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The phytoplankton of the world’s oceans play an integral part in global carbon cycling and food webs by
conversion of carbon dioxide into organic carbon. They accomplish this task through the action of the Calvin
cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Here we have investigated the phy-
logenetic diversity in the form I rbcL locus in natural phytoplankton communities of the open ocean and rep-
resentative clones of marine autotrophic picoplankton by mRNA or DNA amplification and sequencing of a 480
to 483 bp internal fragment of this gene. Five gene sequences were recovered from nucleic acids of natural
phytoplankton communities of the Gulf of Mexico. The rbcL genes of two Prochlorococcus isolates and one
Synechococcus strain (WH8007) were also sequenced. Sequences were aligned with the database of rbcL genes
and subjected to both neighbor-joining and parsimony analyses. The five sequences from the natural phyto-
plankton community spanned nearly the entire diversity of characterized form I rbcL genes, with some se-
quences closely related to isolates such as Synechococcus and Prochlorococcus (forms IA and I) and prymne-
siophyte algae (form ID), while other sequences were deeply rooted. Unexpectedly, the deep euphotic zone
contained an organism that possesses a transcriptionally active rbcL gene closely related to that of a recently
characterized manganese-oxidizing bacterium, suggesting that such chemoautotrophs may contribute to the
diversity of carbon-fixing organisms in the marine euphotic zone.

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)
catalyzes the first, rate-limiting step in the Calvin cycle, the pri-
mary pathway for photosynthetic carbon reduction in the
oceans. This enzyme has been found in two natural forms,
which differ in their structures and primary sequences, their
ability to fix carbon under varying oxygen tensions, and their
evolution (52). Form I is composed of eight large and eight
small subunits (L8S8), encoded by rbcL and rbcS, respectively,
while form II is composed of large subunits only, usually as a
dimer (L2). The two forms are only ;23% similar based on
inferred amino acid sequence data (20, 39). RuBisCO is one of
the most well studied enzymes, mainly due to its agricultural
importance (1). It has also received much interest as a phylo-
genetic marker for studies of the evolution of land plants (9).
rbcL genes have also been recovered by PCR from fossil de-
posits (17, 19) and from phytoplankton communities of tem-
perate (55), subtropical (31), and Antarctic (6) freshwater
lakes. PCR is now considered a standard tool for investigations
into microbial diversity in the sea (10, 15, 16, 56).

Recently there has been much interest in the diversity of the
marine picoplankton, using studies of both isolates (25, 26)
and natural populations (24). Productivity and phytoplankton
abundance in the marine euphotic zone are dominated by the
picoplankton-size organisms Synechococcus (36), Prochloro-
coccus (7), and various chromophytic algae (4, 36). These or-
ganisms are now recognized to be genetically diverse (25, 46).
The genus Synechococcus is loosely defined as a provisional
assemblage with an extremely wide range of 39 to 71 mol%
G1C (49). Analysis of the RNA polymerase gene rpoC1 (25)
and 16S rRNA (46) has resulted in the division of the marine
Synechococcus and Prochlorococcus organisms into at least two
distinct clusters within the cyanobacteria. Studies of the rbcL

gene in both the marine Synechococcus strain WH7803 (51)
and the marine Prochlorococcus strain GP2 (41) have placed
these organisms in the group with form IA rbcL genes, which
is dominated by autotrophic bacteria. Similarly, the chromo-
phyte algae are a diverse group consisting of an estimated one
million extant species representing 13 taxonomic classes (40).
This suggests that the marine autotrophic picoplankton may be
more genetically diverse than was previously thought.

