
 

Electronic supplementary material:  

The synthesis of (±)-chokol K ( (1R*,2S*,3R*)-1,2-dimethyl-3-(6-methylhepta-1,5-dien-2-

yl)cyclopentanol) 1 is summarized in Scheme 1. 
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Scheme 1 

 



 

The vinyl bromide 2, prepared by protection of the hydroxy group (t-BuMe2SiCl, Et3N, 

DMAP, CH2Cl2, 0°C → r.t., 95% yield) of commercially available 3-bromobut-3-en-1-ol 

(Acros) as its t-butyldimethylsilyl (TBDMS) ether, was converted to the higher-order mixed 

organocuprate species according to the protocol of Lipshutz (1987) and Lipshutz et al. (1993). 

Conjugate 1,4-addition of this mixed vinyl cyanocuprate reagent to 2-methylcyclohex-2-en-1-

one 3 (Quinkert et al. 1988) generates the adduct 4 as an inseparable mixture of two 

diastereoisomers. The 1H-NMR spectrum of this product mixture revealed a ratio of 9 : 1 in 

favor of the thermodynamically more stable trans-disubstituted diastereoisomer. The reaction 

of 4 with methylcerium dichloride (Imamoto 1984), according to the modified procedure of 

Dimitrov et al. (1994), afforded a mixture consisting of four diastereoisomeric alcohols from 

which the desired alcohol 5 was separated by repeated column chromatography (silica gel, 

hexane/t-BuOMe 20 : 1 → 10 : 1). Relative configurations at C(2), C(3), and C(4) for the 

major isomer 5 were established by means of 2D-NOE investigations. Cleavage of the silyl 

ether protecting group was accomplished by treatment of 5 with tetrabutylammonium fluoride 

in THF to provide the diol 6 ((±)-chokol G) as a colorless viscous oil. For the subsequent 

conversion of 6 into 1, the four-step sequence established by Tanimori et al. (1994) was 

followed with some modification. After chromatographic purification (silica gel, 

pentane/Et2O 1:1) and bulb-to-bulb distillation (55°C/10–2 Torr),  1 was obtained as a 

colorless oil. Spectroscopic data (IR, NMR, and MS1)of the product were found to be in 

complete accordance with published data (Tanimori et al. 1994). 
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1IR (Perkin-Elmer FT-IR spectrophotometer, model Spectrum ONE; film) νmax [cm–1]: 

3422m, 3079w, 2964s, 2930s, 2874s, 1640m, 1452s, 1376s, 1287w, 1194m, 1152m, 

1103m, 1022m, 917s, 886s, 826w, 639w, 543w, 447w. 1H-NMR (Bruker DRX-500, 500 

MHz, CDCl3) δ [ppm]: 5.13 (tsept. 3J = 6.9, 4J = 1.4 Hz, H–C(5')); 4.78, 4.76 (2 mc, 

H2C(1')); 2.39 (dt, 3J = 11.3, 9.0 Hz, H–C(3)); 2.14 (br. q, 3J ≈ 7.4 Hz, H2C(4')); 2.01–

1.91 (m, H2C(3'), H–C(4)); 1.75 (t, 3J = 7.9 Hz, H2C(5)); 1.69 (d, 4J = 0.9 Hz, H3C–

C(6')); 1.62 (br. s, H3C–C(6')); 1.55 (dq, 3J = 11.3, 6.8 Hz, H–C(2)); 1.43 (dq, 2J = 13.0 

Hz, 3J = 8.1 Hz, H–C(4)); 1.28 (s, H3C–C(1)); 1.14 (br. s, HO–C(1)); 0.87 (d, 3J = 6.8 Hz, 



 

H3C–C(2)). 13C-NMR (Bruker DRX-500, 125.8 MHz, CDCl3) δ [ppm]: 151.59 (s, C(2')); 

131.53 (s, C(6')); 124.36 (d, C(5')); 108.09 (t, C(1')); 80.30 (s, C(1)); 51.98 (d, C(3)); 

47.55 (d, C(2)); 39.99 (t, C(5)); 33.77 (t, C(3')); 28.63 (t, C(4)); 26.82 (t, C(4')); 26.60 (q, 

H3C–C(1)); 25.69, 17.73 (2 q, (H3C)2C(6')); 10.66 (q, H3C–C(2)); assignments via 

1H,13C-correlation spectra. EI-MS (electron impact ionization, MAT 95 spectrometer at 70 

eV) m/z (%): 222 (5, M+•), 207 (4, [M – CH3]+), 204 (13, [M – H2O]+•), 189 (7), 179 (7), 

164 (12), 161 (52), 149 (6), 135 (25), 121 (28), 109 (48), 108 (17), 107 (16), 95 (25), 93  

(17), 91 (10), 82 (10), 81 (12), 79 (14), 71 (12), 69 (100), 67 (20), 55 (15), 43 (30), 41 

(45). 

 

 

 

 

 

 

 




