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Summary

On the basis of the earlier work of Goss and Harris, Cox et al. introduced radiation hybrid (RH) mapping,
a somatic cell genetic technique for constructing fine-structure maps of human chromosomes. Radiation
hybrid mapping uses X-ray breakage of chromosomes to order a set of genetic loci and to estimate distances
between them. To analyze RH mapping data Cox et al. derived statistical methods that employ information
on sets of two and four loci, to build an overall locus order. Here we describe alternative nonparametric and
maximum-likelihood methods for the analysis of RHs that use information on many loci simultaneously,

including information on partially typed hybrids. Combination of these multipoint methods pro-
vides a statistically more efficient solution to the locus-ordering problem. We illustrate our approach by
applying it to RH mapping data on 14 markers in 99 radiation hybrids for the proximal long arm of human

chromosome 21.

Introduction

Building on the earlier work of Goss and Harris (1975,
1977a, 1977b), Cox and colleagues (Cox et al. 1990;
Burmeister et al. 1991) recently demonstrated that ra-
diation hybrid (RH) mapping provides a powerful
method for fine-structure mapping of human chromo-
somes. In RH mapping, a rodent-human somatic cell
hybrid containing a single human chromosome is le-
thally irradiated with X-rays, breaking the chromo-
somes into several fragments. Fragment-bearing hy-
brid cells are nonviable but can be fused with a normal
rodent cell line. If this normal cell line is deficient in
the enzyme HPRT, growth in HAT medium selects
against the normal, nonfused rodent cells. Each hy-
brid clone arising from fusion of the two cell lines
contains a unique set of fragments from the original
human chromosome, and a clone can be typed for the
presence or absence of human DNA markers.

The basic premise of RH mapping is that the closer
two loci are on a chromosome, the less likely it is that

Received April 29, 1991; revision received July 29, 1991.
Address for correspondence and reprints: Michael Boehnke,
Ph.D., Department of Biostatistics, University of Michigan School
of Public Health, Ann Arbor, MI 48109.
© 1991 by The American Society of Human Genetics. All rights reserved.
0002-9297/91/4906-0005$02.00

1174

radiation will induce a break between them. Thus,
markers close together on a chromosome demonstrate
correlated retention patterns in the hybrid clones,
while loci far apart are retained nearly independently.

When chromosomes are irradiated, the average
number of chromosome breaks is an increasing func-
tion of the X-ray dose (Goss and Harris 1977a); Cox
et al. showed that X-irradiation with a dose of 8,000
rads generates sufficient numbers of fragments to con-
struct maps at the 200-500-kb level of resolution. At
this radiation dose, RH mapping bridges the resolu-
tion gap between linkage mapping or in situ hybridiza-
tion, on the one hand, and physical mapping by
pulsed-field gel electrophoresis (PFGE), on the other.

Cox et al. (1990) used the method of moments to
estimate the distance between two loci. They assumed
independent retention of fragments and random
breakage along the chromosome. Under the second
of these assumptions, breakage can be modeled as a
Poisson process (e.g., see Karlin and Taylor 1975).
Thus, the breakage probability 6 for a given interval
can be converted to an additive distance D by the for-
mula D = -log(1-0), in analogy to Haldane’s
(1919) no-interference mapping function. The re-
sulting units of distance for D are called Rays (Cox et
al. 1990). For their chromosome 21 data and X-irradi-
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ation of 8,000 rads, Cox et al. noted a linear relation-
ship between physical distance and Rays, with one
centiRay approximately equaling 50 kb.

To order loci along the chromosome, Cox et al.
choose the order that minimizes the sum of the dis-
tance estimates between adjacent linked loci in the
map (also see Falk 1991, and in press). Having chosen
an order, Cox et al. estimate the local support for
the order by comparing likelihoods for the four-locus
orders in which the internal two loci are interchanged.
For this purpose, they calculate likelihoods for four-
locus orders at the parameter estimates obtained from
the various two-locus analyses.

In the current paper, we describe two alternative
ordering methods for RH mapping that make use of
information on many loci simultaneously, including
information on partially typed hybrids. The first of
these multipoint methods is nonparametric; it orders
loci by minimizing the number of obligate chromo-
some breaks required to explain the hybrid data
(Bishop and Crockford, in press; Boehnke, in press;
Weeks et al., in press). The second method relies on
maximum likelihood; it provides estimates of the dis-
tances between adjacent loci and the relative likeli-
hoods of the different orders under various models.
For the maximum-likelihood approach we consider a
variety of models for fragment retention. These mod-
els range in complexity, from assuming that all reten-
tion probabilities are equal (Bishop and Crockford, in
press; Boehnke, in press; Chakravarti and Reefer, in
press; Green, in press) to assuming that all retention
probabilities may differ (Cox et al. 1990). Each
maximum-likelihood model depends on the assump-
tions of independent fragment retention and random
chromosome breakage suggested by Cox et al. (1990).
Both the minimum-breaks and the maximum-likeli-
hood methods consider all loci simultaneously rather
than restricting attention to two or four loci at a time
(Cox et al. 1990). To achieve this for moderate to
large numbers of loci requires special combinatorial
and numerical techniques.

The minimum-breaks and maximum-likelihood
methods may be used separately as distinct approaches
to identify the best locus order. Alternatively, the
minimum-breaks method can provide a preliminary
list of candidate orders for evaluation by the computa-
tionally more intensive maximum-likelihood method.
We illustrate both these methods with an analysis of
RH mapping data on 14 markers in 99 RHs for the
proximal long arm of human chromosome 21 (Cox et
al. 1990).
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Material and Methods
Data
In an RH mapping experiment, letloci A;, A,, . . .,

Ay be typed on H radiation hybrids. For a specific
locus order, we write the observation vector for a hy-
brid as x = (x, x2, . . ., xn), where x; = 1,0, or ?,
depending on whether marker i is typed and retained,
typed and not retained, or not typed, respectively. For
example, for N = 14, a possible observation vector
isx = (1,1,1,2,0,0,2,0,0,0,1,1,1,1).

Minimum Number of Obligate Chromosome Breaks

Since the closer that two loci are on a chromosome,
the less likely it is that a break will occur between
them, a reasonable ordering strategy is to minimize
the number of obligate chromosome breaks implied
by the RH mapping data (Bishop and Crockford, in
press; Boehnke, in press; Weeks et al., in press). For
example, the hybrid x = (1,1,1,?,0,0,?,0,0,0,1,-
1,1,1) requires at least two breaks in the order given:
one break between loci 3 and 5 and the other between
loci 10 and 11. Other breaks may have occurred, but
at least two are required to explain the hybrid in the
order given. To count the number of obligate breaks
for a hybrid, we count the number of times that 0 is
immediately followed by 1 or that 1 is immediately
followed by 0; in this count, ?’s are ignored. The
minimum-breaks approach to RH mapping is analo-
gous to minimizing the number of recombinants to
infer order in genetic linkage mapping (Thompson
1987). It is also closely related to the maximum-
parsimony method for reconstructing evolutionary
trees (Edwards and Cavalli-Sforza 1964).

