[0l THE ROYAL
®]&G SOCIETY

On the origin of species by means

of assortative mating

Alexey S. Kondrashov'* and Max Shpak?

WSection of Ecology and Systematics, Cornell University, Ithaca, NY 14853, USA
2Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA

Assortative mating may split a population even in the absence of natural selection. Here, we study when
this happens if mating depends on one or two quantitative traits. Not surprisingly, the modes of assorta-
tive mating that can cause sympatric speciation without selection are rather strict. However, some of
them may occur in nature. Slow elimination of intermediate individuals caused by the gradual tightening
of assortative mating, which evolves owing to relatively weak disruptive selection, provides the alternative
scenario for sympatric speciation, in addition to fast elimination of intermediate individuals as a result of
the direct action of strong disruptive selection under an invariant mode of assortative mating. Even when
assortative mating alone cannot split an initially coherent population, it may be able to prevent the

merging of species after their secondary contact.
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1. INTRODUCTION

Before a population can undergo sympatric speciation, at
least two genotypes that are reproductively 1solated from
each other must appear within the range of its genetic
variability. Thus, non-random mating is a prerequisite for
sympatric speciation. Often, selection against the inter-
mediate genotypes that carry alleles from both repro-
ductively isolated genotypes is also necessary for its
completion. However, under certain conditions, non-
random mating can eliminate the intermediate genotypes
even in the absence of selection.

This is always the case when differences at one locus in
the diploid phase are enough for reproductive isolation,
1.e. when the mating between the homozygotes 00 and 11
is prohibited (see Kondrashov & Mina 1986). If so, the
frequency of heterozygotes 01 declines each generation by
half of the frequency of the mating 01 x 01, slowly leading
to the formation of the two species, 00 and 1l. This
happens because the prohibited mating 00 x 11 is the only
one that increases the frequency of heterozygotes (from
0% in the parents to 100% in the offspring), whereas the
mating 0l x 01 is the only one that decreases this
frequency (from 100% in the parents to 50% in the
offspring).

Analogously, two-locus reproductive isolation at the
haploid phase also splits the population without selection.
Assuming two unlinked diallelic loci each with alleles 0
and 1, it is easy to see that if the mating 00 x 11 is prohib-
ited, the total frequency of intermediate individuals 01
and 10 declines each generation by half of the frequency
of 01 x10 mating. Single-locus reproductive isolation in
haploids trivially constitutes speciation in itself because it
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immediately splits the population into two separate gene
pools.

Although reproductive isolation due to differences at
one diploid or two haploid loci is not impossible (see
Kondrashov & Mina 1986; Orr 1991), it is certainly
uncommon. Thus, we need to consider the impact of non-
random mating under less restrictive assumptions. In this
paper, we do this for the case of n unlinked loci, each
with alleles O and 1. These loci determine the phenotype
of an individual, consisting of either one or two quantita-
tive traits. All the modes considered will be phenotypic,
with no discrimination among genotypes constituting a
given phenotype.

With one trait, its value in an individual is determined
by the number of alleles 1 at all its n loci, 1.e. the trait is
the result of additive and equal contributions at each
locus. With two traits, the n loci are subdivided into two
non-overlapping sets of n; and ny loci (n,+ny=n), which
determine additively, as in the case of one trait, the values
of the first and the second trait of an individual, respec-
tively.

For a single trait, we assume that it affects the mate
choice of all organisms in the same way (similarity-based
non-random mating). In contrast, in the case of two
traits, only one trait will be expressed in a particular
organism, with mating possible only between organisms
expressing different traits  (split-trait non-random
mating). This describes mate choice depending on a mate
preference trait, expressed in one sex, which is inherited
independently of another phenotypic trait, expressed in
the other sex, upon which the mate choice is based (Sved
1981a,b). Female preference—male trait
known, for example, in African cichlids (see Galis &
Metz 1998) and Drosophila (Kelly & Noor 1997).

We will consider assortative mating only in the sense of
Lewontin et al. (1966), i.e. we will assume that, despite
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mating being non-random, all genotypes are, on average,
equally successful, so that there is no selective mating
(sexual selection) and allele frequencies remain invariant
over time.

2. MODES OF ASSORTATIVE MATING

Let us first consider one trait and describe a mode of
assortative mating qualitatively, i.e. by which matings are
permitted and which are not. To make speciation possible
we must assume that individuals with the opposite
extreme phenotypes cannot mate. We will also assume
that individuals with identical phenotypes can mate.
These assumptions are, of course, satisfied in the two
three-phenotype cases considered above.