Through measurements of levels of rbcL mRNA, the rbcL
gene has been shown to be actively expressed in marine phy-
toplankton communities (28, 30, 33). Surface water communi-
ties and picoplankton isolates have displayed diel rhythms in
rbcL gene expression (32, 34) that show a high degree of
correlation with levels of carbon fixation. The expression of
several types of form I rbcL sequences was found to correlate
with the occurrence of specific phytoplankton types in strati-
fied water columns (35). Therefore, phytoplankton containing
diverse rbcL sequences reside and express this gene on differ-
ent temporal and spatial scales in the water column. Hence, it
is necessary to study both the pattern of expression and the
sequence being expressed in order to understand the molecu-
lar dynamics of water column carbon fixation. In this study we
examined the types of rbcL genes present at select sites in the
Gulf of Mexico, and in autotrophic picoplankton isolates, in an
attempt to understand the in situ genetic diversity in this locus
as it relates to the regulation of carbon fixation in the oceans.

MATERIALS AND METHODS

Sampling sites. Two stations in the eastern Gulf of Mexico were sampled
(1,000 ml each), an open-ocean station (GOMst4; August 1994) located at
25°409N, 84°359W and a west Florida continental shelf station (GOMst8; Sep-
tember 1993) located at 26°309N, 83°509W.

Culturing of photoautotrophic picoplankton. Prochlorococcus marinus MED,
Prochlorococcus sp. Pacific, and Synechococcus sp. CCMP836 (WH8007) were
grown in either K/10 (2Cu) medium (8) or SN medium (50) as previously
described (35) for 14 days. Cultures were harvested by centrifugation at 3,832 3
g (Sorvall GS-3 rotor) for 20 min. The cell pellet was resuspended in 1/20 volume
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of culture medium and recentrifuged at 7,796 3 g (Sorvall SS-34 rotor). Cell
pellets were stored frozen at 280°C until DNA extraction could be performed.

mRNA and DNA isolation. The extraction of rbcL mRNA was accomplished
by a combination of guanidinium-isocitrate-phenol extraction coupled with bead
beating as previously described (29, 33). The diethylpyrocarbonate treatment of
water samples prior to filtration was omitted. rbcL DNA extractions from envi-
ronmental samples were performed by boiling lysis in sodium chloride-Tris-
EDTA (pH 8) containing 1% sodium dodecyl sulfate as previously described (29,
33). Total DNA from all procaryotic cell pellets was isolated according to the
method of Wood and Townsend (54) with ultracentrifugation omitted.

RT-PCR and PCR amplification. Amplification of rbcL (480 to 483 bp) targets
from mRNA (reverse transcriptase PCR [RT-PCR]) and DNA (PCR) isolated
from microbial biomass at stations in the Gulf of Mexico was performed accord-
ing to the method of Becker-André (2) and Pichard et al. (33) with Taq DNA
polymerase (Promega Corp., Madison, Wis.). mRNA was first converted to DNA
with the following reaction mixture: 50 mM Tris-HCl (pH 7.5), 75 mM KCl, 10
mM dithiothreitol, 3 mM MgCl2, 100 ng of 39 primer, and 0.5 mM (each) de-
oxynucleotide triphosphates in a total volume of 20 ml. The reaction mixture was
heated to 65°C for 5 min and then cooled to room temperature. RNasin (6 U;
Promega Corp.) and reverse transcriptase (40 U; Life Sciences, Inc., St. Peters-
burg, Fla.) were added, and the reaction was continued for 30 min at 42°C. The
reaction mixture volume was then brought to 50 ml with Tris-EDTA (pH 8.0).
Five microliters of the cDNA was then amplified by PCR. Extracted DNA was
resuspended in 50 ml of Tris-EDTA (pH 8.0) buffer, and 5 ml was used for PCR
amplification as previously described (33). Temperature cycling for all PCRs was
as follows: 94°C (5 min); 39 cycles of 94°C (1 min), 50°C (2 min), and 72°C (3
min); and 72°C (10 min) final extension. Two sets of degenerate primers (37, 56),
designated Chromo and 168/328, were used in amplification. Primers were de-
signed to complement conserved sites on the rbcL gene. Each primer contained
a restriction enzyme recognition site that was used for cloning and was either GG
or CTC clamped on the 59 end (18). 39 primers were targeted to the form I
conserved amino acid sequence 324-VVGKLE-329, and 59 primers were targeted
to the universally conserved amino acid sequence 172-KPKLGL-178 (sequence
positions are as for rbcL of Spinacia oleracea). Electrophoretic analysis of the
PCR was performed through 2% Nusieve-GTG agarose gels (FMC Bioproducts,
Rockland, Maine) stained with ethidium bromide at 10 V/cm. The two sets of
primers were as follows. The Chromo primer set consisted of Chromo 59 primer
(29-mer [128-fold]; BamHI), 59-GGGGATCCAAA(AG)CC(TA)AA(AG)(TC)
TAGG(TG)(CT)T(AT)TC-39, and Chromo 39 primer (29-mer [96-fold degen-
eracy]; MluI), 59-GGACGCGTACC(TC)TC(TC)A(AG)(TC)TTACC(TA)AC
(GAT)AC-39. The 168/328 primer set consisted of D168 59 primer (30-mer [64
fold]; BamHI), 59-CTCGGATCCT(AG)T(CT)AAACC(AT)AAA(CT)T(CA)
GGT(CT)T-39, and D328 39 primer (30-mer [144 fold]; EcoRI), 59-CTC
GAATTCTCCTTC(CTA)A(GA)(TC)TT(AG)CC(TG)AC(GTA)AC-39. (un-
derlined areas are restriction sites [BamHI]).