Minimizing the Number of Obligate Chromosome Breaks

For a modest number of loci N, counting and com-
paring numbers of obligate breaks for all N!/2 locus
orders is feasible. This rapidly becomes impractical as
N gets large; if N = 14, the number of locus orders is
more than 43 billion. Thus, alternatives to exhaustive
enumeration are required. We consider three such al-
ternatives: (1) a branch-and-bound approach, (2) a
simulated annealing approach, and (3) a stepwise
locus-ordering approach in which locus orders are
built one locus at a time, with partial locus orders kept
and extended only if they require at most K breaks
more than are required by the current best partial or-
der. Branch-and-bound guarantees that the best
minimum-breaks order is found but is not always com-
putationally feasible when the number of loci N is
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large. The other two approaches are computationally
less demanding for large N, but neither guarantees
that the best solution is found.

Branch-and-bound. —Branch-and-bound (e.g., see Ni-
jenhuis and Wilf 1978) is an approach to systemati-
cally eliminate large numbers of nonoptimal solutions
to a problem, without actually considering each solu-
tion in detail. This is achieved by identifying early in
the process a candidate solution that is optimal or
nearly so and then eliminating solutions that are infe-
rior either to the candidate solution or to better solu-
tions encountered subsequently. In the locus-ordering
context, we construct locus orders one locus at a time,
and as soon as a partial locus order requires more
breaks than the current best complete order, all com-
plete orders consistent with the partial order are elimi-
nated. In practice, a list of all orders that differ by K
or fewer breaks from the current best complete order
may be retained.

The branch-and-bound approach works because
the criterion of interest —namely, minimum obligate
breaks—never decreases as loci are added to an order.
To prove this fact it is enough to demonstrate it for a
single radiation hybrid x. Let A,, be the locus to be
added to the current partial order. If A,, is untyped,
or if there are no other typed loci yet in the order, then
adding A, requires no new obligate breaks. If A,, is
placed so that typed locus A is to one side of it but no
typed locus is on its other side, then the number of
obligate breaksis not altered if x; = x,,, and itincreases
by one if x; + x,, = 1. If A,, is placed between two
adjacent typed loci A; and A;, and if x; # x, or x; =
Xr = X, then there is no change in the number of
obligate breaks; if x; = x; # x,,, then the number of
obligate breaks increases by two. Thus, in every case,
adding a new locus to an order cannot decrease the
number of obligate breaks for a hybrid. Thompson
(1987) proved an analogous result for minimizing the
number of recombinants in linkage mapping.

To prime branch-and-bound, we use a greedy algo-
rithm (Goodman and Hedetniemi 1977) to generate a
good initial candidate order. Beginning with any of
the N(N-1)/2 locus pairs, we determine the next
locus to add to the current partial locus order by exam-
ining each unplaced locus and each possible position
for it. The optimal position for an unplaced locus is
the position that requires the smallest increase in the
number of obligate breaks. The unplaced locus with
the greatest difference between the mean number of
breaks required by addition at nonoptimal positions
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and the number of breaks required by addition at its
optimal position is then added at its optimal position;
ties are broken randomly. Alternatively, the unplaced
locus with the greatest difference between the number
of breaks required by addition at its optimal and the
number of breaks required by addition at its next best
position could be added at its optimal position. The
purpose of either greedy algorithm is to add at each
stage that locus having strongest support for its opti-
mal position. Carrying out this procedure for all
N(N -~ 1)/2 possible locus pairs makes it possible to
identify a high-quality candidate order for the mini-
mum-breaks criterion.

Stepwise locus ordering. — While the branch-and-bound
approach allows elimination of many possible orders,
the number of orders evaluated still may scale expo-
nentially in the number of loci N. For situations where
branch-and-bound is impractical, a close alternative
to branch-and-bound is to build orders one locus at a
time but to keep under consideration only those partial
orders that are within K breaks of the current best
partial order. When a partial order of the same length
as the current best partial order is eliminated from
consideration, all complete orders descended from it
are also eliminated. In general, this approach consid-
ers many fewer partial orders at some risk of missing
the overall best order. Larger values of the constant K
increase the chance of identifying the best order but
imply a heavier computational burden. The result of
stepwise locus ordering will again be a list of orders
which should include the best order(s). Choosing at
each step to add that locus whose position is most
strongly supported by the data, and/ or beginning with
an anchor map of well-placed loci, improve the
chances of success for stepwise locus ordering. Similar
approaches are often taken to construct multipoint
linkage maps (e.g., see Barker et al. 1987).

Simulated annealing.— A final approach to minimize
the number of obligate breaks is to use simulated an-
nealing (Kirkpatrick et al. 1983; Press et al. 1989).
Simulated annealing is motivated by the analogy of
crystal formation in a cooling liquid. When cooled
slowly, the molecules of a liquid settle into the mini-
mum energy state for that system. If cooling is rapid,
the minimum energy state may not be reached; in-
stead, the system ends up in a polycrystalline or amor-
phous state of somewhat greater energy.

To simulate this annealing process, we identify the
N!/2 locus orders with the states of a nonstationary
Markov chain (e.g., see Karlin and Taylor 1975). The
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possible transitions for the Markov chain are block
inversions of the current locus order. For example,
if we are in the state corresponding to locus order
1-2-3-4-5-6-7-8-9-10, we may invert the block 5-6-
7-8 to yield the new order 1-2-3-4-8-7-6-5-9-10. We
choose the transitions for the chain uniformly from all
N(N -1)/2 possible block inversions of loci. To each
state § we associate an objective criterion E;, here the
minimum number of obligate breaks for the set of
hybrids. E is called “energy” for short and is the quan-
tity to be minimized.

The Markov chain is executed by proposal and ac-
ceptance steps. In state (locus order) #, propose a step
to state (locus order) j according to the uniform transi-
tion probability of 2/[N(N - 1)]. If E;< E,, then accept
the proposal. If E; > E;, then accept the proposal with
probability exp[ — (E; — E;)/ T], where T > O represents
temperature. Simultaneously taking many steps and
gradually letting the temperature T approach zero, the
process should stop in a state with minimum or nearly
minimum energy. Keeping a list of the best orders
encountered is a useful adjunct.

