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The immune and the detoxication systems of animals are characterized by allelic polymorphisms, which
underlie individual di¡erences in ability to combat assaults from pathogens and toxic compounds.
Previous studies have shown that females may improve o¡spring survival by selecting mates on the basis
of sexual ornaments and signals that honestly reveal health. In many cases the expression of these
ornaments appears to be particularly sensitive to oxidative stress. Activated immune and detoxication
systems often generate oxidative stress by an extensive production of reactive metabolites and free
radicals. Given that tolerance or resistance to toxic compounds and pathogens can be inherited, female
choice should promote the evolution of male ornaments that reliably reveal the status of the bearers' level
of oxidative stress. Hence, oxidative stress may be one important agent linking the expression of sexual
ornaments to genetic variation in ¢tness-related traits, thus promoting the evolution of female mate
choice and male sexual ornamentation, a controversial issue in evolutionary biology ever since Darwin.
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1. INTRODUCTION

There are numerous suggestions as to what females can
gain by being selective in their choice of mate (Fisher
1915; Kirkpatrick & Ryan 1991; Andersson 1994). Females
can gain direct bene¢ts, such as essential territorial
resources, paternal care or avoidance of infectious
diseases, by mating with healthy males with large and
conspicuous ornaments such as bright colours and
elongated plumes (Kirkpatrick & Ryan 1991). When no
direct bene¢ts are at hand, Fisher's (1958) runaway
process (reviewed in Andersson 1994) suggests that an
association between alleles for a larger ornament and
alleles for the female preference will arise merely owing
to the female mating preference. The good-genes models
suggest, on the other hand, that males di¡er in condition
and viability and that such traits can be inherited by their
o¡spring. Females can assess this variation in male
genetic quality if males in better condition express more
exaggerated ornamental traits (Fisher 1915, 1958; Zahavi
1975; Hamilton & Zuk; 1982; Kodric-Brown & Brown
1984; Andersson 1986).

The condition-dependence of male ornaments is
vindicated by studies showing that the expression of
traits, such as tail ornaments and combs in birds, and
carotenoid pigmentation in ¢shes and birds, correlates
with condition and survival (Andersson 1994). Experi-
ments with controlled infections show that ornaments are
more sensitive to diseases than are other morphological

traits (Zuk et al. 1990; Houde & Torio 1992; MÖller 1994).
The good-genes models are speci¢cally supported by
recent studies showing that female birds can increase
o¡spring ¢tness by mating with more ornamented males
without obtaining any direct bene¢ts (Norris 1993; MÖller
1994; Petrie 1994; von Schantz et al. 1994; Hasselquist et
al. 1996).

There have been only a few attempts to identify poly-
morphic genes that confer variation on both ¢tness traits
and ornamental expression (Watt et al. 1986; von Schantz
et al. 1996). By using the often detailed knowledge of
molecular and physiological actions of genes with major
e¡ects on health and condition, we hope to encourage
future studies on the evolution of condition-dependent
sexual ornaments and other traits closely linked to ¢tness.
We believe that evolutionary biologists can learn from
immunologists and toxicologists, who have long been
aware of the remarkable polymorphism in the genetic
systems that govern an organism's immune response and
excretion of toxic compounds. Allelic variation at many
of these loci clearly a¡ects health (reviewed in Gonzalez
& Nebert 1990; Nebert et al. 1996; Kalow 1997; Apanius et
al. 1997). Although many other genes may a¡ect an
individual male's condition and ornamentation, we focus
on the e¡ects of the genes involved in immune defence
and processing of toxic compounds. These genes are fairly
well studied and have a broad taxonomic distribution.
Moreover, these defence systems seem to confer an
unusually strong interaction between individual geno-
types and the environment (i.e. local pathogens and
toxins) and, hence, a potential for maintained genetic
variation for ¢tness-related traits.
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To assure the condition-dependent expression of the
ornament it should impose a handicap (Zahavi 1975) or
cost to the bearer that increases with ornamental
expression (Andersson 1986). The currencies mediating
this cost function are suggested to be in terms of energy
trade-o¡s or increased predation rates (Andersson 1994).
To identify the physiological burdens underlying
ornamental development and maintenance, we suggest
that the condition-dependent costs need not to be carried
to such ultimate terms as energy reallocations and altered
chances of death by predation. Extensive empirical data
at the cellular level show that oxidative metabolites and
free radicals, which are highly reactive by-products of
normal metabolism and immune defence, cause extensive
oxidative damage to DNA, proteins and lipids; this
process is known as oxidative stress (Burton & Ingold
1984; Halliwell & Gutteridge 1985; Gruner et al. 1986;
Breimer 1990; Kappus 1993; Gregus & Klaassen 1996;
Parkinson 1996). Oxidative stress appears to be a major
contributor to ageing and to various degenerative diseases
such as cancer and immune and brain disorders (reviewed
in Coyle & Puttfarcken 1993; Frei 1994; Ahmad 1995; Sies
1997).