Cloning of PCR amplification products. PCR products were cloned into one
of three different vectors for DNA sequencing (M13mp18 and M13mp19,
pSPORT [Life Technologies, Gaithersburg, Md.], or TA cloned into pCR [In-
vitrogen, Carlsbad, Calif.]). TA-cloned products were subcloned into M13mp18
and M13mp19. For cloning into M13 or pSPORT, three PCRs were pooled and
extracted once with phenol-chloroform, then with chloroform, and then precip-
itated with 2 volumes of cold 100% ethanol and 1/10 volume of sodium acetate
(pH 4.8). The PCR products were then resuspended in distilled H2O and cut with
the appropriate restriction enzymes. Restricted PCR products were then gel
purified through 1% low-melting-point agarose and cloned into M13 or pSPORT
according to instructions supplied by the manufacturer. TA cloning was per-
formed per the manufacturer’s instructions.

Variant screening and sequencing. Cloned rbcL amplicons were screened for
variation by use of tetrameric restriction endonucleases. HaeIII (GGCC), AluI
(AGCT), Tru9I (TTAA), and MboI (GATC) were used for screening sequence
variants (21). Sequencing was performed from single-stranded templates by the
Sanger dideoxy method with the Sequenase version 2.0 DNA sequencing kit
(Amersham Life Sciences, Inc., Arlington Heights, Ill.). For sequencing clones
from the pSPORT phagemids, single-stranded DNA was produced according to
the protocol provided by the manufacturer (Life Technologies, Inc.) with the
helper phage M13K07.

Phylogenetic reconstruction. Deduced amino acid sequences were aligned
with Clustal W, and phylogenetic analysis was performed with programs (Seq-
boot, Protdist, Neighbor, Protpars, and Consense) in PHYLIP version 3.5c (13,
14). Trees were constructed with the tree-drawing program Treeview version 1.1
(23). Analyses were performed with inferred amino acid sequences (11) to
compensate for site saturation with the deep phylogenetic divergences involved
(53) and lineage-specific compositional (G1C) bias (43).

Nucleotide sequence accession numbers. Form I rbcL sequences used in the
analysis were retrieved from the National Center for Biotechnology Information
and GenBank under the following accession numbers: Rhodobacter sphaeroides,
M64624; Xanthobacter flavus, X17252; Mn-oxidizing bacterium, L32182; Crypto-
monas sp. F, X62349; Emiliania huxleyi, D45845; Pleurochrysis carterae, D11140;
Chrysochromulina hirta, D45846; Odontella sinensis, Z67753; Cylindrotheca sp.,
M59080; Ectocarpus siliculosus, X52503; Heterosigma akashiwo, X61918; Ni-
trobacter vulgaris, L22885; Hydrogenovibrio marinus, D43622; Prochlorococcus sp.
GP2, D21822; Chromatium vinosum, M26396; Synechococcus sp. PCC6301;