Where there are more than three possible phenotypes,
many modes of assortative mating satisfy these assump-
tions. Let us consider two modes that are in a sense
opposite extremes, namely, an interval-based mode and a
threshold-based mode (figure 1). With the interval mode,
mating between organisms with phenotypes 7 and j is
impossible if |i—j|>C, so that the boundary between
pairs of phenotypes that can and cannot mate is parallel
to the diagonal of the first quadrant. In contrast, with the
threshold mode, mating is impossible if i <7, and j>T,,
or if i>7T, and j<7T, (1T,<7T,), so that this boundary
consists of vertical and horizontal parts.

The interval mode constrains matings of an individual
to a range of phenotypes specified by a maximal devia-
tion C. In the extreme case of (=0, only individuals with
identical phenotypes can mate. The threshold mode
implies that two classes of individuals, [0, 77] and [Ty, n],
are prohibited from mating with one another, or, in other
words, that mating can occur only within two classes
[0, T5] and [T, n]. In the extreme case of non-overlap-
ping classes [0, 7] and [7, n] (where T,=T7,=T),
mating is restricted to individuals on the same side of a
boundary 7; which splits the population into two mating
pools. This in itself is not true reproductive isolation,
however, as long as matings within a pool can produce
offspring that belong to the other pool.

The same modes are possible with the split-trait
assortative mating. In this case the two axes in figure 1, as
well as the values of ¢ and j, and 7, and 7,, describe
phenotypes in the different traits.

3. RESULTS ON INTERVAL MODE

Let us first consider similarity-based assortative mating
depending on one trait. In the most restrictive case of
(=0, assortative mating leads to speciation, i.c. to the
eventual disappearance of all genotypes except the two
opposite extreme genotypes 00...0 and 11...1 (Wright
1921; Breese 1956), provided that the initial frequency of
allele 1 is uniform across the loci. Otherwise, because
allele 1 frequencies are conserved, some intermediates will
necessarily persist (Ghai 1974), because if allele 1 has
different frequencies at different loci, the population
obviously cannot consist only of individuals 00...0 or
11.. 1L

With €'=1 and uniform frequency of allele 1, assortative
mating also leads to speciation. This follows from the fact
that with (<1, the phenotypic variance is a Lyapunov
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Figure 1. Possible (black) and impossible (white) matings
under (a) interval assortative mating (C'=3), and
(b) threshold assortative mating (7,=4, T,=7).

function, i.e. always grows with time, until the state with
the maximal variance is reached. Indeed, the phenotypic
variance in the offspring of two parents with either
identical or adjacent phenotypes is always greater than
this variance among the parents (because more extreme
phenotypes appear in the offspring), unless all the parents
breed true, which is the case only for extreme phenotypes
(assuming equal allele frequencies). In contrast, the mean
phenotype of the offspring remains the same as that of
the parents, owing to additivity of the trait. These two
facts guarantee the increase of the global variance. This
conclusion holds for both haploid and diploid popula-
tions. Both one-locus diploid isolation and two-locus
haploid isolation, considered above, satisfy the condition
<l
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With C>1, the phenotypic variance is no longer a
Lyapunov function. For example, the variance among the
offspring from the mating of 00...0 individuals with
those carrying two alleles 1 at some of their n loci is
smaller than among the parents, because some offspring
with one allele 1 will be produced. So far, there is no
mathematical treatment for this case. Instead, it was
studied using individual-based computer simulations of a
haploid population by Kulagina & Lyapunov (1966). In
some runs with large n and C>1, speciation occurred.
The authors erroneously attributed this outcome to the
impact of random drift, instead of deterministic action of
assortative mating. Later, Kamenshchikov (1972)
obtained essentially the same diploids.
However, because of random noise, individual-based
models cannot provide precise information on the para-
meters required for speciation without selection.

We address this question using a deterministic exact
hypergeometric phenotypic model (Barton 1992; Doebeli
1996; Shpak & Kondrashov 1998; THINK C programs
are available on request), assuming that mating is
random among the phenotypes that are permitted to
mate. The hypergeometric model requires uniformity
of allele 1 frequencies across all the loci (Shpak &
Kondrashov 1998), which is also the necessary condition
of speciation without selection (see above).

Table 1 presents equilibrium values of the phenotypic
variance in a haploid population where the frequency of
allele 1 1s 0.5 at all the loci. When the distribution of
phenotypes 1s binomial, which corresponds to indepen-
dent distribution of all alleles, its variance is n/4. In the
opposite case of speciation, where only the two extreme
phenotypes are present, the variance is n%/4.