Free radicals are generated particularly by mitochon-
drial respiration and by the operation of the genetically

polymorphic immune and biotransformation systems
(Klebano¡ & Clark 1978; Halliwell & Gutteridge 1985;
Anderson & Theron1990; Shigenaga & Ames 1994; Nebert
et al. 1996; Parkinson 1996). The costs induced by oxidative
stress may hence be a reliable currency in the trade-o¡
between individual health and condition-dependent
ornamental sexual traits, the expression of which in many
cases appears to be particularly sensitive to oxidative stress.

2. GENETIC VARIATION AND FUNCTION OF THE

IMMUNE AND DETOXICATION SYSTEMS

The immune system (Roitt et al. 1996) and the detoxi-
cation system (Gregus & Klaassen 1996) in animals have
many characteristics in common. Both systems aim to
identify foreign compounds and to destroy pathogens or
excrete toxic substances with high speci¢city. Harmful
pathogens and toxins occur in a great variety in nature
and an individual's ability to ¢ght an assault depends on
its capacity to identify alien compounds and trigger an
appropriate response. These defence systems are
characterized by a high genetic diversity and complexity
at loci that code for antigen or substrate a¤nities (table
1). All genetic complexes denoted in table 1 are involved
in the recognition of and defence against foreign
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Table 1. Summary of data on genetic variation in various immune and biotransfomation gene families in humans

supergene family
number of
gene families

number of variable
loci (total number
of loci)

maximum no. of alleles
found at one locus (name
of locus, and if available
number of alleles found
among Caucasians)

additional
variation

immune genes
MHC class Ia 1 5 (6) 149 (HLA-B,550)
MHC class II A and Ba 2 8^9 (8^10) 179 (HLA-DRB,531) heterodimer

formation

biotransformation genes
phase I cytochrome P450 (CYP)b 14 9 (536) 53 (CYP2D6, 53)

alcohol dehydrogenase
(ADH)c

1 4 (7) 3 (ADH2) heterodimer
formation

aldehyde dehydrogenase
(ALDH)d

1 3 (10^12) 3 (ALDH9)

NAD(P)H-quinone
oxidoreductase (NQO)e

1 2 (2) `highly polymorphic'
(NQO2)

alternative
splicing

phase II glutathione-S-transferase
(GST )f

5 4 (419) 3 (GSTM1) heterodimer
formation

sulphotransferase (ST )g 1 2 (5) 3 (STP1, STP2) alternative
splicing

methyltransferase (MT )h 1 3 (3) 3 (TPMT )
N-acetyltransferase (NAT )i 1 2 (2) 15 (NAT2,59)

aGrubic et al.1995;Trowsdale1995; Parham&Ohta1996; Zacharay et al.1996.
b Cohen et al.1992; Nakagawa et al.1993; Clot et al. 1994; Nebert et al.1996; Nelson et al.1996; Parkinson1996; Marez et al.1997.
c Burnell et al.1987; Edman &Maret1992; Zgombic-Knight et al.1995.
dGoedde et al. 1992; Hsu et al.1997;Yoshida et al.1998.
eJaiswal et al.1990; Rosvold et al.1995;Yao et al.1996.
f Pemble et al.1994; Hayes & Pulford1995; Nelson et al.1995;Yengi et al.1996.
g Dooley & Huang1996.
h Lachman et al.1996; Parkinson1996;Tai et al. 1996.
iVatsis et al. 1995.



compounds. Each gene family often contains several loci,
some of which have a substantial allelic polymorphism
(table 1) known to a¡ect various ¢tness-related traits
(Gonzalez & Nebert 1990; Nebert et al. 1996; Kalow 1997;
Apanius et al. 1997). Their operation may therefore be
especially relevant to the good-genes process of sexual
selection.

The good-genes process has been questioned; however,
several extant theoretical studies elucidate how and why
genetic polymorphisms can evolve and be maintained. As
concerns the immune system, most arguments for the
maintance of allelic polymorphism are based on
overdominance (Hughes & Nei 1988), evasion^detection
races between parasite and host, and frequency-depen-
dent selection (Hamilton & Zuk 1982; Eshel & Hamilton
1984; Hamilton et al. 1990; Apanius et al. 1997). In general
it appears that multilocus systems coding for proteins
with overlapping functions (table 1) facilitate the persis-
tence of allelic polymorphism (Hamilton et al. 1990;
Kirzhner et al. 1996; Nevo et al. 1997). In addition, for
positive parent^o¡spring correlations to exist, as is
essential for the good-genes process (Hamilton & Zuk
1982), the polymorphisms must be dynamic (Dieckmann
& Law 1996; Kirzhner et al. 1996) owing to constantly
changing selective regimes such as those characterizing
host^parasite interactions (Eshel & Hamilton 1984;
Hamilton et al. 1990).