The essence of simulated annealing is that, early
on in the process, steps leading to increased energy
(number of obligate breaks) are often taken. This pro-
tects against prematurely being trapped in a local mini-
mum. Later steps converge to the presumed global
minimum. Although simulated annealing does not
guarantee that the best solution will be found, practi-
cal experience has shown it to yield reasonable solu-
tions to a wide variety of combinatorial optimization
problems (Press et al. 1989).

We implemented simulated annealing by starting
with a temperature T of 1,000. With this initial tem-
perature, proposed transitions to a new order requir-
ing 100 or fewer additional breaks are taken at least
90% of the time. We then let T decrease toward zero
in 100 stages, at each stage multiplying T by 0.90.
With N loci, a new stage is entered either after 10N
proposed steps are accepted or after 100N steps are
proposed, whichever comes first (Press et al. 1989). In
the final stages of annealing, transitions to locus orders
that require more breaks are effectively impossible.

Clearly, branch-and-bound is the approach of
choice when feasible, since it guarantees that the best
locus order is found. When branch-and-bound is im-
practical, simulated annealing and stepwise locus or-
dering can be used; for a large number of loci N, these
approaches require substantially less computation and
seem to work well (see Application).
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Maximum-Likelihood Ordering for RH Data

Models and notation. —RH mapping by the mini-
mum-obligate-breaks criterion is attractive because of
its intuitive logic, its lack of restrictive assumptions,
and its straightforward computation. However, the
minimum-breaks method provides neither estimates
of distances between loci nor comparison of relative
likelihoods for competing locus orders. An alternative
approach is to construct a model for the observed RH
mapping data and to estimate model parameters by
maximum likelihood.

Our basic model generalizes that of Cox et al.
(1990). We assume (1) that chromosome breakage
occurs randomly along the chromosome and so may
be modeled as a possibly nonhomogeneous Poisson
process (e.g., see Karlin and Taylor 1975) and (2) that,
in a hybrid, fragments are retained independently. We
define the breakage probability 6; as the probability of
at least one chromosome break between loci A; and
A;+1(1<i< N-1), and we define the retention proba-
bility 7; as the probability that a fragment including
exactly loci A;, Ais1, . . ., Aj (#<j) is retained in a
hybrid; simpler submodels can be defined by placing
restrictions on the retention probabilities (see below).
Implicit in this notation is the assumption that the loci
occurintheorder A, A, ..., An. Coxetal. presented
this general model in the simplest case of two loci. In
that case, there are four possible types of hybrids, with
probabilities.

P(x1=1,x2=1) = 011712 + (1 —91)1’12;
P(x1 =1,x2=0) = 917‘11(1 —7‘22);
P(x1=0, .‘X.'z-_-l) = 91(1 —711)1‘22;
P(x1=0,x2=0) = 0:(1 —=7r11) (1 —r22) +

(1 —91) (1- "12) .

Note that, for the first and last categories above, the
multiple terms in the probability reflect the inherent
uncertainty about whether a break has occurred be-
tween the two loci. Much greater ambiguity regarding
the number and locations of the chromosome breaks
holds for larger numbers of loci N (see below). All
possible chromosome breakage patterns consistent
with a hybrid must be considered in order to calculate
correctly the likelihood for the hybrid.

Likelihood for a given locus order. —Letb = (by,b,,. . . ,
bn-1) be the breakage vector for a hybrid, where b; =
1 if there is at least one chromosome break on the
interval between loci A; and A;, 1, and b; = 0 if there
is no break. These breaks may or may not be directly
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gl_)fervable. For a given breakage vector b, let n(b) =
>, bibe the number of breaks in the hybrid. Finally,
i=1

let L(b) be the ordered list of terminal loci for the
fragments: L(b) = {j: bj=1} U [O,N}] = [0 = £, < ¢,
<...<{,p+1 = Nj. Then the probability of a hybrid
X is

P(x) = 3 P(x|b) P(b), (1)
b

where
N-1
P(b) = ] 05(1-6,)!-b;
i=1
nb)+1

P(x|b) = 1o

Here, Q; = 1 if none of the loci on fragment i were
typed; Qi = re,_,+1y; if all typed loci on fragment i
were retained; Qi = 1—17,_,.1y, if no typed loci on
fragment i were retained; and Q; = 0 otherwise.

The number of breakage vectors b consistent with
the hybrid observation vector x—and hence the num-
ber of nonzero terms in equation (1)—varies de-
pending on the number of breaks implied by x and
on how precisely those breaks are positioned. Given
adjacent typed loci i and j > i, there are 2/~ possible
vectors (b;,bis1, . . . , bj_1) consistent with x; = x;, and
there are 2= — 1 such vectors consistent with x; # x;,
since the vector (0,0, . . . ,0) is inconsistent with x; #
x;. In general, the number of vectors b consistent with
a hybrid x is a product of terms of these forms. For
example, for x = (1,1,1,2,0,0,?,0,0,0,1,1,1,1),
2°2°3°2°4°2°2°1°2°2"2 = 3,072 of the 213 = 8,192
possible terms are nonzero.

Retention Probability Models

General model.—The general model of Cox et al.
(1990) allows all N(N + 1)/2 retention probabilities
to differ. Together with N — 1 breakage probabilities,
this results in a total of (N?+ 3N —2)/2 parameters.
The number of parameters is equal to the number of
complete observation classes 2V if the number of loci
N is 2 or 3. For larger N, there are more possible
observation classes than parameters. In practice,
many of these classes will be unobserved, owing to
relatively modest numbers of hybrids H; typically H
= 100. Since the number of parameters grows rapidly,
a prudent tactic is to consolidate the retention proba-
bilities.

Moving-average model. —One simplification is to
model a fragment retention probability as the average
value of locus-specific retention probabilities for the

Boehnke et al.

loci on the fragment. For this moving-average model,

let 7, be the probability that a fragment containing

locus & only is retained in a hybrid (1 < k£ < N), and
J

assume that r; = >;7./(j— ¢+ 1). This model involves
k=i

atotal of 2N — 1 parameters; it partially captures what
happens if retention probability varies continuously
along the chromosome.

Neither the general model nor the moving-average
model is very restrictive in its assumptions about frag-
ment retention. Unfortunately, both models require
significant computation as the number of loci N gets
large; calculating the likelihood for some hybrids re-
quires summation of 2N~ terms (see above) and must
be repeated for multiple hybrids, for multiple itera-
tions of a maximization routine, and for a potentially
very large number of locus orders.