The data presented in table 1 correspond to the initial
distributions with low or moderate variance. Even in this
case, speciation occurs when C<C;,. We can see that C;
increases with n as ca. \/n. This is not surprising, as the
standard deviation of the phenotype distribution in the
offspring from a particular mating must be ca. \/n, so that
if the difference between the parent phenotypes is below
/1, reproduction should generally increase the variance.
However, we could not convert this heuristic reasoning
into a proof. When €' grows past C.;, the equilibrium
variance drops rapidly and soon becomes very close to
n/4, whereas the equilibrium phenotype distribution
becomes close to binomial.

Whereas with C<C,_,, speciation appears to be a glob-
ally stable equilibrium, with ¢>C,_;, the outcome may
depend on the initial distribution. In such cases, marked
by an asterisk in tables 1—4, the population speciates if
the variance of the initial distribution is sufficiently high
(usually more than 95-99% of the maximal possible
value n?/4), whereas with lower initial variances the value
of the variance presented in a table is reached at equili-
brium. This phenomenon only appears for n>8, after
which the magnitude of ¢ which leads to speciation from
high initial variance seems to approach n/2 where n is large.

If C>C,,, the convergence to speciation within the
domain of its attraction is slow. Some
examples of the dynamics of the phenotypic distribution
are presented in figure 2. All of these results apparently
hold qualitatively if the frequency of allele 1 deviates
from 0.5.

results for

extremely
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Table 1. The equilibrium variance under interval assortative
mating with one trait and haploidy

(With C>C,;, speciation may depend on the initial
distribution. In such cases, marked by *, the population
speciates if the variance of the initial distribution is sufficiently
high, whereas with lower initial variances the value of the

variance presented in a table is reached at equilibrium.)

n
¢ 1 2 4 8 16 32 64
0025 1.0 4.0 16.0 64.0 256.0 1024.0
1 025 1.0 4.0 16.0 64.0 256.0 1024.0
2 — 0.5 1.7699 16.0 64.0 256.0 1024.0
3 — — 1.0600 4.6425" 64.0 256.0 1024.0
4 — — 1.0 2.4193  64.0 256.0 1024.0
5 —  — — 2.0765 7.1679" 256.0 1024.0
6 — — — 2.0108 4.9143" 256.0 1024.0
7 — — — 2.0009 4.2907 18.3483" 1024.0
8§ — — — 2.0 4.0893 11.7702° 1024.0
9 — — — — 4.0244  9.6260" 1024.0
10 — — — — 4.0055 8.7327" 42.8128"
11 — — — — 4.0008  8.3296" 27.6362"
12—  — — — 4.0000 8.1443" 22.0559"
13 —  — — — 4.0000 8.0605 19.3624"
14 — — — — 4.0000 8.0240 17.9149"
15 — — — — 4.0000 8.0089 17.0978"
16 — — — — 4.0000 8.0031 16.6266"

The data on diploid populations (equation (8) from
Shpak & Kondrashov (1998)) are presented in table 2.
Obviously, the dynamics in a diploid population with some
values of 7 and C are almost the same as in a haploid popu-
lation with a twofold larger n and identical C.

Individual-based computer simulations, using the
model described in Kondrashov (1986), confirm the basic
conclusion about the values of C;. However, the initial-
condition-dependent speciation under (= C,; cannot be
studied by such simulations, because during the very slow
approach to speciation, random drift destroys uniformity
of allele frequencies across the loci, thus making the
completion of speciation impossible.

Let us now consider split-trait interval-based assortative
mating. Table 3 presents equilibrium covariances of the
two traits for different n; (assuming n =n,) and C, as
attained from uniform distributions. Obviously, in the case
of speciation the covariance is maximal, nny/4. Although
covariance is always positive, speciation occurs only with
(=0 and n <8, whereas in other cases the equilibrium
covariance 1s not large. However, as with one trait, specia-
tion occurred under much less restrictive conditions if the
initial distribution was close to the maximal variance. As
before, speciation was very slow in such cases.

