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Properties of the receptive ¢elds of simple cells in macaque cortex were compared with properties of inde-
pendent component ¢lters generated by independent component analysis (ICA) on a large set of natural
images. Histograms of spatial frequency bandwidth, orientation tuning bandwidth, aspect ratio and length
of the receptive ¢elds match well. This indicates that simple cells are well tuned to the expected statistics of
natural stimuli. There is no match, however, in calculated and measured distributions for the peak of the
spatial frequency response: the ¢lters produced by ICA do not vary their spatial scale as much as simple
cells do, but are ¢xed to scales close to the ¢nest ones allowed by the sampling lattice. Possible ways to
resolve this discrepancy are discussed.
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1. INTRODUCTION

In this article we investigate to what extent the statistical
properties of natural images can be used to understand
the variation of receptive ¢eld properties of simple cells in
the mammalian primary visual cortex. The receptive
¢elds of simple cells have been studied extensively (e.g.
Hubel & Wiesel 1968; DeValois et al. 1982a; DeAngelis et
al. 1993): they are localized in space and time, have
band-pass characteristics in the spatial and temporal
frequency domains, are oriented, and are often sensitive
to the direction of motion of a stimulus. Here we will
concentrate on the spatial properties of simple cells.
Several hypotheses as to the function of these cells have

been proposed. As the cells preferentially respond to
oriented edges or lines, they can be viewed as edge or
line detectors. Their joint localization in both the spatial
domain and the spatial frequency domain has led to the
suggestion that they mimic Gabor ¢lters, minimizing
uncertainty in both domains (Daugman 1980; Marcelja
1980). More recently, the match between the operations
performed by simple cells and the wavelet transform has
attracted attention (e.g. Field 1993). The approaches
based on Gabor ¢lters and wavelets basically consider
processing by the visual cortex as a general image
processing strategy, relatively independent of detailed
assumptions about image statistics. By contrast, the edge
and line detector hypothesis is based on the intuitive
notion that edges and lines are both abundant and impor-
tant in images. This theme of relating simple cell
properties with the statistics of natural images was
explored extensively by Field (1987, 1994). He proposed
that the cells are optimized speci¢cally for coding

natural images. He argued that one possibility for such a
code, sparse coding, simpli¢es further processing in the
visual system because it produces a representation of the
stimulus that helps detection of coincidences (Barlow
1972, 1994). Indeed, Olshausen & Field (1996) showed
that imposing sparseness on the output of receptive ¢elds
being trained on natural images produced receptive ¢elds
similar to those of simple cells (see also Harpur 1997).
This result was very recently put into the context of inde-

pendent component analysis (ICA) by Bell & Sejnowski
(1997a,b) and Hurri et al. (1996); for a discussion of the
connection between the various algorithms, see Olshausen
& Field (1997). For (linear) ICA one considers an ensemble
of signals, each produced by an unknown linear super-
position of unknown independent (elementary) signals. By
presenting the ICA algorithm with a large number of
examples of such signals, it is possible to reconstruct the
elementary signals, at least if the elementary signals have
non-Gaussian probability densities (i.e. the distribution of
the strengths with which each elementary signal is present
in a set of images is not a Gaussian). ICA on natural images
again produces receptive ¢elds like those of simple cells
(Bell & Sejnowski 1997a,b; Hurri et al. 1996; Hurri 1997).
Although the components produced by ICA on natural
images are not completely independent, they are as inde-
pendent as possible from a linear transformation.
It should be noted here that the independent component

model of the primary visual cortex should not be regarded
as a full model of simple cells in the primary cortex. As it
is a linear, non-adaptive model, many aspects of simple
cells are ignored, such as contrast adaptation (e.g. Sclar et
al. 1989), contrast normalization (Heeger 1992), nonlinea-
rities involved in orientation tuning (Volgushev et al. 1996),
adaptation to various stimulus statistics (Zipser et al. 1996),
and so on. Nevertheless, the model has a clear information
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theoretic interpretation, and is strictly based on stimulus
statistics. One may hope that nonlinearities and adapta-
tion can be added in a process of stepwise re¢nement,
with the linear model as a solid basis. This appears to be
a successful strategy in earlier stages of vision (vertebrate
retina and lateral geniculate nucleus, and £y visual
system), where linear theories are quite successful (e.g.
Srinivasan et al. 1982; Atick 1992; van Hateren 1992a,b;
Linsker 1993; Dong & Atick 1995; Dan et al. 1996),
whereas it is known that the early visual system contains
(e.g. Laughlin 1981; van Hateren 1997) and needs (e.g.
Ruderman & Bialek 1994) stimulus-related nonlinearities
that modify the linear default.
If decomposing an image into independent components