(a) The adaptive immune system
MHC (major histocompatibility complex) molecules

bind antigens from pathogens and present them toT-cells.
The antigen-binding properties of the MHC molecules,
which di¡er according to the particular MHC alleles an
individual carries, determine which foreign peptides can
be identi¢ed for triggering a speci¢c, adaptive, immune
response (Roy et al. 1989). The allelic polymorphism of
the MHC is extraordinary; in humans there are now
more than 170 di¡erent alleles identi¢ed at one MHC
locus (table 1). Several studies have identi¢ed di¡erent
MHC alleles and haplotypes that confer resistance to
various infectious diseases and autoimmune disorders in
humans and domesticated birds and mammals (Apanius
et al. 1997).
The MHC antigen presentation to T-cells is necessary

to trigger the synthesis of antigen-speci¢c antibodies and
to establish an immunological memory that will protect
the individual from re-infections with the same pathogen
(Clark & Ledbetter 1994; Rajewsky 1996; Roitt et al.
1996; Zinkernagel 1996).

(b) Detoxication
The biotransformation enzymes participate not only in

the metabolism of naturally occurring chemicals, such as
secondary plant metabolites and toxins in ingested plants,
fungi and animals, but also in the metabolism of various
arti¢cial chemicals and drugs (Gregus & Klaasen 1996).
Xenobiotic metabolism is typically divided into phase-I
(functionalization) and phase-II (conjugation) reactions.
Phase-I enzymes, for example the cytochrome P450s
(CYP) (table 1), catalyse the incorporation of a functional
group (-OH, -NH2, -SH or -COOH) into the initially
hydrophobic substrate. Phase-II enzymes, for example
glutathione-S-transferases (GST) (table 1), make the

molecule less reactive by conjugation of the functional
group with glutathione, sulphate or glucuronic acid.
These reactions generally make the substrate water-
soluble, and the conjugated endogenous compound
further facilitates the excretion of the product (Hayes &
Pulford 1995).

Various biotransformation enzymes exhibit overlapping
substrate speci¢cities (Gonzalez & Nebert 1990). Still,
di¡erent enzymes di¡er in their capacity to detoxify a
given chemical and allelic variants can a¡ect the
individual's ability to metabolize di¡erent compounds
(Gonzalez & Nebert 1990; Daly et al. 1993; Nebert et al.
1996; Tai et al. 1996; Kalow 1997). In humans, the
frequency of poor and extensive metabolizers of various
drugs di¡ers between ethnic groups to a far greater extent
than can be expected from rare mutation events or
genetic drift (Gonzalez & Nebert 1990; Nebert et al.
1996).

Among the biotransformation genes, only CYP and
NAT show exceptionally high allelic polymorphism (table
1); this may in part be due to the extensive amount of
research that has been directed towards these loci
(Gonzalez & Nebert 1990; Nebert et al. 1996; Kalow
1997). In addition, the nature of a species' diet may have
an e¡ect on the allelic polymorphism of particular
biotransformation genes. For example, the human alcohol
dehydrogenase (ADH) genes have only a minor allelic
polymorphism (table 1), whereas the ADH locus has an
extensive allelic variation in Drosophila species
(McDonald & Kreitman 1991; Stam & Laurie 1996),
which often feed on various fermented plant products.
Despite the marked di¡erence in allelic polymorphism
between the immune and detoxication genes (table 1), it
seems likely that the polymorphism in both cases is main-
tained by similar processes. Much of the redundancy and
complexity of the biotransformation system of animals
may have evolved as a response to chemical defences in
ingested plants, animals, bacteria and fungi (Gonzalez &
Nebert 1990; Kalow 1997). At least in plants, the arrays of
such chemicals are highly variable both within and
among species (Fritz & Simms 1992). Both temporal and
spatial variations can therefore confer dynamic
evolutionary interactions between plants and herbivores
(Berenbaum & Zangerl 1998), similar to those between
parasites and hosts (Eshel & Hamilton 1984; Hamilton et
al. 1990), which can help to maintain the allelic poly-
morphism observed in those biotransformation enzymes
that metabolize exogenous compounds.

Some of the biotransformation enzymes also catalyse
the metabolism of endogenous compounds, such as
steroid hormones (Parkinson 1996). Interestingly, many
secondary plant metabolites are steroid-like compounds
(Beier 1990; Knight & Eden 1995) likely to interfere with
herbivores' physiology. As a potential countermeasure the
consumers' biotransformation enzymes are likely to
evolve to escape the negative e¡ects of exogenous steroid-
like toxins. In insects, variation in insecticide resistance is
frequently associated with polymorphic genes regulating
the transcription of CYP and GST enzymes (Grant &
Hammock 1992; Feyereisen et al. 1995). The most
extensively studied inducer in vertebrates is the Ah
receptor, which binds certain dioxin-related compounds
and initiates the transcription of a battery of individual
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phase-I and -II enzymes (Nebert et al. 1996). In mice the
Ah receptor is encoded by a single gene with four
di¡erent alleles (Poland et al. 1994) that confer di¡erences
in the bearers' susceptibility to various disorders (Nebert
et al. 1996) and exposure to dioxin (Nebert et al. 1972).