4. RESULTS ON THRESHOLD MODE

The threshold mode of assortative mating is the most
restrictive if 7,=7,=7T. This always leads to speciation.
Let us consider the expression

D=(T—mo)xo+m—T)x, (1)

where x, and «x; are the fractions of the population
consisting of ‘small’ and ‘large’ individuals, i.e. of those
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0.35- @ Table 2. The equilibrium variance under interval assortative
03 “ mating with one trait and diploidy
. (*, see note to table 1.)
0.254)
0.24) n
0.15- C 1 9 4 8 16
0.14
0 1.0 4.0 16.0 64.0 256.0
0.05 // 1 1.0 4.0 16.0 64.0 256.0
= 2 0.5 1.7813 16.0 64.0 256.0
0 3 — 1.0585 4.6591" 64.0 256.0
4 — 1.0 2.4161 64.0 256.0
0.354 (b) 5 — — 2.0759 7.1668" 256.0
03- 6 — — 2.0107 49111" 256.0
” 7 — — 2.0009 4.2895 18.3474"
0.251 3 — — 2.0 4.0890 11.7657"
&
§ 0.2
3 0.15
= Table 3. The equiltbrium covariance under interval assortative
mating with two traits and haploidy

Phenotype

Figure 2. Dynamics of the phenotype distributions under
similarity-based, interval assortative mating in the haploid
population. Distributions after the first generation are set in
bold font. (a) n=32, ('=3; the distributions after generations
1,11,...,101, 201, ..., 1001 are shown (the variance
increases with time until speciation occurs). (4) The same,
but with C=5. (¢) n=16, ('=5; the distributions after
generations 1, 11, 31, 51 and 201 (essentially equilibrium)
are shown as broken lines (the variance declines), and the
distributions after generations 1, 10001, 500 001 and
1000001 are shown as solid lines (the variance declines
during the first few generations, after which it grows very
slowly until speciation is reached).

with phenotypes below and above 7™ (those with phenotype
T can be included in either class), respectively, and m, and
my are the mean values of the trait within small and large
individuals, respectively. In a sense, D 1s a weighted devia-
tion of the two sides from the boundary 7. We will show
that D is a Lyapunov function (for a special case of n=2,
this was carried out by Kondrashov & Molchanov (1980)).

Let us consider a particular (current) generation.
Among all offspring, the fractions of small and large
offspring of small individuals are p,, and p,, whereas the
fractions of small and large offspring of large individuals
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(*, see note to table 1.)

n
¢ 1 2 4 8 16

0 0.25 1.0 4.0 1.3748" 2.0096"
1 0.0 0.1006 0.4223" 1.2850" 2.6552"
2 — 0.0 0.1125 0.5379" 1.9106"
3 — — 0.0179 0.2309* 1.0418"
4 — — 0.0 0.0828 0.5917"
5 — — — 0.0214 0.3120"
6 — — — 0.0035 0.1567"
7 — — — 0.0003 0.0651
8 — — — 0.0 0.0243

are pjg and p;; (there is no small x large interbreeding).
The mean values of the trait within these four classes of
offspring are ayg, ag, a9, and ay), respectively. Without
selection, xg=pgo+po and x, =pjo*py, whereas xo'=pot+po
and x;'=py+p; (prime denotes the next generation).
Owing to the additivity of the trait, mq=(pooaootpoicto1)/

(Pootpo) and my = (pyagtpnan), whereas my'=(pooaoot
Do) | (Pootpro) and my"=(poag+puan)/(potpn)- Because
agp, mp< T and ag, ay =T, D'=(T—my) x'+m'—T)
x'>=D. Because mating is random within large fractions
of the population, speciation proceeds slowly (data not
reported), unlike the case of interval assortativity where
speciation can be relatively fast.

As with interval assortativity, a Lyapunov function
exists in the extreme case (7,=7T,), but apparently does
not exist if 7,<7, The data of numerical modelling
show that threshold assortativity leads to speciation only
with 7, =T,, and when the difference between 7, and 7,
increases the equilibrium variance rapidly approaches
that of a binomial distribution. Table 4 presents the data
for 7,=n/2—A4 and To=n/2+A4. Here the outcome does
not depend on the initial distribution. With the split-trait
assortative mating, speciation never occurred, even under

T,=1T, (data not reported).
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Table 4. The equilibrium variance under threshold assortative
mating with one trait and haploidy

(*, see note to table 1.)

n
4 1 2 4 8 16 32 64

0 — 1.0 4.0 16.0 64.0 256.0  1024.0

I — 0.5 1.0600 2.7500 9.1478 35.9398 148.5612
2 — 1.0 2.0472  4.7964 14.2324 52.3996
33— — — 2.0009 4.1188 9.7215 29.0505
4 — — — 2.0 4.0119 8.4733 21.2203
5 —  — — — 4.0006 8.1144 18.1428
6 — — — — 4.0000  8.0224 16.8559
7 —  — — — 4.0000 8.0034 16.3207
8§ — — — — 4.0000 8.0004 16.1098
5. DISCUSSION

Perhaps, the modes of assortative mating considered
here are not the most favourable for speciation. Although
we assumed that all permitted matings occur randomly,
speciation may be facilitated if matings between similar
individuals occur more often. Still, it seems that only
rather stringent assortative mating can cause sympatric
speciation without selection. In fact, only interval simi-
larity-based assortative mating with C<C,;~+/n rapidly
splits a population with initially unimodal phenotype
distribution. In contrast, threshold similarity-based
assortative mating or any mode of split-trait assortative
mating splits such a population only very slowly, and
only under extreme parameter values (tables 1-4 and
figure 2).