Markovian models. — There exists a class of retention
probability models for which the likelihood can be
calculated much more simply (Boehnke, in press). To
describe these models, we first reexpress the probabil-
ity of a radiation hybrid x as

n

P(x) = P(xn)kf_l2 P(xy|x, - -

axtk-l) ’

where t = (t1,2, . . . , t,) is the set of indices of the loci
typed for hybrid x. For some models., P(x|x, . . . ,
Xtp_1) = P(xy|xs_1). We call these models Markovian,
because, for such models, x;;, x:, . . . , x,, can be
viewed as a nonhomogeneous Markov chain (e.g., see
Karlin and Taylor 1975) that takes only a finite num-
ber of steps. For any such model, the likelihood simpli-
fies to

P(x) = Plxa) [T Plralxa 1), (2)

and the number of operations required to calculate
P(x) is a linear function of the number of loci N (see
below).

Equal retention probability model. — The simplest reten-
tion probability model assumes that all retention prob-
abilities 7; are equal to some common value 7 (1 <,

j € N) (Bishop and Crockford, in press; Boehnke,

in press; Chakravarti and Reefer, in press; Green, in
press). This Markovian model includes a total of N
parameters.

Centromeric or telomeric model. —In some RH-map-
ping data sets the proximity of a fragment to the cen-
tromere appears to have an effect on the retention
probability for that fragment (Benham et al. 1989;
Cox et al. 1990). Such a situation can be modeled
most simply by setting the retention probability r; =
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rifi = 1andr; = ryif i # 1; here, locus A is assumed
to be nearest the centromere (Bishop and Crockford,
in press; Boehnke, in press; Lawrence and Morton, in
press). This Markovian model requires a total of N + 1
parameters. Further, since, for this model, orientation
along the chromosome matters, consideration of N/
locus orders is required. This same model could
equally well be used to model a telomeric effect on
fragment retention.

Left-endpoint model. — The last two models are special
cases of the more general Markovian model that sets
the retention probability r; = r; for all 1 < 4, j <
N (Boehnke, in press). This model includes 2N -1
parameters. If retention does not vary too much along
the chromosome or if fragments tend not to include
many loci, then this model is similar to the moving-
average model. However, its likelihood is much sim-
pler to compute.

Likelihood for the Markovian Models

To calculate P(x) according to equation (2), we
must evaluate terms of the form P(x;) and P(x;|x;) (i <
7), for typed loci A; and A;. We do so for the left-
endpoint model; the other Markovian models are spe-
cial cases of this more general model. First,

Plx;) = Zn"f(l S0 -8, (3)
k=i

where we define 0, = 1. The term corresponding to
i = 1 in the sum in equation (3) is the probability of
x; when there are no breaks between A; and Aj; for
i > 1 the ith term in the sum is the probability of x; if
the nearest break prior to A, is between A;_; and A..
Note that if j = 1, then P(x;) = 7§1(1 — ;) ~*1. Simi-

larly,
P (x,~|x,~) =

ﬁ (1-80) +
j k= j-1
-Z rfn -rm)l_xjem-l 1T1(1-6),

k=m

(4)

where 8,; = 1if x; = xjand 8,; = 0 if x; # x;. The
first term in equation (4) is the conditional probability
of x; given x; if there are no breaks between A; and A;.
The terms in the sum give that conditional probability
if the nearest break prior to A; is between A, _; and
A,.. Note that if j = i+1, then

1-6; + 7:,16; (xux:+ ) = (lal)

‘ Y = (1_7i+1) 0; (x Xi+1 ) = (1’0)
Blsioabd =97 e, (xixir1) = (0,1)°

l—ei + ( _rl+1) ex (xl,xx+l) = (O’O)
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The log likelihood for a hybrid x is the sum of the
logarithms of (a) one term of the type in equation (3)
and (b) n—1 terms of the type in equation (4). Given
a set of H independent hybrids x = (x;,x3, . . . , Xn),
the joint log likelihood for the hybrids is the sum of
the log likelihoods for the individual hybrids.

Likelihood Maximization by the EM Algorithm

EM updates. —In general, some method of iteration
is required to maximize the log likelihoods for RH
mapping. We have chosen to use the EM algorithm
(Dempster et al. 1977). This algorithm is natural in
contexts where the observed data can be considered
as a subset of some hypothetical complete data. In the
RH-mapping context, the complete data would be the
locations of the breaks and the retention status for
each of the resulting fragments. The retention patterns
of the typed loci constitute the observed or incomplete
data.

Given the complete data, the breakage probabilities
and the retention probabilities can be viewed as suc-
cess probabilities for partially hidden binomial experi-
ments and can be estimated by sample proportions;
the moving-average model is an exception to this rule
(see below). Since we have only the incomplete data,
it is reasonable to update an estimate of an entry p; of
the parameter vector p according to the general EM
update formula

E(no. of successes|X,p°")
E(no. of trials|X,p°)

new —

i =

Here p° and p™ are the current and updated parame-
ter estimates, respectively, and the numbers of suc-
cesses and trials refer to the binomial experiment cor-
responding to parameter p;. An equivalent EM update
formula (Weeks and Lange 1989) that tends to be
easier to compute is

piom(l - Pidd) dlogL(POId)/ dpt ( s )
E(no. of trials|X,p°¥) ~

where L(p) is the likelihood of the observed data. At
each iteration of the EM algorithm, we update the
estimates of the breakage and retention probabilities
by using formula (5). The EM algorithm is guaranteed
to increase logL(p) (Dempster et al. 1977); iterations
continue until logL(p) stabilizes and the parameter es-
timates appear to converge.

The update formula (5) requires both the expected
number of trials for a binomial experiment in the de-
nominator and a derivative in the numerator. The ex-
pected number of trials conditional on the data and

pinew = piOId +
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the old parameter estimates is easily calculated for
each type of parameter. For a breakage probability 0,
the expected number of trials is simply H, the number
of hybrids. For the retention probability 7 of the equal
retention probability model, the expected number
of triallsV if’ the expected total number of fragments,
H[1 + 3] 6. For the centromeric model, the expected
i=1 N-1
number of trials is H for r; and H ), 0; for r,. For the
i=1
left-endpoint model, the expected number of trials for
retaining a fragment starting with locus 7 is H;_;.
Finally, for a general retention probability 7;;, the ex-
pected number of trials equals the expected ;3111mber of

J
fragmentsincludingloci A, . .., A;: HO;_ 6, ] (1 - 6,).
k=i

In all these cases the displayed 6/s are the current esti-
mates and 8 = Oy = 1. The derivatives required for
formula (5) are not difficult to calculate. For the
moving-average model, an alternative approach is re-
quired, since the retention probabilities are linear
combinations of different subsets of the parameters.
We have implemented the moving-average model by
using a variable-metric approach to iterative maximi-
zation (Lange et al. 1988).