is indeed one of the main functions of simple cells, it is
expected that the distribution of their properties, such as
spatial frequency bandwidth and orientation tuning band-
width, is determined by the statistics of the visual
environment. Olshausen & Field (1996) report spatial
frequency bandwidths and aspect ratios (ratio of length
and width of the receptive ¢eld) close to those measured
in simple cells. Here we extend this result by performing
ICA on a large set of calibrated images, and comparing a
series of properties of the resulting receptive ¢elds with
those of receptive ¢elds measured in simple cells. We ¢nd
that there is a good correspondence between the distribu-
tions for spatial frequency bandwidth, orientation tuning
bandwidth, aspect ratio and receptive ¢eld length. For
the peak of the spatial frequency sensitivity, however, the
results deviate strongly: whereas ICA yields peak close to
the maximum spatial frequency allowed by the sampling
lattice, measurements in simple cells show a much
broader distribution. The implications and possible resolu-
tion of this discrepancy are discussed.

2. METHODS

(a) Images
The image set consisted of 4212 images obtained with a Kodak

DCS420 digital camera (with a 28mm camera lens). For the
intensity this camera uses 12-bit sampling internally, which is
then reduced to and stored as 8-bit data via a nonlinear scale
table. As this table is recorded for each image, it can be used after-
wards to expand the 8-bit data to a linear scale. Although the
latter scale is, strictly speaking, not genuinely 12-bit deep, it is
e¡ectively close to it: details in the shadows are retained, whereas
high peaks of intensity (see, for example, van Hateren 1997) are
more roughly quantized, but without the clipping that an 8-bit
system would necessitate. The linearity of the camera was
checked with a set of calibrated neutral density ¢lters, and found
to be satisfactory. The (slight) blur in the images caused by the
optical system of the camera was measured and corrected
through the following procedure (performed separately for each
diaphragm of the camera lens used). Spatial point spread func-
tions of the camera were measured for a small point source
presented at a large number of random positions. The resulting
images (sampled point spread functions) were Fourier trans-
formed, resulting in slightly di¡erent amplitude spectra
depending on the exact position of the image of the point source
on the CCD sampling grid. Of these spectra, the group with the
shallowest high-frequency fall-o¡ was selected for inverse ¢ltering
of images of natural scenes. Only the images of point sources
corresponding to those spectra would thus be reconstructed as a

sharp point source. Point sources at other positions with steeper
spectra would remain slightly blurred in a reconstruction. As a
result of this procedure, the deblurring does not cause spurious
structures (such as fringes at the edges) in the images of natural
scenes. After inverse ¢ltering, the images had a resolution of
1536�1024. This was subsequently reduced to 768�512 by block
averaging, before extracting image patches for the ICA. This
procedure reduces the risk of any remaining calibration insu¤-
ciencies in£uencing the ICA. Noise in these images is negligible.
The ¢nal images had an angular resolution of approximately
2 minutes of arc per pixel. The images were taken in various
environments (wood, open landscapes and urban areas). In a
particular environment a typical series of 100^200 consecutive
images was taken. Therefore, when going through the series of
4212 images, the statistics of the images may change regularly.
Some of this variability was incorporated in the results of the
ICA by using samples from consecutive images rather than
random ones taken from the entire set for a particular ICA run
(see below).

A second set of images that was used (12�12 video in ¢gure 3)
consisted of frames grabbed from television broadcasts. This set
was uncalibrated, but more diverse than the calibrated set. Images
were taken fromprogrammes on awide range of subjects, including
wildlife (ranging fromarctic to tropical), sports and feature ¢lms.

