




Supplementary Figure 1: Toeprint analysis of sparsomycin-mediated translocation on m301 messenger RNA. Pre-translocation complexes were assembled by binding deacylated tRNA^{Tyr}, tRNA^{Tyr}C74G, tRNA^{Tyr}C75G to the P site (P lanes), followed by binding of N-Ac-Phe-tRNA^{Phe}, N-Ac-Phe-tRNA^{Phe} C74U,A or N-Ac-Phe-tRNA^{Phe} C75U,A to the A site (A lanes). Complexes were incubated with sparsomycin (+ Sps lane) or 2.5 % DMSO (- Sps lane). Ribosomes used were either (a) WT MS2-tagged (b) WT-MRE600 (c) G2251A or G2251U or (d) G2252A or G2252U. Reactions were carried out as described in Materials and Methods except that buffer C (20 mM HEPES, 4.5 mM Mg(OAc)₂, 150 mM NH₄OAc, 2 mM spermidine, 0.05 mM spermine, 4 mM 2-mercapthoethanol, pHed to 7.5 with KOH) was used which resulted in less efficient "rescues" than in buffer A.

Supplementary Figure 2: Toeprint analysis of sparsomycin-mediated translocation and puromycin reactivity analysis comparing native and transcribed initiator tRNAs. Pretranslocation complexes were assembled by binding native (**a**) or transcribed (**b**) initiator tRNA_f^{Met} to the P site (P lanes) of WT ribosomes, followed by binding of N-Ac-PhetRNA^{Phe} to the A site (A lanes). Complexes were incubated with sparsomycin (+ Sps lane) or 2.5 % DMSO (- Sps lane). (**c**) Puromycin reactivity of pre-translocation complexes on m301 mRNA.

Supplementary Fig. 3: FPLC analysis of GTP before and after incubation with PEP/PK. GTP (16 mM) was incubated with 40 mM 2-phospho(enol)pyruvate (PEP, potassium salt, pH 7.0, Roche) and 4 μ g/ml rabbit-muscle pyruvate kinase (PK, Roche) in buffer B for 0 min (blue trace) or 30 min (red trace), 37° C. Reactions were separated on a ResourceQ column, with a 0 – 350 mM NaCl gradient in 20 mM Tris/Cl pH 7.5 over 30 min, 5 ml/min (see Material and Methods).

Supplementary Figure 4: Pre-steady state kinetic analysis of EF-G-mediated translocation. Pre-translocation complexes of WT ribosomes with $tRNA_f^{Met}$ in the P site and f-Met-Phe- $tRNA_f^{Phe}$ in the A site were rapidly mixed with various concentrations of EF-G:GTP in the stopped-flow spectrophotometer and fluorescence measured as a function of time. The A site $tRNA_f^{RNA}$ used are indicated (either WT or C74G). $tR_{1/2}$ values for EF-G were calculated in GraphPad prism using the hyperbolic Michaelis-Menten equation: $tR_{1/2}^{RNA}$ used are indicated with WT $tRNA_f^{RNA}$ 0.8 $tR_{1/2}^{RNA}$ and with C74G $tRNA_f^{RNA}$ 0.9 $tR_{1/2}^{RNA}$ 0.9 $tR_{1/2}^{R$

Supplementary Table 1: Hybrid reactivity of dipeptidyl tRNA complexes with puromycin

ribosomes		WT G2252C		ribosomes		WT	G2251C
P site	A site			P site	A site		
WT	WT	0.06	n.r.	WT	WT	0.06	n.r.
WT	C74G	n.r.	1.0	WT	C75G	n.r.	0.06

Rates are expressed in min⁻¹, n.r., no product after 60 min of incubation, SD were below 22%.

Pre-translocation complexes for analysis of puromycin reactivity were prepared as for stopped-flow experiments. For reaction with puromycin, complexes were incubated with 1 mM puromycin at 37°C as described for Fig. 3.

Supplementary Table 2: EF-G dependent translocation with GTP, GTP or GTP/GDP

GTP, 0 mM	0.5		
GTP, 1 mM	4.0		
GTP, 2 mM	4.8		
GTP +GDP each 1mM	4.6		
Rates are expressed in s ⁻¹ , SD were below 20%			

Translocation reactions were carried out on complexes containing MRE600 ribosomes, $tRNA^{fMet}$ in the P site and dipeptidyl fMetPhe-tRNA Phe in the A site.

Supplementary Table 3: EF-G dependent translocation with/without GTP and with/without energy regeneration system (PEP/PK).

GTP	PK/PEP	rate in s ⁻¹			
-	-	0.5			
+	-	4.0			
-	+	0.3			
+	+	3.3			
SDs were below 20 %					

Reactions with PEP/PK: EF-G, 6 μ M was preincubated with 2 mM GTP, 5 mM 2-phospho(enol)pyruvat (PEP, potassium salt, pH 7.0, Roche) and 4 μ g/ml rabbit-muscle pyruvate kinase (PK, Roche) in buffer B for 30 min, 37° C. Control reactions were incubated without PEP/PK. This system was modified from Czworkowski J. and Moore P.B., Biochemistry 1997, 36, 10327-34. Translocation reactions were carried out on complexes containing MRE600 ribosomes, tRNA^{fMet} in the P site and dipeptidyl fMetPhe-tRNA^{Phe} in the A site.