3. OXIDATIVE STRESS

The immune and the detoxication systems have
another important attribute in common: when activated
they are generating reactive metabolites and free radicals,
which contribute to an individual's level of oxidative stress
(¢gure 1).
Ultimately, energy in terms of ATP is essential for all

bodily functions. However, the formation of ATP, fuelled

by oxidative metabolism in the mitochondria, generates
free radicals (Halliwell & Gutteridge 1985; Coyle &
Puttfarcken 1993; Packer et al. 1994). Free radicals are
atoms or molecules that contain one or more unpaired
electrons (Le¥er 1993); these unpaired electrons make
them very prone to react with other molecules. Reactive
radicals, and especially the hydroxyl radical (OHÍ), can
damage a variety of critical molecules and physiological
processes, including DNA, proteins, lipids, cell
membranes, expression of MHC class-II molecules and
suppression of bothT- and B-cell-based immune reactions
(Halliwell & Gutteridge 1985; Gruner et al. 1986; Breimer
1990). There are a number of experimental studies on
rodents (reviewed by Youngman et al. 1992; Shigenaga &
Ames 1994) showing that dietary restrictions of calorie
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Figure 1. Schematic representation of the pathways linking the load of oxidative stress to the expression of condition-dependent
sexual ornaments via activated defence systems. The ¢gure ignores cases where the toxin or pathogen overcomes the defence
systems and causes direct cell dysfunction and death.
An individual's exposure to oxidative stress is suggested to be an important mediator of condition-dependent ornamentation.

The contents of the central pot in the ¢gure represent the load of reactive metabolites and free radicals produced by cell
respiration and metabolism, biotransformation and immune defences. At some baseline level the reactive intermediates and free
radicals are destroyed by various antioxidants (purple box); this prevents leakage of oxidants and tissue damage. Di¡erent types
of antioxidant can act complementarily to each other so that the reaction of one can spare others and to the extent that one
antioxidant becomes depleted, the deposits of others may be reduced. Hence some sexual ornaments, such as carotenoid
pigmentation in plumage or skin, known to be condition-dependently expressed in birds and ¢shes, may lose their hue even
before any cytotoxic e¡ects of oxidative stress occur: that is, before the load of free radicals starts to £ow over the edge of the pot
in the ¢gure.
Excessive production of free radicals can be generated not only by cell respiration but also by activated immune defences and

biotransformation systems. These defence systems are characterized by a high level of genetic polymorphism (green box).
The expression of various secondary ornaments, such as plumes, spurs, combs and song repertoire sizes in birds, appears to

be particularly sensitive to oxidative stress. To the extent that these traits are more susceptible to oxidative stress than are vital
functions, the ornaments can serve as external cues for females to select particularly resistant or tolerant males, even before any
pathological disorders appear.



intake not only cause a delay in reproduction and
decreasing cell proliferation rates and body growth but
also signi¢cantly increase longevity. These e¡ects are
associated with reduced mitochodrial respiration and
reduced oxidative damage to various molecules and
organs (Youngman et al. 1992; Shigenaga & Ames 1994).

The production of free radicals and the extent of oxida-
tive stress is often quanti¢ed in plasma or cells by
measuring the amounts of diagnostic molecules such as
oxidatively modi¢ed lipids, proteins, antioxidants, and
depolymerization of hyaluronic acid (Baker et al. 1989;
Anderson & Theron 1990; Deeble et al. 1990; Sato et al.
1990; Jialal & Grundy 1991; Hawkins & Davies 1996;
Uchida et al. 1998). We return below to the latter two
measurements of oxidative stress, because they are of
particular relevance to condition-dependent ornamenta-
tion (¢gure 1).

(a) Toxication
The activity of phase-I biotransformation enzymes

often produces a reactive metabolite that the phase-II
enzymes usually transform into an inactive water-soluble
compound, which can be excreted. However, owing to,
for example, exhaustion of biotransformation enzymes,
consumption of their cosubstrates (for example gluta-
thione), or the properties of the substrate and the active
site of the enzyme (Kappus 1993), the metabolite may not
be properly processed. In this process, called toxication
(Gregus & Klaassen 1996), the metabolite is transformed
into an even more reactive compound, which eventually
generates free radicals (Burton & Ingold 1984; Kappus
1993; Gregus & Klaassen 1996; Parkinson 1996; Nebert et
al. 1996).