Parameter initial values.—Use of an iterative maxi-
mization scheme requires initial estimates for the pa-
rameters. For the general model, we use the moment
estimates suggested by Cox et al. (1990). For the re-
maining models, we initially estimate a retention prob-
ability as the sample proportion of retained loci among
the appropriate typed loci. For example, for the cen-
tromeric model, data for the first locus are used to
estimate r;, and data for all other loci are used to
estimate r,. Given initial retention probability esti-
mates, we estimate breakage probabilities for adjacent
locus pairs by two-locus maximum likelihood. Full
maximum-likelihood estimation is not feasible for
two-locus RH data for the general retention probabil-
ity model, since the number of parameters equals the
number of complete observational classes (see above).

Without loss of generality, consider 0;. Lets; = 1
—r; and let n; be the number of hybrids for which
(x1,x2) = (4,§), i,j € {0,1]. When terms that do not
involve 6,, are ignored, the log likelihood for 6, is

logL(0:) = n11log [01711722 + (1 — 01)r12] +
(nm + 1101) lOg (el) +
Moo lOg [01511822+ (1 —01)s12] .

Setting the derivative of logL(8;) to zero and defining
n = n11 + 110 + o1 + 1o results in the quadratic equation
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n(rufzz - 712) (SuSzz - 512) 9% + [(n - ﬂoo) (7'117’22 - 712)512
+ (n—n11) ra(snsa2 —s12)] 01 + (10 + 101)r12812 = 0,

(6)

which can be solved to yield the initial estimate of 6.
Chakravarti and Reefer (in press) have solved equa-
tion (6) for the equal retention probability model.

Choosing the Maximum-Likelihood Order

Choosing the best maximum-likelihood locus order
requires finding the locus order with the largest maxi-
mum likelihood. In principle, the same approaches
used to identify the best minimum-breaks order can
again be used to identify the best maximum-likelihood
order. Here, computational efficiency is even more
critical, since maximizing the likelihood requires sub-
stantially more time than counting obligate chromo-
some breaks.

Justification of branch-and-bound and stepwise lo-
cus ordering for maximum-likelihood requires proof
that adding a lccus to a partial locus order cannot
increase the maximum likelihood of the RH-mapping
data. Proof of this fact for the equal retention proba-
bility model is given in the Appendix.

A computationally less demanding approach to
maximum likelihood is to examine either (a) only a
short list of candidate orders identified by the mini-
mum-breaks analysis or (b) those orders together with
related orders obtained by one or more block inver-
sions of loci (Weeks and Lange 1989). This combined
approach keeps the number of orders manageable and
can be particularly helpful either when there are large
numbers of loci or when a Markovian model does not
appear to be consistent with the data. The disadvan-
tage of this combined approach is that it could in prin-
ciple miss the best maximum-likelihood order. More
experience with this approach is required, although it
appears promising (see Application).

Model Choice

In principle, locus orders could be compared under
each of the possible retention probability models, with
the best maximum-likelihood order being chosen for
each such model. If each retention probability model
yielded the same best order, then the best-fitting model
could be selected by likelihood-ratio tests; the validity
of significance levels for this test is conditional on this
order being the correct one. In practice, it is computa-
tionally less burdensome to identify a set of best candi-
date orders under one retention probability model and
then to calculate maximum likelihoods for those or-
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ders under other retention probability models. Com-
parison of models for the various orders can then be
done by likelihood-ratio testing.

Retention sample proportions observed for each lo-
cus can suggest whether nonequal retention probabili-
ties will be necessary. However, since these sample
proportions are dependent, treating them as indepen-
dent in a simple statistical procedure such as a x?
goodness-of-fit test yields invalid significance levels.

Identification of Influential Hybrids

Once a best locus order has been selected, it is useful
to check whether there are particular hybrids that were
influential in distinguishing the best order from other
nearly best orders. For the minimum-breaks method,
this can be determined by comparing the number of
chromosome breaks required for each hybrid under
the best order with the number of breaks required
for each hybrid under other, nearly best orders. The
hybrids for which these counts differ are most respon-
sible for the relative rankings of the orders. If only one
or a few hybrids are responsible for this difference, we
might choose to reexamine those hybrids for labora-
tory errors. We also might note whether any of the
hybrids has a surprisingly large number of breaks un-
der the best order. Finally it is worthwhile to observe
whether any hybrids appear to display patterns of the
sort (1,1,...,1,0,1,1,...,1)0r(0,0,...0,1,0,0,
.. .,0). Although such patterns are logically possible,
the discordant marker could represent a false negative
or false positive.

In the maximum-likelihood context, likelihood-
ratio statistics may be calculated hybrid by hybrid to
compare the best order with a competing order. Each
log likelihood should be evaluated at the MLEs for
that order. Large log-likelihood differences identify
the hybrids that were influential in determining the
best maximum-likelihood order. As with minimum
breaks, we can note whether one or a few hybrids were
largely responsible for the inferred order.

Application

We applied these locus-ordering methods to RH
data on 14 chromosome 21 markers in 99 RHs (Cox
et al. 1990). These data are summarized in table 1.
Two-locus RH lod scores (Cox et al. 1990) suggested
that the 14 markers constituted a single linkage group.
Since in no analysis of these data were the markers
D21S12 and D21S111 distinguishable, ordering re-

1181

sults in the tables exclude D21S111; order counts and
analysis times are for all 14 loci.

Minimum Chromosome Breaks

We first analyzed the RH-mapping data by the
minimum-breaks criterion by using the branch-and-
bound approach. We obtained the best candidate or-
der for comparison by the greedy algorithm described
in the Material and Methods section. Break counts for
subsequent orders generated were then compared with
the 123 breaks required by the best candidate order.
Partial orders requiring more than 132 breaks were
eliminated from further consideration. Table 2 lists
the nine 13-locus orders that required no more than
127 chromosome breaks. The overall best minimum-
breaks order turned out to be the same as the best
candidate order identified by the greedy algorithm,
which was identical to the order arrived at by Cox et
al. (1990) using a combination of likelihood-based
methods and PFGE. A total of 244 14-locus orders
required no more than 132 chromosome breaks. Iden-
tifying those 244 orders required visiting 311,097 par-
tial and complete locus orders and took about 4.6 min
computing time on a 486 25-MHz computer.