J01536; Anabaena sp. PCC7120, L02520; Spinacia oleracea, J01443; Micromonas
pusilla, U30276; Chlorella ellipsoidea, M20655; Tetraselmis sp., U30284; Prochlo-
ron sp., D21834; Synechococcus sp. PCC7002, D13971; and Prochlorothrix hol-
landica, X57359. Porphyridium aerugineum rbcL was taken from Valentin and
Zetsche (47). The eight new rbcL clones presented in this study are available
from GenBank under the following accession numbers: GOMst8 mRNA 5m,
U93860; GOMst4 mRNA 80m, U93861; GOMst4 mRNA 50m, U93856; GOMst4
DNA1 5m, U93290; GOMst4 DNA2 5m, U93855; Prochlorococcus sp. Pacific,
U93858; Prochlorococcus marinus MED, U93857; and Synechococcus sp. WH8007,
U93859.

RESULTS
A search of the GenBank nucleotide database on 25 Febru-

ary 1997 yielded 2,252 rbcL sequences, most of which were of
terrestrial plant origin (1,785). The second-largest grouping of
sequences was from the marine rhodophyta (312), with other
marine rbcL genes comprising ;1% of the total. Selected full-
length and near-full-length rbcL genes were aligned, and phy-
logenetic relationships were constructed by neighbor joining
(Fig. 1) or maximum parsimony (data not shown). These form
I rbcL sequences clustered into four major groups designated
forms IA to -D (44). Form IA contains mainly proteobacteria,
although it also includes a marine Prochlorococcus sequence
from a Pacific Ocean isolate (41). Form IB contains the cya-
nobacteria, the chlorophyte algae, and higher plants. Form IC
represents another proteobacterial group, which experiences a
loss of RuBisCO activity during photosynthesis due to the
noncatalytic binding of RuBP and synthesis of the inhibitor
xylulose-1,5-bisphosphate (XuBP), a condition known as fall-
over (45). Fallover also occurs with some form IB and ID en-
zymes. Form ID includes the chromophyte algae, which exhibit
extremely high specificity factors favoring carboxylation. In cases
where their properties have been examined, these different types
display distinct and unique enzymatic properties, such as dif-
ferent affinities for their CO2 substrates and differential spec-
ificity for carboxylation over the oxygenation reaction (38, 44).

Using two sets of primers (Chromo and 168/328), we recov-
ered rbcL genes from water samples from several stations and
depths in the Gulf of Mexico as well as from Prochlorococcus
and Synechococcus clones collected in the Pacific Ocean and
the Mediterranean Sea and from the Atlantic Ocean, respec-
tively. PCR appeared to recover a limited number of opera-
tional taxonomic units (OTUs) as determined by tetrameric
restriction endonuclease restriction fragment length polymor-
phisms of the amplified genes. Amplifications yielded at the
most one or two OTUs. In most cases two clones were se-
quenced from each OTU. These were found to be identical,
and the results of the screening are presented in Table 1. The
percent identities between full-length and PCR-length (160 to
161 residues) sequences are presented in Table 2. The G1C
content of the recovered clones ranged from 37 to 56 mol%.