In a number of studies, genetic polymorphisms in
human biotransformation enzymes are correlated with an
increased risk of toxicity and cancer owing to their
generation of free radicals (reviewed by Daly et al. 1993;
Rosvold et al. 1995; Nebert et al. 1996). In addition, a
recent study on the Atlantic tomcod (Microgadus tomcod)
indicates that a genetic adaptation in this ¢sh species has
reduced the biotransformation-induced toxication of
dioxin-related compounds (Roy & Wirgin 1997). In
highly polluted environments the frequency of various Ah
receptor alleles has changed; this change in frequency has
led to a downregulation of the Ah receptor pathway and
elimination of the incidence of tumours that had
previously prevailed in the population (Roy & Wirgin
1997).

(b) In£ammatory response
The cytotoxic e¡ects of free radicals are exploited by

phagocytes when obliterating pathogens in the in£amma-
tory response (Klebano¡ & Clark 1978). When patho-
genic organisms enter the body they are ¢rst attacked by
various phagocytes, such as macrophages and neutro-
phils: this is the so-called innate immune response.
Phagocytes do not require pathogen-speci¢c antibodies
for the recognition process, because they also express
non-speci¢c receptors for various complement proteins
that facilitate binding to the pathogen (Roitt et al. 1996).
When the phagocytes have ingested or adhered to alien
cells or parasites they are destroyed by the release of
lysosomal enzymes, which catalyse the respiratory burst

(Klebano¡ & Clark 1978). This is a rapid reaction that
gives rise to the formation of various free radicals and
oxidants, such as hydrogen peroxide, which eventually
decay to the highly obnoxious hydroxyl radical (Halliwell
& Gutteridge 1985). The reactive products released by the
phagocytes, intended to kill the pathogen, will also be
harmful to other exposed cells (see, for example, Halli-
well & Gutteridge 1985; Gruner et al. 1986; Anderson &
Theron 1990; Ahmad 1995) and will thus contribute to
oxidative stress.

Once activated, macrophages present antigens, bound
to their MHC molecules, from ingested pathogens to T-
cells (Roitt et al. 1996). MHC-mediated recognition is
essential for the adaptive immune system to mount a
speci¢c and more e¡ective response (shorter time lag,
higher antibody titre and higher antibody a¤nity) on
subsequent infections (Rajewsky 1996; Roitt et al. 1996). If
pathogens escape the adaptive immune response, owing
to the absence of critical MHC alleles, much of the
immunological response will rest upon the less speci¢c
recognition and binding by the innate immune system's
phagocytes.

Hence, individuals whose battery of MHC molecules
fail to bind e¤ciently to the peptide fragments from the
pathogen will produce a less e¤cient, low-a¤nity, anti-
body-mediated response (Roitt et al. 1996). A less speci¢c
defence may be costly in that it generates prolonged
periods of sickness and extensive oxidative stress. The
level of oxidative stress can therefore operate as a reliable
measure of the genotype^environment interactions of the
immune system.

4. ANTIOXIDANT DEFENCES

A series of antioxidant defence mechanisms have
evolved to prevent or limit free-radical production and
tissue damage. Superoxide dismutase (SOD), catalase
and glutathione peroxidase (GPO) are endogenous
enzymes that function as antioxidants inside cells. Extra-
cellular antioxidants, such as vitamin C, carotenoids and
vitamin E, are often of dietary origin (Maguire et al.
1989; Frei et al. 1992) and act by directly scavenging
oxidants (Burton & Ingold 1984; Liebler 1993). Di¡erent
types of antioxidants can act in a complementary or
synergistic way to each other, so that the reaction of one
antioxidant can spare or even regenerate others
(Anderson & Theron 1990; Sato et al. 1990; Jialal &
Grundy 1991; Olanow 1993). The dietary antioxidants are
consumed during their antioxidant action (Maguire et al.
1989; Frei et al. 1992; Liebler 1993) and this makes their
amounts in plasma and tissue potential measures of the
level of oxidative stress (Anderson & Theron 1990; Sato et
al. 1990; Jialal & Grundy 1991). Plasma and tissue levels
of vitamin C, vitamin E, and carotenoids are reduced by
35^75% in birds and mammals during immune responses
to infectious diseases (Ru¡ et al. 1974; Sykes 1979;
Augustine & Ru¡ 1983; Hennet et al. 1992).

Experimentally increased concentrations of vitamin C,
b-carotene and vitamin E reduce the negative e¡ects of
free radicals on various molecules and the immune
response (Weitberg et al. 1985; Anderson & Theron 1990;
Jialal & Grundy 1991; Hughes et al. 1997). Causal e¡ects
of antioxidant defence and oxidative stress on ageing have
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recently been demonstrated in Drosophila melanogaster: £ies
from transgenic lines simultaneously overexpressing SOD
and catalase exhibit not only a signi¢cant extension of
lifespan but also improved metabolic rate and physical
performance (Sohal et al. 1995).