(b) Independent component analysis
Algorithms performing (linear) ICA decompose each signal of

an ensemble into components (also called `basis vectors') that are
as independent as possible by a linear transformation of the
signals. The amplitude of a particular component is extracted by
a corresponding weight vector (also called a `¢lter', see Bell &
Sejnowski (1997b)). Of the various algorithms for performing
ICA, the recent algorithm presented by Hyva« rinen & Oja
(1997a,b) and Hyva« rinen (1997) was used. This algorithm imple-
ments ICA by ¢nding ¢lters that produce extrema of the kurtosis
(the kurtosis is a measure of how `peaked' a distribution is; high
kurtosis means a high central peak and long tails in the distribu-
tion). Note that either maxima or minima in the kurtosis can be
found (making it more general than maximizing sparseness),
although we found in practice only maxima for our data set. The
idea of the method is that the independent components must have
an extremum of the kurtosis, as any impure component (i.e. a
linear superposition of two or more pure independent compo-
nents) would result in a change of the kurtosis towards zero (in
the limit a kurtosis of zero, as the central limit theorem states
that a linear summation of a large number of independent vari-
ables, each with ¢nite variance, will produce a Gaussian
distribution, which has zero kurtosis). The Hyva« rinen algorithm
(the ¢xed-point algorithm, with a serial de£ation scheme as in
Hyva« rinen & Oja (1997b), using function g2 as in Hyva« rinen
(1997)) was implemented as a parallel program on a CrayJ932 at
the Centre for High-Performance Computing of the University of
Groningen. A typical run was performed on 120 000 di¡erent
samples of 18�18 image patches taken evenly spaced from 100^
120 consecutive images of the image data set; such a run took
about half an hour. Histograms were compiled from 33 to 160 of
such runs, based on di¡erent subsets of the image set.

Before processing, the logarithm of the intensities was taken.
There are three reasons for this: (i) because this incorporates
the contrast invariance of natural scenes; (ii) because it leads to
better behaved ¢rst-order statistics of natural images (e.g.
Ruderman 1994); and (iii) because it is similar to the operations
performed by the ¢rst stages of visual systems (e.g. van Hateren
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1997). Note, however, that for the low-contrast stimuli as typi-
cally used for measuring simple cell properties (e.g. the
histograms in ¢gure 4), taking the logarithm hardly makes any
di¡erence. The results of the ICA algorithm were obtained in
PCA whitened space (see below), and subsequently transformed
back to the original image space (with intensities represented on
a logarithmic scale). All results presented below are in this space,
and the ¢lters (e.g. ¢gure 1b) are thus meant to work on the (loga-
rithmic) original images.

Early calculations were performed without dimensionality
reduction in the principal component analysis (PCA: the analysis
which is part of the data whitening used before applying the
Hyva« rinen algorithm).This leads to about 70% oriented indepen-
dent component (IC) ¢lters, and 30% non-oriented IC ¢lters.The
latter only extend over a few pixels, and have about equal power in
all four corners of the power spectrum.We consider these ¢lters as
an aliasing artefact, and they were not included in the analysis (by
selecting only the ¢lters with oriented power spectra). In later
calculations, the dimensionality of the data was reduced by about
25% (i.e. from 18�18�324 degrees of freedom (d.f.) to 240 d.f.,
by selecting the most signi¢cant principal components), which
leads only to oriented ¢lters; these were all included in the
analysis. Both of the above procedures led to very similar histo-
grams for all parameters investigated. Reducing the
dimensionality further to 160, 80 or 40 d.f. led to similar results,
only di¡ering in the spatial scale, but not in the relative distribu-
tion of the parameters.