Station GOMst4 yielded two sequences amplified by RT-
PCR from mRNA. A deep euphotic zone sequence from 80 m
was most closely aligned (87% identical) with a recently dis-
covered manganese-oxidizing bacterium (5), while a midwater
sequence from 50 m clustered (92% identical [Fig. 2]) with a
marine Prochlorococcus sp. GP2 form IA sequence from the
Pacific Ocean (42). GOMst4 also yielded two sequences am-
plified from DNA collected from surface water (5 m). One
sequence clustered closely among the form IB Synechococcus
sequences (88 to 95% identical). The second GOMst4 surface
water (5 m) sequence also clustered in the form IA clade and
was most closely related to the Hydrogenovibrio and Prochlo-
rococcus GP2 sequences. Station GOMst8 yielded only one
sequence amplified from mRNA, which clustered with form ID
sequences from the prymnesiophytes Pleurochrysis carterae,
Chrysochromulina hirta, and Emiliania huxleyi (91 to 92% iden-
tical [Fig. 2]).
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rbcL sequences amplified from Mediterranean and Pacific
Prochlorococcus strains and an Atlantic Ocean coastal Syn-
echococcus strain, WH8007, all clustered together with that of
the freshwater cyanobacterium Synechococcus strain PCC6301
(nearly 97% identical). A maximum-parsimony analysis of the
data in Fig. 2 was also performed (data not shown). The results
of the maximum-parsimony (not shown) and neighbor-joining
(Fig. 2) analyses of the partial-sequence data were similar to
the results of neighbor-joining analysis (Fig. 1) of the full-
sequence data for previously published rbcL genes.

DISCUSSION

In this study RT-PCR and PCR were used to recover a 480-
to 483-bp section of the RuBisCO large subunit gene (rbcL)
from natural phytoplankton communities and autotrophic pi-

coplankton isolates (Prochlorococcus and Synechococcus). We
recovered a total of eight clones, three of which were clones
from mRNA, indicative of active expression of these genes in
the marine water column at Gulf of Mexico offshore and con-
tinental shelf stations. The phylogenies built upon PCR-length
sequences (483 bp) were found to be equivalent to the phylog-
enies built with full-length sequences. However, bootstrap con-
fidence in the PCR-length phylogenies was low within certain
clades while still supporting the basic division of the rbcL tree
into four distinct form I types. Therefore, shorter rbcL se-
quences appear to accurately reflect the relationships among
organisms that can be inferred from full-length sequence
information. Taken together (mRNA and DNA), rbcL se-
quences were recovered that represent three of the four major
types of form I RuBisCO. These data show that the water

FIG. 1. Consensus neighbor-joining (distance) phylogenetic tree of full-length or nearly full-length deduced amino acid rbcL sequences from a variety of autotrophic
taxa which utilize the Calvin cycle pathway of carbon dioxide fixation. Bootstrap values are shown inside each node (percentages of 500 bootstraps).
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column autotrophic community is comprised of a diversity
of organisms. The clones represent just a sample of the
diversity contained in the Gulf of Mexico sites and appear to
reflect the most abundant members at any one depth as
determined by a combination of flow cytometry and high-
pressure liquid chromatography pigment analysis (35). This
is more likely to be the case under stratifying conditions in
the water column, where peak abundances in various phy-
toplankton taxa are displayed at different depths through
the euphotic zone.

At the GOMst4 station, the picophytoplankton community
was stratified with depth (35). The Synechococcus population
exhibited its maximum abundance (4.2 3 104 cells/ml) in the
surface water and was approximately equal in abundance to
the Prochlorococcus population. Prochlorococcus was found in
maximum abundance (1.9 3 105 cells/ml) at 50 m, and the
subsurface chlorophyll maximum at 80 m contained the great-
est abundance (6.2 3 103 cells/ml) of picoeucaryote algae,
mainly of the chromophytic type. The surface water Synecho-
coccus and deep water chromophytic algal populations at this
station have been recognized as actively transcribing their rbcL
genes (35). The retrieval of rbcL sequences reflects this strat-
ification, as Synechococcus-like sequences from DNA were re-
covered from surface waters while sequences recovered from
50 m were more like a divergent Prochlorococcus sequence.
This Prochlorococcus-like sequence from the water column and
the sequences from the Prochlorococcus isolates (ours and
others) demonstrate the high genetic diversity within this ge-
nus and the need to carefully select gene probes and conditions
for studying expression of rbcL in this organism in the oceans.
Interestingly, the rbcL mRNA sequence recovered from deep
water (80 m), while expected to be chromophytic in nature, was
more like an rbcL from a recently discovered bacterial man-
ganese oxidizer (5). Such organisms are known to be present in
coastal environments but were unexpected at this open-ocean
site. This suggests either that such bacterial autotrophs are
active and may play a previously unrecognized role in the
upper ocean carbon dynamics or that the chromophytic branch
of the rbcL tree may be more diverse than is currently recog-
nized. The only active, definitively chromophytic rbcL se-

quence recovered was from the continental shelf station
GOMst8. These waters are recognized as often containing
abundant populations of various chromophytic-type algae, in-
cluding prymnesiophyte algae (48).

