.

Inbreeding levels among offspring have been consistently smaller than mean kinship
in the parent generation, indicating a net avoidance of inbreeding throughout the
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island's history. It seems, however, that this net avoidance is caused only by avoidance
of incestuous matings. Although the inbreeding level is usually below the kinship level
between nonsib pairs, it is close to it and to kinship between pairs for whom this is less
than 1/8 (excluding uncle-niece, for example). This has been so since 1870, the only
exception being a significantly higher inbreeding rate in the 1930s. The period
1920- 1940 was seemingly characterized by a rather different mating pattern. (Before
1870, the numbers of individuals involved are too small for any conclusions to be
drawn.) The overall kinships scarcely differ from those between male-female pairs,
showing that the random factor of an individual's sex has not materially affected mate
availability.
We computed the expected levels of heterozygote excess under the given kinship

structure. From equation (2)

8 = (a* - a) /(I -a), (4)

where a* is the inbreeding coefficient of offspring, and a is the mean kinship between
random pairs of the parental generation. Values of 8 are, therefore, also given in table
1, both for random pairs and random male-female pairs in the parent generation, and
may be compared with theoretical values given by [9]. For a discrete generation
population of constant size n, in which sib mating is excluded, but mating is otherwise
at random,

8 =-1/2(n -2); (5)
while if first-cousin mating is also excluded,

8 = -1/(n - 10) (6)

These values are, therefore, also given in table 1, with the current parental value of n
taken as n = 4(l/fnm + l/nf)-l1 to adjust for the different numbers of males (ntm) and
females (nf). These values, of course, provide only a general indication; the derivation
of equations (5) and (6) involved assumptions of Poisson family-size distribution, etc.,
which are, at best, an approximation in a natural population.
We again see that avoidance of inbreeding in this population is approximately to the

extent of sib avoidance; there are, of course, many first-cousin marriages in the history
of Tristan da Cunha, but apparently neither significantly more nor less than expected by
chance. The high inbreeding levels of individuals who were children in 1930 and in
1940 again stand out, but in 1950 and in 1960, the avoidance has again increased. In
fact, the increase in avoidance in these recent years appears to be greater than implied
by sib-avoidance alone for a population of this size. However, in this larger population,
the large variance of sibship size becomes an important factor, and it accounts for the
discrepancy between the next to the last column of table 1 and the two preceding
columns.

KINSHIP PATTERNS AND GENOTYPE FREQUENCIES

There are three loci, MN, Rh-C, and Rh-E, each having two codominant alleles, for
which almost the complete 1961 population of Tristan da Cunha has been sampled. The
number of individuals of homozygote types MN, CC, and EE and the numbers of M,
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C, and E alleles in the population are given in table 2. These loci were chosen
according to [2], although the two Rhesus loci are not independent-any CC
individual in this population is also ee, having two R1 or R' alleles. The population
sampled has again been partitioned by sex and generation: into male and female, and
into those from birth to age 20 in 1960, aged 21-40 (females), 21-60 (males), and
those above the parental age limit. The offspring and parent generations thus
correspond to the final line of table 1. The total numbers of each genotype differ
slightly from those of [2]; a few individuals were typed subsequent to the initial
collection of data, and these are included here.

Also given in table 2 are the mean and standard deviation (SD) of the number of
individuals of the specified homozygote type, conditional on the observed numbers of
each allele, under the hypothesis of random pairing of the genes. As noted by [2], there
is, overall, for each of the three loci, a deficiency of homozygotes. However, only for
the MN locus does the deficiency exceed 1SD and even in this case, it is less than 2.
Thus, a hypothesis of random pairing could not be rejected on the basis of these data. It
is, nonetheless, of interest to investigate further the source of this deficiency. A true
deficiency may be obscured by pooling together different populations; thus following
our previous discussion, we have considered the excess or deficiency of homozygotes
in each subclass of the 1961 population, partitioned by age and sex. Again, there is in no
class a significant deficiency of homozygotes, yet in view of the small numbers of
individuals involved, it is impressive that so large a proportion of the classes should show
some deficiency. This provides some evidence for the avoidance of inbreeding in this
population.

In addition, table 2 gives the expected numbers of each allele and of the homozygote
type for: (a) random offspring of the parental generation; (b) random offspring of the
actual parents of the current offspring generation mated at random; and (c) random
offspring of each actual parent pair, one such random offspring being generated for
each actual offspring that exists in the current offspring generation. Under random
mating, the only deviations from Hardy-Weinberg proportions expected among the
offspring arise from differences in male and female allele frequencies, causing a

heterozygote excess. Yet even where the male-female parental difference is substantial
(at the Rh-E locus, for example), the expected homozygote deficiency due to this factor
is only .14, compared with a SD of 2.34 under the random-pairing hypothesis. The
differences between the parental sets defined by age (a), and parental sets defined by
actual parenthood (b), are very small, and in the case of the Rhesus loci, these are both
very close to the expectations for the actual current parent pairs (with multiple parents
counted the appropriate number of times). Thus, our definition of the parental set

which we have used to study the historical data does closely approximate the true
parental generation in 1960 at least, and for the Rhesus loci, the distorting effect of
nuclear family structure is also negligible.

The data for the MN locus are of greater interest. In the offspring generation, we

observed a very slight homozygote (MM) deficiency, this being composed of a slight
excess among male offspring overcompensated by a deficiency among female
offspring. Among the parents, there is a homozygote deficiency in all classes, the
numbers being in each case between 1 and 2 SDs below those predicted by random
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pairing. Random mating among the parental generation predicts (necessarily) a
homozygote deficiency among the offspring; but in this case, the predicted deviation
from random pairing is very small, the male and female parental allele frequencies
being almost equal. On generating random offspring to the actual parent couples, we
predict, however, a homozygote excess [see (c) of table 2]. This excess is again within
the bounds imposed by a random-pairing hypothesis; yet it is clear that, for this locus at
least, the nuclear family structure of the current generation has substantial effect. It
would be of interest to examine the sibship structure of the parent generation, where the
deficiency of homozygotes is far more apparent, to see to what extent this is
attributable to nonrandom mating among their parents. However, the genetic data for
these parents are unavailable. They may be estimated from their offspring types, yet
this procedure loses power, rendering the final results again insignificant, although
again suggestive.
To relate this homozygote deficiency to kinship structure, we have also analyzed the

historical data. Over most of this population's history, the kinship and inbreeding
structure closely approximates that of a population mating at random, apart from
avoidance of sib, half-sib, parent-offspring, and uncle-niece matings. Although a
possible major factor in some small populations, the sex of individuals seems to have
little influence in affecting the kinship structure (by mate availability), either histor-
ically or within the current population.
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