3. RESULTS

Figure 1 shows an example of ICs (¢gure 1a), i.e. the
basis vectors, and the corresponding ¢lters required to
extract the strength of each component from an image
(¢gure 1b), i.e. the weight vectors (or transform coe¤-
cients). Both basis vectors and ¢lters are shown here
(and below) as they appear in image space (after the
logarithm of the intensity was taken). Whereas the inde-
pendent components can be considered as the
constituting elements of images (see Bell & Sejnowski
1997a,b; Olshausen & Field 1996), the IC ¢lters needed
to extract their strengths are analogous to the receptive
¢elds of neurons analysing a scene. Thus, the receptive
¢elds of cortical neurons should be compared to the IC
¢lters, and not to the ICs. As discussed by Bell &
Sejnowski (1997a,b), the ICs resemble short edges, and
the IC ¢lters are similar to simple cell receptive ¢elds,
i.e. they resemble Gabor ¢lters or wavelets. The ¢lters
are usually low-pass in one direction, and band-pass in
the orthogonal direction. Figure 1c shows the amplitude
spectra of the ¢lters, with zero spatial frequency in the
centre of each patch. From sets of ¢lters as in ¢gure 1b,c,
it is possible to extract several descriptive parameters.
Following work analysing cortical receptive ¢elds (in
particular, DeValois et al. 1982a,b; Parker & Hawken
1988), we investigate here the following properties.

1. Spatial frequency bandwidthöde¢ned here as the full
width at half maximum (FWHM) of each ¢lter along
the orientation of the peak in the amplitude spectrum;
it is expressed in octaves (factors of two in frequency).

2. Orientation tuning bandwidthöde¢ned as the FWHM
along a circle (with its origin at zero spatial frequency)
through the peak in the amplitude spectrum.

3. Peak spatial frequency and peak orientationöspatial
frequency and orientation of the peak in the amplitude
spectrum.

4. Length and aspect ratio of the receptive ¢eldsö¢rst
the (two-dimensional) Hilbert transform of the ¢lter
was calculated (the quadrature phase ¢lter), which
then yields, together with the original ¢lter, the ¢lter's
envelope by subsequently squaring both ¢lters, adding
the results, and taking the square root (see Field &
Tolhurst 1986; DeAngelis et al. 1993). The length is then
de¢ned as the FWHM of the envelope along the orien-
tation into which the ¢lter is low-pass, and the width as
the FWHMalong the orientation into which the ¢lter is
band-pass. The aspect ratio is de¢ned here as the ratio
of length and width.

We found that the distribution of each parameter
depends on several factors. First, it depends on the parti-
cular set of images used for the ICA. Figure 2a shows
several examples of the distribution of orientation tuning
bandwidths for di¡erent subsets of images. Each of the
curves resulted from ICA on a di¡erent set of 103 consecu-
tive images taken from the entire set. All 40 sets thus
analysed had histograms similar to or scattering between
the ones shown in the ¢gure.To further illustrate the varia-
bility of both the IC basis vectors and the IC ¢lters, ¢gure
2b^ e shows samples of these (representative of the
complete basis set) for the two subsets corresponding to
the bold lines in ¢gure 2a. Of the two bold lines in ¢gure
2, the one with a percentage peak of occurrence at a band-
width close to 308 corresponds to ¢lters in ¢gure 2c, while
the other corresponds to ¢lters in ¢gure 2e. The ¢rst image
set consists mostly of images of a waterside landscape with
grass and reed, the second image set consists mostly of
images inside a wood, with trees, leaves and foliage.
Observed super¢cially, the two sets do not appear to be
very di¡erent, but as ¢gure 2b^ e shows they lead to
rather di¡erent sets of ICs. This suggests that the number
of independent components needed for a large ensemble of
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(a) (b) (c)

Figure 1. Independent component analysis on natural images
(18�18 patches from 103 consecutive images, dimension
reduced via PCA to 240 of 324). (a) IC basis vectors, and (b)
corresponding IC ¢lters (¢ltering an image with an IC ¢lter
yields the strength of the corresponding basis vector in the
image). Signs of basis vectors and ¢lters are arbitrary. (c)
Amplitude spectra of the ¢lters of (b), with darker grey values
coding larger amplitudes. Zero spatial frequency is at the
centre of each patch.



images is larger than the number of degrees of freedom of
single image patches (see also ½4).