The level of oxidative stress seems to be so intimately
linked to health and ¢tness that it cannot be freely traded
with reallocations of non-¢tness-related currencies. Apart
from the synthesis of the endogenous antioxidants and the
reduction of glutathione, a cosubstrate to GPO (Gregus
& Klaassen 1996), much of the cost of antioxidant
defences is restricted to the depletion of extracellular
dietary antioxidants. Accordingly, depletion of the
deposits of such antioxidants is observed not only during
immune responses but also after exhausting physical
activities (Packer et al. 1994).

5. CONDITION-DEPENDENT SEXUAL SIGNALS

The hypothesis that sexual ornaments reveal the level
of oxidative stress is theoretically appealing because any
change that diminishes the level of oxidative stress would
improve both the ¢tness and the expression of the orna-
ment. Given that the degree of sexual ornamentation is
limited primarily by an energy trade-o¡, as often
suggested, one would expect male ornaments to be ener-
getically costly to develop or maintain. Accordingly,
female choice would promote a male strategy to squander
energy, generated by mitochondrial metabolism, on char-
acters that increase male mating success but do not
contribute per se to survival, just to ensure the honesty of
ornamental expression. The advantage of female prefer-
ences for male characters that instead reveal the status of
the bearers' antioxidant defence systems and overall load
of oxidative stress is that the honesty of the signal is mani-
fested primarily by metabolic e¤ciency rather than by
energy expenditure (see also Getty 1998). Females can
thereby not only achieve healthy o¡spring but also
produce attractive sons that honestly signal their genetic
quality at low energetic expenditure.

To suppress the extent of oxidative stress without
compromising mitochondrial respiration it seems essential
to minimize the production of free radicals generated by
other physiological processes, such as immune defence and
detoxication. In these defence systems, di¡erent genotypes
will interact di¡erently with the environment (pathogens
and xenobiotics); these interactions will a¡ect the quantity
of free radicals added to an individual's baseline (respira-
tory) level of oxidative stress (¢gure 1). A direct association
between Ah receptor alleles and the resulting oxidative
stress after administration of dioxin has been found in
congenic mice (Alsharif et al. 1994; Hassoun & Stohs 1996).
In chicken, MHC haplotypes associated with resistance to
coccidiosis a¡ect plasma levels of carotenoids after expo-
sure to the disease (Uni et al.1995).

Given that tolerance or resistance towards such
environmental challenges can be inherited, female choice
should promote the evolution of male ornaments that
reliably reveal the status of the bearers' antioxidant
defence systems or that are otherwise particularly
sensitive to oxidative stress. Below we give examples of a
wide array of sexual ornaments that may be particularly
sensitive to oxidative damage.

(a) The songbird's song and neurogenesis in the adult
brain

The vertebrate brain consumes a disproportionate
amount of the body's oxygen (Coyle & Puttfarcken 1993)
and several enzymes expressed in the brain produce free
radicals (Olanow 1993). The brain also contains large
amounts of polyunsaturated fatty acids, which are
particularly vulnerable to free radicals (Coyle & Putt-
farcken 1993). Accordingly, free radicals seem to
contribute to several neurodegenerative disorders in
humans, including Parkinson's disease and Alzheimer's
disease (Coyle & Puttfarcken 1993; Olanow 1993).
In the brains of adult songbirds, neurons continue to be

produced and integrated into the high vocal centre
(HVC), which is involved in the control of learned
vocalization (Alvarez-Buylla 1992; DeVoogd et al. 1993).
In the genus Acrocephalus a large song repertoire seems to
be important for female mate choice, like secondary
ornaments in other bird species (Catchpole 1986). Female
great reed warblers (Acrocephalus arundinaceus) rarely seek
extrapair copulations (Hasselquist et al. 1995) but when
they do so they prefer to mate with a neighbouring male
with a song repertoire larger than that of the pair male
(Hasselquist et al. 1996). Relative post£edging survival, in
terms of o¡spring returning from the overwintering areas
in Africa to their natal area in Sweden, is positively
correlated with the genetic fathers' song repertoire size
even when the e¡ects of male age and paternal care are
controlled for (Hasselquist et al. 1996).

The size of a bird's song repertoire correlates with the
volume of the HVC (Nottebohm 1981; Kroodsma &
Canady 1985; DeVoogd et al. 1993) and with develop-
mental stress (Nowicki et al. 1998). There is a seasonal
plasticity in both the size of the HVC and the rate at
which new neurons are incorporated into the HVC
(Nottebohm 1981; Alvarez-Buylla 1992). In a number of
bird species, the volume of the HVC is up to 70% larger
in breeding than in non-breeding individuals (Nottebohm
1981; Brenowitz et al. 1991).