How plausible is such strict assortativity in nature?
Obviously, in the absence of selection the best strategy is
to mate with the first partner. However, avoiding mating
with dissimilar individuals is beneficial under disruptive
selection (Wallace 1889, p.179), whereas under stabilizing
selection, avoiding mating with similar individuals 1is
beneficial, at least for individuals having extreme pheno-
types.

Qualitative analysis of the Wallace effect shows that
moderate disruptive selection can lead to the fixation of a
modifier that causes similarity-based assortative mating
(Kondrashov 1984; Doebeli 1996) according to the trait
under such selection. In contrast, split-trait assortative
mating may evolve only under very strong disruptive
selection, because this evolution requires establishment of
linkage disequilibria between loci controlling different
traits (A. S. Kondrashov and F. A. Kondrashov, unpub-
lished data). If so, models of split-trait assortative mating
without selection cannot describe sympatric speciation,
although they still can be relevant to the event of a
secondary contact between populations that diverged
allopatrically.

Of course, assortative mating can also appear just as
an unavoidable by-product of genetic variability, in parti-
cular, of variability concerned with time and/or place of
mating. Interval assortative mating may occur, for
example, when different individuals breed at different
times, as 1s the case with many amphibians (Mayr 1963).
Threshold assortativity may arise when mate choice
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depends on threshold traits. In this case, additive pheno-
types considered above have the meaning of trait poten-
tial or liability (Roff et al. 1997), and the actual traits (e.g.
the presence or absence of wings or a particular habitat
choice) depend on them in a discontinuous manner. Thus,
threshold habitat choice influenced only by genotypes,
but not by the environment, leads to slow sympatric
speciation without selection.

Three very different processes can cause the elimina-
tion of the intermediate phenotypes and thus complete
sympatric speciation. The first, conventional option is
strong selection against the intermediates (disruptive
selection due to different available resources and competi-
tion (see Darwin 1859; Kondrashov & Mina 1986;
Doebeli 1996); divergent selection in different habitats
(see Bush 1994); or sexual selection (see Turner &
Burrows 1995)), with invariant assortative mating. The
second option is stringent, invariant (perhaps, interval
similarity-based) assortative mating without selection.
Finally, speciation may be completed as a result of
evolution of more and more stringent similarity-based
assortative mating driven by moderately strong disruptive
selection. In the first two cases, the intermediate pheno-
types are eliminated fast, if at all, whereas in the third
case the elimination may be slow.

We regard the first and the third cases as more realistic.
Under non-random mating, rare phenotypes are likely to
suffer a disadvantage (i.e. non-random mating is likely to
be selective, and not strictly assortative (Lewontin et al.
1966)). Thus, at least a weak frequency-dependent
selection is required to keep a speciating population poly-
morphic, as well as to maintain coexistence of the newly
formed species. In addition, at least a weak disruptive
selection appears to be the only possible cause for uni-
formity of allele frequencies across all the loci affecting a
particular trait (see Shpak & Kondrashov 1998), which is
necessary for speciation.

Even when assortative mating alone cannot drive
sympatric speciation, it may be enough to prevent
merging of the two species produced allopatrically, after
they came into secondary contact. This is the case both
for similarity-based and for split-trait interval assortative
mating (tables 1-3). This second possibility is important
because reproductive isolation between species of appar-
ently allopatric origin is often due to such assortative
mating (Kelly & Noor 1997). Rapid, independent co-
evolution of female preference and male traits (Rice &
Holland 1997) in different allopatric species can routinely
create such situations.

Without selection, speciation, if only locally stable, is
always a weak attractor with a small domain of stability.
Thus, assortative mating alone can preserve species
identity after secondary contact only if hybrids be rare.
However, even weak selection against hybrids may be
enough to keep them rare and preserve such species after
their secondary contact. Such selection, which is neces-
sary only to keep the population within the domain of
attraction of speciation, can be much weaker than
selection required by conventional scenarios of ‘secondary
reinforcement’ (see Kelly & Noor 1997).
without strong selection, merging of the species may be
triggered by even a single mass production of hybrids
(figure 2c¢).

However,
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