Variability of the results of ICA is further investigated
in ¢gure 3 for the spatial frequency bandwidths of the IC
¢lters. Here we ¢rst varied the way of extracting image
patches from the database: either patches taken from
consecutive image sets (18�18 consecutive, as above), or
patches drawn randomly from the entire database (18�18
random). The latter procedure still yielded a wide range of
bandwidths, but it was somewhat more restricted than that
for the consecutive image sets. Decreasing the size of the
consecutive image sets from 103 images per set to 26 per
set (18�18 short) did not noticeably broaden the distribu-
tion further. Second, we varied the type of preprocessing
(PCA reduced, with the dimensionality of the patches
reduced from 324 to 240), and the size of the patches
considered (to 12�12). This produced similar histograms
to the 18�18 consecutive results. Finally, an entire,
di¡erent image database was used (12�12 video images
generated from video frames grabbed from television
broadcasts). Again, the results are not markedly di¡erent.
Figure 3 also shows measurements of spatial frequency

bandwidths (FWHM) in simple cells in macaque cortex
(histogram bars, data from DeValois et al. (1982b), cells
recorded from the foveal area). Comparing these measure-
ments with the ICA results, we see that the distributions
roughly match, despite the variability in ICA results. This
variability should probably not be considered as just a
random estimation error, but rather as an inherent

property associated with systematic changes in the statis-
tics of di¡erent ensembles of natural images. Therefore,
we consider the standard deviation of the ICA histograms
(rather than the standard error of the mean) as a rough
but reasonable measure for the reliability of the estimate.
Below we use this, together with the mean of the ICA
histograms, for comparing the ICA results with various
properties measured in simple cells.
Figure 4a shows this for the same data as in ¢gure 3.

The error for each bin of the histogram of simple cells
was estimated by taking the square root of the number of
cells in each bin. Figure 4a shows that the calculated and
measured distributions are roughly similar; a �2 test yields
p40.26, which means that the hypothesis that the calcu-
lated and measured histograms are identical cannot be
rejected. The mean and the standard deviation of the
spatial frequency bandwidths shown here are similar to
those reported by Olshausen & Field (1996), although a
direct comparison is not fully appropriate because they
analyse basis functions rather than ¢lters.

Figure 4b shows that calculated and measured orienta-
tion tuning bandwidths are similarly distributed (data
from both DeValois et al. (1982a) and Parker & Hawken
(1988)). Although the calculated curve appears to peak at
a slightly smaller orientation tuning bandwidth (20^308)
than the measurements in simple cells (30^408), the
errors in the curves are such that they are not signi¢cantly
di¡erent (p40.18).

Figure 4c shows distributions of the length of the calcu-
lated ¢lters and measured receptive ¢elds (`height' as
measured by Parker & Hawken (1988)). Here the abscissa
gives the length (in minutes of arc of visual angle) for the
histogram of simple cell measurements. The calculated
curve was scaled along this axis such that it provided a
good match with the measurements. Thus, only the shape
of the distributions should be compared, not the position
of the peaks. This procedure was necessary because the
calculations do not yield absolute visual angles that can
be compared directly with those of the primate visual
system: (i) because the spatial resolution of the ¢rst data
set used (taken with the digital camera) is not as ¢ne as
in the primate fovea (20 between pixels for the image
patches, versus approximately 300 0 for the primate fovea);
(ii) because, even if they had been identical, the true
sample base as used by the primate cortex may be
di¡erent from that of the cones; and (iii) because the
spatial calibration of the second data set (images grabbed
from television broadcasts) is not known and variable
because of diverse camera lenses. If images are approxi-
mately scale invariant over the relatively small range of
scales involved here, the distribution of lengths should be
scale invariant as well. Figure 4c shows that the shape of
the calculated and measured distributions of receptive
¢eld lengths is similar (p40.68).
The aspect ratio for the calculated ¢lters is de¢ned

here as the ratio of length and width of the envelope of
the ¢lter (see above). From measurements by Parker &
Hawken (1988) of length and width of the central lobe
of the simple cell receptive ¢eld, the aspect ratio was esti-
mated by assuming that the width of the envelope is
about three times the width of the central lobe. Figure
4d shows the resulting distributions: again a close corre-
spondence between ICA ¢lters and receptive ¢elds in
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Figure 2. Variation of ICs for di¡erent ensembles of images.
(a) Distribution of orientation tuning bandwidth for six
di¡erent ensembles. (b) Examples of basis vectors for the bold
curve in (a) with a peak percentage of occurrence at 308, and
(c) corresponding IC ¢lters. (d) Examples of basis vectors for
the other bold curve in (a), and (e) corresponding IC ¢lters.
Signs of basis vectors and ¢lters are arbitrary. See text for
further details.



simple cells (p40.47). Similar aspect ratios were reported
by Olshausen & Field (1996) for their basis functions.