Recent data indicate that free radicals have negative
e¡ects on neurogenesis in the developing brain (Saito et
al. 1997). Neurogenesis also occurs in the hippocampus of
adult rodents and birds (Altman & Das 1965; Barnea &
Nottebohm 1994) and there is an increasing number of
experimental studies demonstrating the damaging e¡ects
of free radicals on the function of the hippocampus
(Sugaya et al. 1996; Behl et al. 1997; McIntosh et al. 1998;
Vornov et al. 1998), such as loss of neurons and impair-
ments in spatial learning and cognition (McEwen &
Sapolsky 1995).

The hippocampus is essential for spatial memory and
cognition (Sherry et al. 1992; Bingman & Jones 1994) and
its function may therefore be an important ¢tness compo-
nent, especially in food-storing and migratory animals.
In analogy to the HVC, both the volume and number of
neurons in the hippocampus vary seasonally in
accordance with food-storing behaviour (Barnea &
Nottebohm 1994; Smulders et al. 1995). In addition, food-
storing bird species have relatively larger volumes of
hippocampus, and more neurons as well, than non-
storing species (Healy & Krebs 1993), and in songbirds
the relative size of the hippocampus correlates with
migratory habits (Healy et al. 1996).
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Recent experimental work reveals that mice show dose-
dependent reductions in spatial learning in response to
intestinal parasite infections without any pathological
responses (Kavaliers et al. 1995). Age-induced impairment
in spatial learning is directly associated with oxidative
stress in the hippocampus of rats (Sugaya et al. 1996);
administration of antioxidants decreases free-radical
oxidation in the brain and improves spatial memory and
cognition in elderly rodents (Carney et al. 1991).

(b) The cock's comb
Comb size in male red jungle fowl (Gallus gallus) corre-

lates positively with female choice, condition and survival
(Zuk et al. 1990). The rooster's comb has by far the
highest concentration of hyaluronic acid (HA) known
(Laurent & Fraser 1992). HA is a straight-chain poly-
saccharide forming a highly viscous solution that a¡ects
the balancing homeostasis of water and plasma proteins
in the intercellular matrix (Laurent & Fraser 1992). The
depolymerization of HA is promoted by free radicals, in
particular OHÍ, which cause strand breakage and loss of
viscosity of HA molecules (Baker et al. 1989; Hawkins &
Davies 1996) at a dose-dependent rate (Deeble et al.
1990); these reactions are prevented by administration of
antioxidants (Kvam et al. 1993; Saari et al. 1993). Activated
phagocytes diminish the viscosity of HA in synovial £uid
and tissue through their generation of free radicals
(Grootveld et al. 1991; Saari et al. 1993); experimental data
show that the size and shape of the rooster's comb rapidly
deteriorate in response to infections (Zuk et al. 1990).

(c) Avian plumes and spurs
Male plumes in many bird species are perhaps the

most extravagant sexual ornaments in animals
(Andersson 1994; MÖller 1994). Avian feathers and spurs
consist of keratin polypeptides synthesized by epidermal
keratinocytes (Haake & Sawyer 1986). Experiments in
vitro have demonstrated that hydrogen peroxides inhibit
keratinocyte proliferation (O'Toole et al. 1996) and that
vitamin C promotes the proliferation of mammalian
keratinocytes (Saika et al. 1991). Overall, cutaneous
ageing, such as decreased turnover of epidermal cells, loss
of mature collagen and keratinocytes, and decreases in
hair and nail growth, is associated with increased genera-
tion of free radicals (Cerimele et al. 1990). Reduced
collagen synthesis, which is frequently associated with
aged skin and scurvy, can be reversed by treatment with
vitamin C (Hata et al. 1988).
In pheasants (Phasianus colchicus) male MHC genotype is

signi¢cantly associated with survival and with the length
of the tarsial spurs (von Schantz et al. 1996); experimental
data show that spur length a¡ects female choice (von
Schantz et al. 1989). Parasitic infections have a negative
e¡ect on the length of ornamental tail feathers in several
bird species (Zuk et al. 1990; MÖller 1994; Andersson 1994).
In particular, parasite load and viral infections during
moulting have marked negative e¡ects on both the length
of wing feathers and carotenoid pigmentation of
ornamental feathers (Thompson et al.1997).

(d) Carotenoids
In ¢shes and birds, males often display sexual signals

through reddish skin or plumage coloration. This

pigmentation usually consists of carotenoids; females
prefer males with more reddish coloration (Endler 1983;
Hill 1991; Milinski & Bakker 1990). In guppies (Poecilia
reticulata) and sticklebacks (Gasterosteus aculeatus) redder
males are in better condition (Milinski & Bakker 1990;
Nicoletto 1993) and less parasitized (Milinski & Bakker
1990) and the red coloration is particularly sensitive to
parasitic infections (Houde & Torio 1992). Carotenoids
seem to be essential to juvenile Atlantic salmon (Salmo salar)
during their ¢rst feeding period (Christiansen et al. 1995).
Experimental sib-group analyses on Atlantic salmon,
controlling for the e¡ects of food quality, reveal signi¢cant
genetic e¡ects on the variation in tissue content of carote-
noids (Torrissen & Naevdal 1988).