Since the branch-and-bound approach guaranteed
that the best minimum-breaks order was found, no
other approach to obtaining this best order was re-
quired for these data. However, for comparison pur-
poses, we also used simulated annealing and stepwise
locus ordering to attempt to identify the best mini-
mum-breaks orders. On the basis of 100 different ran-
domly chosen initial locus orders, we found that simu-
lated annealing identified, on average, (a) the 35 best
locus orders (i.e., on average, the 36th locus order was
the best order missed) and (b) 141 of the 244 locus
orders requiring no more than 132 chromosome
breaks, while visiting 73,262 locus orders. In no case
did simulated annealing fail to identify any of the seven
best locus orders. For the stepwise locus-ordering
method, we chose K = 9, so that all partial orders
requiring no more than nine breaks more than the
current best partial order were saved. Stepwise locus
ordering with K = 9 identified (a) all 90 locus orders
requiring no more than 130 breaks and (b) 224 of the
244 locus orders requiring no more than 132 chromo-
some breaks, while requiring consideration of only
15,085 locus orders. Thus, had branch-and-bound
not been feasible, either of these other approaches
would have identified the best minimum-breaks orders
for these data.

For each of the best minimum-breaks orders, we
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Chromosome 21 RH-Mapping Data

RETENTION PATTERN FOR HYBRID®

52

Hysrip TYPE

111 47 SOD

12

46 11 18 AP

48

16

(=]

~.

0

~

ArEm A A A AARAARA DO AR O

—

-

- O O

O O AR OO ™

SN O OOOOCO ™

- -0 OO O

1

— OO -

(=]

(continued)



Multipoint Radiation Hybrid Mapping

Table | (continued)

1183

RETENTION PATTERN FOR HYBRID®

HyBrip TYPE

(n?) 16 48 46 4 52 11 1 18 8 AP 12 111 47 SOD
54 (1).ceeeneens 0 0 0 1 1 0o 0 1 1 1 1 1 1 1
55(1) i, 1 1 0O 0 0 0o 0 o0 1 1 0 0 0 0
56 (1).cecennnnnns 0 2 0 2 o o0 o ? ? ? 0 ? ?
57 (1) eenennnnns ? 0 ? 0 2 o o o ? ? 1 ? 1 ?
58 (1), ? 0 2?0 2 0 0 0 ? ? 0 ? 0 ?
59(1) .. 0 0 o o0 o0 1 1 1 1 1 1 ? 1 1
60 (1)....ceueneen ? 1 ? 1 ? 0 0 0 ? ? 0 ? 0 ?
61 (1)............ 1 0 o o0 °? o 0 o0 o0 0 0 ? 0 ?
62 (S).eeiiinnnees 1 ? 1 ? 1 1 1 ? ? 1 ? 1 ?
63 (1)...ccuunne. ? 1 ? 1 ? 1 ? 0 ? ? 0 ? 0 ?
64 (1)....cceenen. 0 0 0o 0 0 0o 0 0 o0 O 0 ? 0 0
65(1).ccennnnnnn. ? 1 ? 1 ? 0o 0 0 ? ? 1 ? 1 ?
66 (1)....ceeenen. ? 1 ? 1 ? 1 1 0 ? ? 1 1 1 ?
67 (3)eeiieinnnnn ? ? ? ? ? ? ? ? ? ? ? ? ? ?
68 (1)..ccevnnnn. ? 0 > 0 2 1 1 1 ? ? 1 ? 1 ?
69 (1)....cuunnn. 1 1 1 0 2 ? ? 0 0 O 0 ? 0 ?
70 (1) ceeeennnnnns 1 1 1 1 1 1 1 1 0 O 0 0 0 0
71 (1) .ceuuennenne 1 1 1 1 1 1 1 0 1 ? 1 1 1 1

Source.—Cox et al. (1990).
2 Number of occurrences.

® All numbered loci have D218 as prefix; AP = amyloid precursor; SOD = superoxide dismutase.

compared the number of chromosome breaks required
by each hybrid under the best set of locus orders. We
found that a single hybrid was responsible for the
difference in the number of breaks required by the two
best orders. Under the best locus order, this hybrid
required two chromosome breaks; when loci D21S8
and APP were inverted to give the second best order,
the hybrid required four. This hybrid was retyped,
and the original typing results were confirmed. Simi-

larly, the fourth and fifth best orders required one
or two additional breaks in three and two hybrids,
respectively; in contrast, the third best order required
different numbers of breaks in 33 hybrids.

Maximum Likelihood

We next compared locus orders by maximum likeli-
hood, initially using the equal retention probability
model. Because maximizing the likelihood for a locus

Table 2
Locus Orders Implying Fewest Obligate Breaks for Chromosome 21 RHs
Locus Order? Breaks

16 48 46 4 52 11 1 18 8 AP 12 47 SOD.... 123
16 48 46 4 52 1 1 18 AP 8 12 47 SOD.... 125
16 48 46 4 52 SOD 47 12 AP 8 18 1 11..... 126
48 16 46 4 52 11 1 18 8§ AP 12 47 SOD.... 126
16 48 46 4 52 11 1 18 12 AP 8 47 SOD..... 127
16 48 46 4 52 11 1 18 12 8 AP 47 SOD... 127
11 1 16 48 46 4 52 18 8§ AP 12 47 SOD ... 127
16 48 46 4 52 1 11 18 8 AP 12 47 SOD..... 127
46 48 16 4 52 1 1 18 8 AP 12 47 SOD..... 127

NoTe.—Loci D21512 and D21S111 were indistinguishable. Other conventions are as described in

table 1.

2 Single underlines indicate simple block inversions, compared with best locus order; double underlines

indicate more complex rearrangements.
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order requires substantially greater computation than
counting obligate breaks, branch-and-bound was im-
practical for these data.

Instead, we used four other approaches in an at-
tempt to identify the best maximum-likelihood locus
orders. First, we calculated the maximum likelihood
for the 90 locus orders that required no more than 132
chromosome breaks. Second, we did the same for the
7,428 distinct orders that resulted from block inver-
sions of these 90 best minimum-breaks orders. Third,
we carried out stepwise locus ordering with K = 10,
so that all partial locus orders with maximum likeli-
hood no more than 10* times smaller than that for
the current best partial order were saved at each step.
Fourth, we carried out simulated annealing starting
with five different initial locus orders. Since we had no
global list of the best maximum-likelihood orders, we
combined the lists of orders arrived at by each of these
four methods, and we compared the performance of
the methods in terms of the numbers of the orders they
identified in the combined list.

Table 3 presents the 13 best maximum-likelihood
orders identified for the equal retention probability
model. The three best maximum-likelihood orders
were the same as the three best minimum-breaks or-
ders. Among the 90 best minimum-breaks orders were
the 26 best maximum-likelihood orders, 36 of the 44
orders with maximum likelihoods within 10* times
that of the best maximum-likelihood order, and 56 of
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the 74 orders with maximum likelihoods within 10°
times that of the best maximum-likelihood order. De-
termining the maximum likelihood for a 14-locus
order required on average about 0.5 s on our 486
25-MHz computer.