Figure 4e shows the distribution of spatial frequencies
giving the maximum response for ICA ¢lters and for
simple cells (data from DeValois et al. 1982b). Contrary to
the results presented above, the two distributions now
deviate strongly (p�0.001). Again, there is no well-
de¢ned spatial scale for the calculated curve, which was
arbitrarily positioned. As will be clear from the ¢gure,
any other positioning (e.g. aligning the peaks of the distri-
butions) would also give a strong mismatch. The main
reason for the mismatch is the tendency for the ICA to
produce ¢lters at a scale as close as possible to the
sampling grid of the images (see ½4).

This property of ICA also causes an excess of ¢lters
aligned with the sampling lattice, i.e. horizontally and
vertically. Thus a histogram of peak orientations yields a
broad distribution with large and sharp peaks at hori-
zontal and vertical orientations. These peaks cannot be
attributed directly to horizontal and vertical structures in
the images, because they also occur when each image
patch of the set of 120 000 used for the ICA is rotated to
a random orientation. In that case no inherent orientation
can be present in the set of image patches, whereas there
are still peaks in the results at horizontal and vertical
orientations, albeit somewhat smaller than before. In
order to study possibly inherent orientational biases in the
image set, despite the tendency of the ICA to align with
the sampling lattice, we used the following procedure.We
performed a series of ICA runs on (1) image patches all
rotated over a ¢xed angle (308 for the results shown here,
although similar results were obtained with 458 and 22.58

rotations; and (2) image patches each rotated over a
random angle. Set 1 is expected to yield peaks at hori-
zontal and vertical orientations (the artefact), plus, for
example, a peak shifted by 308 from the horizontal if the
image set has inherently more horizontal structures. Set 2
is expected just to yield the artefacts at horizontal and
vertical orientations. By taking the ratio of the histograms
of orientations for set 1 and set 2, the excess at horizontal
and vertical orientations in the ICA ¢lters is expected to
cancel, at least approximately. Any remaining anisotropy
at other orientations must be caused by true anisotropy in
the images.
The result of this operation shows peaks at 308 and

7608, i.e. not aligned with the square sampling lattice.
Rotating all orientations by 7308, back to the original
upright position of the images, produces ¢gure 4f. Dots
and error bars show the mean and standard deviation of
40 di¡erent image sets. As can be seen, the IC ¢lters are
relatively more often oriented horizontally (08) and verti-
cally (908) than in other directions, but the e¡ect is so
small compared to the variability between subensembles
of images that one could easily ¢t a horizontal line to the
data. The width of the horizontal and vertical peaks is
remarkably small; this is apparently caused during photo-
graphy, by habitually aligning the camera frame with
dominant horizontal and vertical structures in the image.
Thus it depends on how precisely the human eye aligns
with such structures during natural vision as to whether
these peaks have any functional signi¢cance for human
vision. The small peaks at about �458 may also arise
from a photographer's bias: one possible cause is that
straight lines in the landscape (such as a road or path, or
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Figure 3. A comparison of di¡erent ways to perform the ICA with each other and with measurements in macaque simple cells.
Data from DeValois et al. (1982b), their ¢g. 5, foveal simple cells. See text for further details.



the fringe of a wood) are often framed diagonally, because
this appears to produce pleasing, balanced pictures.

4. DISCUSSION

The independent component model is at present prob-
ably one of the most sophisticated, ecologically inspired
models for understanding the image representation in the
array of simple cells in the human primary cortex. Not
only does it produce quantitative predictions of receptive
¢elds which compare reasonably well with those
measured, it also gives a functional interpretation of the
visual processing performed in terms of information
theory and natural image statistics. Here, we have put this
model to the test by applying it to a large set of images,

and comparing the distribution of predicted properties to
those measured in simple cells. We showed that most
of these distributions are similarly shaped. This applies to
spatial frequency bandwidth, orientation tuning band-
width, length of the receptive ¢elds and aspect ratio. This
result implies two conclusions. First, it strengthens the
hypothesis that cortical simple cells strive to produce a
representation of natural images with independent
variables, each having a highly kurtotic amplitude distribu-
tion (i.e. with long tails, leading to sparse coding). Second,
it suggests that the apparent randomness of simple cell
properties may not be the sign of a sloppy design, nor of
random variability in development, but may in fact be a
deliberate attempt to match the requirements of processing
natural images.