The physiological mechanisms that relate male condi-
tion to carotenoid pigmentation and to what extent this
correlation is governed by intrinsic or extrinsic factors are
controversial issues among evolutionary biologists
(Thompson et al. 1997). The main hypothesis to explain
the proximate basis for the condition-dependence of caro-
tenoids has been that males with more carotenoid
pigmentation are better foragers and therefore more
viable (Endler 1980; Hill 1992) but this ignores the caro-
tenoids' function as antioxidants (Burton & Ingold 1984;
Lozano 1994) and their depletion in response to oxidative
stress (Andersson & Theron 1990; Frei et al. 1992).

6. CONCLUSION

An organism's ability to combat pathogens is highly
dependent on the immune system's ability to ¢nd the
right target and at the same time avoid damage to itself
(RÔberg et al. 1998). On the other hand, the pathogens'
ability to survive and proliferate depends on their ability
to escape recognition and to exploit the immune system's
regulatory mechanisms. In the course of evolution,
selection has moulded several di¡erent strategies in the
ongoing dynamic battle between pathogens and their
hosts and between plants and their herbivores. Genetic
resistance does not necessarily result in parasite-free or
completely detoxicated individuals, but can be manifested
as high tolerance to common parasites (Skarstein &
Folstad 1996; Zinkernagel 1996) or foreign compounds
(Gregus & Klaassen 1996; Kalow 1997; Roy & Wirgin
1997).

The defence systems governed by the polymorphic
gene complexes discussed here generate free radicals to a
degree that is modulated by tolerance and resistance to
exposure. Even if the genetic di¡erences are small,
tolerant individuals probably generate fewer reactive
metabolites and free radicals than individuals with less
genetic resistance or tolerance. For example, by selecting
the male with the largest song repertoire among several
other seemingly healthy males, the female warbler may
maximize the chances that she will pass on alleles to her
o¡spring that improve ¢tness-related functions, such as
spatial memory, that are negatively a¡ected by elevated
levels of oxidative stress.

We point to several cases where male ornaments
favoured by female choice seem to be particularly suscep-
tible to oxidative stress. It is certain that the free-radical-
generating defence systems reviewed here are not the only
factors a¡ecting the condition-dependent expression of
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secondary ornaments. For example, glucocorticoids and
sex hormones can interact with the biotransformation
(Prough et al. 1996) and immune (Folstad & Karter 1992;
Besedovsky & del Rey 1996; RÔberg et al. 1998) systems,
and thereby a¡ect the production of free radicals as well
as directly a¡ecting the expression of ornaments (Johns
1964; Marler et al. 1988). In the immunocompetence-
handicap hypothesis, Folstad & Karter (1992) suggested
that steroid hormones function as mediators of honest
sexual signalling, because high steroid hormone levels
confer costs through suppressive e¡ects on the immune
system. Such a trade-o¡ may be modulated by oxidative
stress: glucocorticoids, testosterone and progesterone are
known to impair the enzymic antioxidant defences or
directly induce oxidative stress in various tissues (see, for
example, Behl et al. 1997; Chainy et al. 1997; Zhu et al.
1997; McIntosh et al. 1998). Hence, in addition to the
immune and biotransformation systems there are other
physiological mechanisms, controlled by less variable
genes, which add to the overall load of reactive metabo-
lites. Given that the allelic variants of the immune and
biotransformation multilocus systems (table 1), in
dynamic interactions (Kirzhner et al. 1996) with patho-
gens and xenobiotics, additively generate oxidative stress
to a level that relates to the individual's overall genetic
resistance or tolerance to exposure (¢gure 1), then female
mate choice can enhance o¡spring ¢tness (Eshel &
Hamilton 1984; Hamilton et al. 1990).
In many cases it has been shown that ornaments

disclose the bearer's health and condition (see, for
example, von Schantz et al. 1989; Milinski & Bakker 1990;
Zuk et al. 1990; Hill 1991; Houde & Torio 1992; Nicoletto
1993; Andersson 1994; MÖller 1994; Thompson et al.
1997), and it is now time to experimentally study the
physiological mechanisms a¡ecting the expression of
these ornaments. To separate the e¡ects of oxidative stress
on the expression of sexual ornaments from the e¡ects of
energy reallocation calls for experiments at which the level
of oxidative stress can be manipulated while controlling for
other means of physiological stress, such as workload or
exposure to pathogens. Increased oxygen pressure (hyper-
oxia) and exposure to hydrogen peroxide below patho-
logical levels have previously been used to induce oxidative
stress both in vivo and in vitro (Orr & Sohal 1992; Auerbach
& Segal 1997). Such experiments and experimental
infections of pathogens in combination with treatment of
various antioxidants may shed light on the causal links
between sexual ornaments and individual ¢tness.
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