We next considered the 7,428 distinct locus orders
that resulted from block inversions of the 90 best
minimum-breaks orders. These 7,428 orders included
(a) all 74 orders with maximum likelihoods within 10°
times that of the best maximum-likelihood order and
(b) 170 of the 172 orders with maximum likelihoods
within 106 times that of the best order.

Stepwise locus ordering with K = 10 required eval-
uation of the maximum likelihood for 44,618 locus
orders and identified 1,772 locus orders with maxi-
mum likelihood within 10'° times that of the best or-
der. These orders included the 934 best maximum-
likelihood orders, and 1,068 of the 1,070 locus orders
with maximum likelihoods within 10’ times that of
the best order.

Simulated annealing on average identified the 24
best locus orders, 42 of the 44 locus orders with maxi-
mum likelihoods within 10* of the best locus order,
and 62 of the 74 with maximum likelihoods within
10° of the best order and required visiting 68,924 locus
orders. At a minimum, simulated annealing identified
the 14 best locus orders.

We next calculated, under the centromeric and left-
endpoint models, maximum likelihoods for the 200

Table 3

Best Maximum-Likelihood Locus Orders for Chromosome 21 RHs

Rank Locus Order Alogiol? Breaks
1........ 16 48 46 4 52 11 1- 18 8 AP 12 47 SOD .000 123
2.nee. 16 48 46 4 52 11 1 18 AP 8 12 47 SOD 1.485 125
K R 16 48 46 4 52 SOD 47 12 AP 8 18 1 11 1.786 126
4.eee. 52 4 46 48 16 11 1 18 8 AP 12 47 SOD 1.835 128
RO 16 48 46 4 52 1 11 18 8 AP 12 47 SOD 1.932 127
6. 11 1 16 48 46 4 52 18 8 AP 12 47 SOD 2.263 127
7 eevenn 11 1 52 46 48 16 18 8 AP 12 47 SOD 2.425 128
L OO 16 48 46 4 52 11 1 18 12 AP 8 47 SOD 3.222 127
9 16 48 46 4 52 11 1 18 12 8 AP 47 SOD 3.228 127
10 ...... 16 48 46 4 52 SOD 47 12 8 AP 18 1 11 3.282 128
11 ...... 52 4 46 48 16 11 1 18 AP 8 12 47 SOD 3.315 130
12 ...... 16 48 46 4 52 1 11 18 AP 8 12 47 SOD 3.415 129
13 ...... 1 11 16 48 46 4 52 18 8 AP 12 47 SOD 3.422 130

NoTtE. —All conventions are as described in tables 1 and 2.
2 Logio-likelihood difference from the best order.
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locus orders identified as best under the equal reten-
tion probability model; because of the large number
of loci involved, use of non-Markovian models was
not feasible for these data. For 136 of these 200 locus
orders, the centromeric model fit the data better than
did the equal retention probability model, when we
tested at the .05 level; among these 136 orders were
the six orders that were best under the equal retention
probability model. For all 200 locus orders, the left-
endpoint model gave a better fit to the data than did
the-equal retention probability model, even when we
tested at the .005 level. However, estimates of locus-
specific retention probabilities for the left-endpoint
model were often at the boundary values of 0 and 1,
perhaps suggesting an overparameterized model for
these data.

For all three retention probability models, the same
two orders were identified as best, although under the
left-endpoint model the rankings of these two orders
were reversed. Rankings for other orders varied some-
what between models, particularly for the left-end-
point model. A perplexing observation with regard to
the left-endpoint model was that orientation along the
chromosome — A;-A,-A; versus Aj-A,-A;—made no
difference in the calculated maximum likelihood for
order; fortunately, distance estimates under the
different orientations were very similar though not
identical. Table 4 presents distance estimates from
Cox et al. (1990), together with maximum-likelihood
distance estimates we obtained using the three Marko-
vian retention probability models and the distance
transformation D = -log(1 —8). Distance estimates
under the different models were remarkably similar.

Discussion

RH mapping has several important advantages.
First, RH mapping complements existing mapping
techniques. Given X-irradiation at a dose of 8,000
rads, Cox and coworkers (Cox et al. 1990; Burmeister
et al. 1991) demonstrated that the level of resolution
for RH mapping is intermediate between that of either
linkage analysis or in situ hybridization, on the one
hand, and physical mapping by PFGE, on the other.
Thus, the several techniques complement and rein-
force one another. Second, since RH mapping involves
the analysis of a single copy of the human chromosome
of interest, even nonpolymorphic markers can be used
for map construction; thus, all markers are informa-
tive in every hybrid in which they are typed. Third, in
contrast to recombination, for which the usual linkage

1185

Table 4

Distance Estimates (Rays) for Cox et al. Locus Order

ESTIMATE OF RETENTION-PROBABILITY MODEL
Left- Cox

Locus® Equal Centromeric Endpoint et al.
D21516

] 076 074 075 .08
D21548

} 079 077 073 .09
D21546

} 194 191 178 22
D2154

} 273 274 287 27
D21552

] 644 622 618 64
D21511

] .180 179 166 17
D2151

] 556 571 572 48
D21518

} 349 361 353 40
D218

} A11 15 111 13

} 235 249 256 28
D21512

} 362 376 343 38
D21847

} 253 264 237 26
SOD1

2 Loci D21S12 and D21S111 were indistinguishable.

mapping assumption of no interference is certainly
violated, X-irradiation appears to induce breaks es-
sentially at random, so that the no-interference as-
sumption for RH mapping is reasonable. Fourth,
some degree of experimental design is possible by
modification of the X-ray dose. We can in principle
ask the question: Given N markers in a region of B
kilobases and a fixed fragment retention probability 7,
what is the optimal radiation dose necessary to order
the loci? (K. Lange and M. Boehnke, unpublished
data). Such questions will be important, given the wide
interest in the use of RH mapping. A disadvantage of
RH mapping is that it cannot be used to map disease
loci.

Both of our methods for analyzing RH-mapping
data have advantages and disadvantages. Both meth-
ods consider data for many loci simultaneously and
take full advantage of partially typed RHs. The
minimum-breaks method has the obvious advantages
of computational simplicity and of requiring a mini-
mum number of assumptions. We can expect a close
relationship between it and maximum likelihood; in
the context of linkage analysis, Thompson (1987)
demonstrated that the analogous criterion of mini-

" mum recombinants is asymptotically equivalent to

maximum likelihood under certain conditions. The
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disadvantage of the minimum-breaks method is that
it provides neither estimates of distance nor relative
likelihoods for the various locus orders.