364 J. H. van Hateren and A. van der Schaaf Independent components compared with simple cells

Proc. R. Soc. Lond. B (1998)

0

0

1.0 2.0

Spatial frequency bandwidth (octaves)

20

40

O
cc

ur
re

nc
e 

(%
)

O
cc

ur
re

nc
e 

(%
)

O
cc

ur
re

nc
e 

(%
)

30 60 90
Orientation bandwidth (degree)

0

0

20

40

10 20 30 40
Length (arcmin)

20

40

1.0 2.0 3.0 4.0
Aspect ratio

20

40

(a) (b)

(c) (d )

 (e) ( f )

2 3 4 1 2 3 4 10
Peak spatial frequency (cycles/degree)

0

40

80

–90 –45 0 45 90
Orientation (degree)

0

2

4

R
el

at
iv

e 
oc

cu
rr

en
ce

Figure 4. Comparison of IC ¢lters (dots with error bars show mean and s.d. of the calculated histograms as in ¢gure 3) with
measurements of properties of simple cells in the foveal area of macaque primary visual cortex (histograms). Data from DeValois et
al. (1982a) ((b), their ¢g. 3A, merged with data from Parker & Hawken 1988, see below), DeValois et al. (1982b) ((a), ¢g. 5; (e), ¢g.
6), and Parker & Hawken (1988) ((b), ¢g. 3a; (c), ¢g. 4a; (d), ¢g. 6a). Scaling in (c) for calculated data: 1.2 pixels per bin. Filters
sensitive to horizontal structures correspond to 08 in ( f ). See text for further details.



A notable exception to the correspondence between IC
¢lters and simple cells is the distribution of the peak of
the spatial frequency response. Whereas simple cells have
receptive ¢elds acting on di¡erent spatial scales (i.e. they
show spatial scaling), the IC ¢lters show much less varia-
bility (¢gure 4e). This discrepancy may be resolved in
several ways. One possibility is that spatial scaling
should be imposed as an extra constraint (see, for
example, Koenderink 1984; Li & Atick 1994), as it can
be argued that spatial scaling is a useful property for
higher visual processing (e.g. object recognition relatively
independent of viewing distance). Another possibility is
that focusing on high spatial frequencies is a property of
the particular ICA algorithm used (or even any algo-
rithm maximizing kurtosis; see Baddeley (1996)).
However, ICA performed by Bell & Sejnowski (1997a,b)
with a di¡erent algorithm, yielded similar results to
those reported here. The basis vectors calculated by
Olshausen & Field (1996, 1997) show a somewhat higher
occurrence of low spatial frequency ones, but still consid-
erably less than was measured in simple cells (cf. ¢gure
4e). A further possibility is that extensions of the model
to nonlinear ICA, possibly with overcomplete bases (i.e.
more basis vectors than degrees of freedom), may resolve
this discrepancy purely in the spatial domain. More
likely, however, it will be necessary to include the time
domain in the analysis. A preliminary analysis of the
results of ICA performed on video sequences shows that
spatiotemporal IC ¢lters with peaks at low spatial
frequencies are abundant, and are associated with higher
speeds in the visual scenes.
Linear ICA yields the same number of basis vectors and

¢lters as the number of degrees of freedom of the input.This
is far less than the number of cells in the cortex per indepen-
dent viewing direction as coded by the optic nerve. Part of
this divergence may arise in ICA as well when including the
time domain, leading to cells with di¡erent temporal
frequency and velocity tuning. That there is also a need for
divergence purely in the spatial domain is suggested by
¢gure 2b^e: di¡erent ensembles of images need di¡erent
sets of IC ¢lters. Current work on overcomplete bases
(Olshausen & Field 1997; Lewicki & Olshausen 1998) may
lead to similar variability when performed on a su¤ciently
large and diverse image database.
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