The marine Synechococcus and Prochlorococcus genera are
recognized as exhibiting a great amount of diversity. The gua-
nine-plus-cytosine content of from 39 to 71 mol% in the Syn-
echococcus group spans almost the entire range of those of all
procaryotes (49). Among the three marine clusters (A, B, and
C) the range in G1C is 47 to 69 mol%. In this study we
sequenced rbcL from two Prochlorococcus strains and from a
member of marine cluster B, Synechococcus WH8007. All
three sequences clustered among the form IB rbcL-containing
cyanobacteria. When considered together with other divergent
rbcL genes recovered from Prochlorococcus sp. GP2 (41) and
Synechococcus sp. WH7803 (51), these sequences represent a
broad range of diversity of rbcL types and show that the marine
A, B, and C Synechococcus clusters (49) are widely dispersed
across the rbcL phylogenetic tree. It should be recognized that
phylogenies based on the rbcL locus may be different from
those based upon other gene loci (16s rRNA [3, 22] and tufA
[11]) because of either gene duplication and differential reten-
tion of the rbcL locus or past horizontal gene transfer events
(12, 27). For example, the diversity between chromophyte al-
gae (form ID), the cyanobacteria-to-higher-plant clade (form
IB), the appearance of Prochlorococcus sp. GP2 and Synecho-
coccus sp. WH7803 among form IA sequences, and the recent
observations of form II-like RuBisCOs in peridinin-containing
dinoflagellates (20, 39) indicate multiple origins of the rbcL
gene and that past lateral gene transfer events have occurred
among the phytoplankton divisions (or plastid precursor or-
ganisms) and autotrophic bacteria. Therefore, rbcL may be
better suited for studying the relationship of organisms within
a clade once the gene has become firmly established within that
section of the phylogenetic tree. We intend to take advantage
of this greater level of genetic resolution to identify members
of the marine autotrophic picoplankton community by direct
methods in situ.

TABLE 1. Results of genetic analysis of environmental and photoautotrophic picoplankton sequences

Station and
sequence

Primer
set Vector

No. of clones
OTU No. se-

quencedb

Forward/
reverse

sequencec
Clone name Phylogenetic affiliate

Total RE-screeneda

GOMst4
mRNA

50 m Chromo pSPORT 22 22 1 2 Y/N GOMst4 mRNA 50m Prochlorococcus GP2
80 m Chromo pSPORT 32 32 1 2 Y/N GOMst4 mRNA 80m Mn-oxidizing bacterium

DNA
5 m 168/328 M13mp18 or -19 15 15 2 2 Y/Y GOMst4 DNA1 5m Synechococcus 6301 (OTU 1)

GOMst4 DNA2 5m Prochlorococcus GP2 (OTU 2)

GOMst8
mRNA

5 m 168/328 pCR/M13 5 NDd ND 2 Y/Y GOMst8 mRNA 5m Pleurochrysis carterae
Prochlorococcus

Pacific 168/328 M13mp18 or -19 44 ND ND 2 Y/Y NAe Synechococcus 6301
Mediterranean 168/328 M13mp18 or -19 16 ND ND 1 Y/Y NA Synechococcus 6301

Synechococcus
WH8007 168/328 M13mp18 or -19 8 ND ND 1 Y/N NA Synechococcus 6301

a Tetrameric restriction enzyme (RE) screening.
b Number of clones sequenced from each OTU.
c Y, yes; N, no.
d ND, not determined.
e NA, not applicable.
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57
(53)

56
(54)

57
(54)

77
(71)

79
(70)

74
(72)

73
(60)

87
(87)

87
(85)

20.
C

hlorella
66

(58)
66

(58)
63

(57)
60

(54)
61

(54)
59

(54)
58

(55)
57

(54)
59

(54)
59

(54)
58

(54)
59

(54)
81

(74)
80

(71)
76

(72)
76

(71)
89

(88)
89

(89)
90

(90)
21.