In contrast, maximum likelihood is fully efficient
and, since it assumes a parametric model, provides
estimates of distances and relative likelihoods for or-
ders. However, the maximum-likelihood method de-
scribed here requires the assumption of independent
retention of fragments, an assumption that may not
be fully supported by the data. For example, in the
proximal chromosome 21 RH-mapping data of Cox
et al. (1990), the markers D21S16 and SOD1 are at
opposite ends of the map, and the probability of no
chromosome breaks between them is estimated as less
than 4%. If independent retention of fragments and
equal fragment retention probabilities are assumed,
the conditional probability that SOD1 should be re-
tained, given that D21S16 is retained, satisfies
P(xsop1=1|xp2asis=1) = .04:1 + .96 P(xsop1 =1) =
.04 + P(sop1=1|xp2s16=0); and so it is about 4%
greater than the conditional probability that SOD1 is
retained, given that D21S16 is not. In fact, on the basis
of the 64 hybrids in which both markers are typed, the
conditional and probabilities of retaining SOD1 are
estimated as 18/34 = .529 and 8/30 = .267, respec-
tively. Despite the relatively small samples, there is
some evidence that the corresponding true propor-
tions differ by more than 4% (z = 1.89; two-sided p
= .06) (e.g., see Mendenhall and Beaver 1991). Fi-
nally, the maximum-likelihood method involves as-
suming a retention probability model and comparing
models by likelihood-ratio tests. In some cases, we
may be forced to select poorly fitting models simply
because of their computational tractability.

Particularly if the number of loci N is large, the
minimum-breaks criterion can be used to generate a
preliminary list of orders for further consideration by
maximum likelihood. This worked very well for the
chromosome 21 data of Cox et al. (1990). Alterna-
tively, the minimum-breaks and maximum-likelihood
methods can be used in parallel, and the resulting best
sets of orders can be compared. This latter approach
should be practical if the number of loci N is not too
large, particularly if a Markovian model for the reten-
tion probabilities is consistent with the data.

The stepwise locus-ordering approach worked very
well for the chromosome 21 data of Cox et al. (1990).
It identified more of the best orders than did simulated
annealing, while requiring evaluation of fewer locus
orders. We do not know whether this is generally true.

Boehnke et al.

Perhaps the efficiency of simulated annealing could be
improved by modification of either the initial tempera-
ture T or the speed with which T approaches zero.

For the maximum-likelihood method of RH map-
ping, which is the best retention probability model will
likely depend on the data set. If a Markovian model
such as the equal retention probability model, the cen-
tromeric model, or the left-endpoint model is consis-
tent with the data as determined by likelihood-ratio
testing, then many loci can be ordered simultaneously.
If not, it may be helpful to compare orders for blocks
of loci analyzed under both a more general retention
probability model and a Markovian model. Our lim-
ited experience suggests that among the non-Mar-
kovian models the moving-average model is preferable
to the general model, since it involves a more modest
and identifiable set of parameters. Since RH mapping
will often be used in concert with other mapping meth-
ods such as PFGE and linkage analysis, it may be that
only a few loci will need to be ordered relative to one
another by RH mapping, in which case a non-
Markovian retention probability model can be em-
ployed to good effect.

Other retention probability models might also be
entertained. For example, retention might be modeled
as a function of the distance from the centromere
(Bishop and Crockford, in press). The advantage of
the maximum-likelihood approach described here is
that we can, by likelihood-ratio tests, choose from a
flexible class of retention probability models.

It is clear from examination of the lists of best orders
(tables 2 and 3) that quantifying the support for a best
locus order requires more than indicating the relative
likelihoods when adjacent locus pairs are inverted.
While some of the nearly best orders differ from the
best order in this way (e.g., the two best orders differ
by the inversion of APP and D21S8), many nearly best
orders involve block inversions of a larger number of
loci—or even more complex rearrangements. For this
reason, we advocate presenting a list of the best orders
together with their ordering criterion. This approach
reflects more accurately the strength of evidence for
the inferred locus order. The same considerations
apply in presenting evidence for human linkage maps.

RHMAP is a package of FORTRAN programs that
can be used to carry out RH mapping by the minimum
obligate breaks and the maximum-likelihood methods
described here. It is available from Michael Boehnke
free of charge.
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Appendix

Use of branch-and-bound and stepwise locus ordering
for maximum-likelihood RH mapping requires that
the maximum likelihood cannot increase when a new
locusis added to a partial locus order. We demonstrate
this for the equal retention probability model by com-
paring the maximum likelihood for N loci with the
maximum likelihood for N -1 loci.

Suppose that the ordered set of N—1 loci differs
from the ordered set of N loci only by the absence of
the locus in position j among the N loci. Consider the
case of a single hybrid with observation vector x =
(x15 . . . , xn). For the (N — 1)-locus model, this vector
is amended to X* = (X1, . . ., X- 1,2, %41, - - . » XN).
Since x contains all the information in x*, it is obvious
that the N-locus probabilities satisfy

Pn(x) < Py(x*), (A1)
regardless of the parameter values (7,0, . . . , Ox_1).
We next show that

Pn(x*) = Pn-1(x*), (A2)

where the (N — 1)-locus version of x* on the right-hand
side of equation (8) is (X1, . . . , Xj_1,Xj+1, - - . 5 XN),
and we define the (N -1)-locus parameters on the
right-hand side of equation (A2) by 7* = r and

0 k<j-1
(-)2‘: {9,«_1+9,-—9j_19,» k=j—1.
91“.1 k>]_1

This definition entails 1 — 6;_,* = (1-6;_1) (1-9)).
In equation (2) (from the main text) with x* sub-
stituted for x, the factor P(x};) depends only on r
and consequently must match across equation (A2).
The remaining factors in equation (2) also provide
matches, except possibly in the case t,_; < j < t;. Let
B denote the event of a break between loci t;_; and t.
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Then

P(x%,|x%,_y) = P(x%,|x%,_,, not B) P(not B|x%,_,)
+ P(x%,|x%,_,, B) P(B|x%,_;)
= 8y, _ s P(n0t B) + r*u(1 —7)!~*«P(B)

and
P(not B) = 4

It follows that equation (A2) is true. Combining in-
equality (A1) and (A2) yields

Py(x) < Pn-1(x™) . (A3)

Taking the product of inequality (A3) over all hybrids
produces the likelihood inequality

LN(r,Ol, ceey 9N_1) < LN_I(r*,O’i, ooy eﬁl_z) .

(A4)

In particular, inequality (A4) holds for the N-locus
maximum-likelihood estimates. But Lx_:(r*,08%, . . .,
0% _,) must in turn be no greater than Ly_, evaluated
at the (N - 1)-locus maximum-likelihood estimates,
and the result is proved.
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