P
rochloron

64
(59)

65
(60)

65
(59)

59
(58)

62
(56)

60
(58)

60
(56)

62
(56)

63
(56)

59
(55)

58
(54)

58
(55)

81
(78)

79
(74)

77
(75)

77
(74)

81
(85)

81
(80)

78
(73)

81
(86)

22.
P

rochlorothrix
66

(60)
67

(61)
64

(58)
63

(58)
65

(57)
62

(58)
60

(55)
61

(56)
62

(57)
60

(56)
59

(55)
59

(56)
86

(78)
86

(75)
81

(75)
80

(75)
86

(84)
86

(82)
84

(81)
88

(86)
88

(89)
23.

Synechococcus
7002

67
(61)

68
(59)

64
(57)

63
(58)

65
(57)

62
(56)

61
(56)

62
(56)

63
(57)

59
(57)

60
(57)

61
(57)

86
(79)

85
(74)

80
(74)

79
(75)

85
(81)

84
(81)

83
(81)

85
(83)

90
(89)

95
(90)

24.
A

nabaena
7120

64
(59)

66
(59)

63
(57)

63
(57)

63
(57)

65
(56)

61
(56)

59
(54)

59
(54)

61
(55)

58
(54)

58
(54)

58
(55)

86
(78)

81
(74)

80
(74)

79
(75)

85
(83)

84
(82)

81
(80)

84
(83)

83
(86)

87
(85)

87
(84)

25.
Synechococcus

6301
66

(58)
66

(59)
64

(57)
61

(56)
63

(56)
60

(55)
58

(55)
59

(56)
61

(56)
58

(54)
59

(56)
59

(56)
89

(80)
84

(74)
79

(73)
81

(75)
85

(81)
85

(80)
83

(79)
87

(82)
86

(85)
91

(87)
92

(87)
91

(83)
26.

G
O

M
st8

m
R

N
A

5m
c

74
72

76
80

81
83

84
84

86
92

91
92

59
57

57
60

62
58

56
58

61
61

61
60

59
27.

G
O

M
st4

m
R

N
A

80m
82

79
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80
82

82
79

80
82

81
78

77
66

63
64

62
64

63
61

64
63

65
65

65
66

77
28.

G
O

M
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D
N

A
2

5m
66

66
63

61
63

61
59

60
62

59
60

61
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82
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87
79

78
75

79
76

85
85

83
86

60
64

29.
G

O
M
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m

R
N

A
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68
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67
63

66
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62
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66
64

62
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84
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79
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77

76
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82
81

83
64

66
86
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G

O
M
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D

N
A

1
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61
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60
58

60
57

56
56

58
56

56
56

84
79

74
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81

80
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83
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86

95
57

62
86

79
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P
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65

66
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61
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60
58

58
61

57
58

56
87

83
77

79
83

81
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84
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87
91
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97

59
64

86
81
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32.

P
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M
E

D
64

65
63

60
62

59
57

58
61

57
58

59
86

81
77

78
82

81
80

84
82

88
89

88
97

59
64

86
80

94
94

33.
Synechococcus

8007
64

65
63

60
62

59
57

58
61

57
58

59
87

83
77

79
83

82
81

84
85

88
90

88
97

59
64

86
81

94
95

97

a
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R
sequence
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a
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w
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w
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e
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w
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sequence
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b
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w

ere
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L
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N
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G

E
N

E
.F
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identities
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show

n
in

parentheses.
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33
w
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study.
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