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Human functional brain imaging detects blood £ow changes that are thought to re£ect the activity of
neuronal populations and, thus, the responses of neurons that carry behaviourally relevant information.
Since this relationship is poorly understood, we explored the link between the activity of single neurons
and their neuronal population. The functional imaging results were in good agreement with levels of
population activation predicted from the known e¡ects of sensory stimulation, learning and attention on
single cortical neurons. However, the nature of the relationship between population activation and single
neuron ¢ring was very surprising. Population activation was strongly in£uenced by those neurons ¢ring
at low rates and so was very sensitive to the baseline or `spontaneous' ¢ring rate. When neural
representations were sparse and neurons were tuned to several stimulus dimensions, population activation
was hardly in£uenced by the few neurons whose ¢ring was most strongly modulated by the task or
stimulus. Measures of population activation could miss changes in information processing given
simultaneous changes in neurons' baseline ¢ring, response modulation or tuning width. Factors that can
modulate baseline ¢ring, such as attention, may have a particularly large in£uence on population
activation. The results have implications for the interpretation of functional imaging signals and for cross-
calibration between di¡erent methods for measuring neuronal activity.
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1. INTRODUCTION

Human functional imaging explores the brain by
correlating local blood £ow with particular tasks, stimuli
or behavioural states (Petersen et al. 1988; Tootell et al.
1995; Frith & Friston 1997). The small blood £ow changes
that imaging detects are important because they are
presumed to follow from changes in the activity of the
populations of neurons responsible for the functions in
question (Petersen et al. 1988; Tootell et al. 1995; Malonek
& Grinvald 1996; Frith & Friston 1997). However, the links
between the behaviourally relevant information carried by
neurons (Georgopoulos et al. 1986; Newsome et al. 1989;
Britten et al. 1992), total activity in the neuronal popula-
tion, neuronal metabolic rate and changes in local cerebral
blood £ow are unclear (Boynton et al. 1996; Malonek &
Grinvald 1996; Poeppel 1996; Friston 1997; Poirson et al.
1997). This paper explores one of these links, the relation-
ship between the response properties of single neurons and
summed activity in the neuronal population.
Formal models have clari¢ed the relationship between

cellular- and ensemble-level behaviour in a number of
areas of neuroscience (e.g. Knight 1972; Kristan & Shaw
1997). We believe that similar formalization is necessary
to help clarify the relationship between single cell and
population activity. First, from the tuning properties of
cortical neurons, we were not sure whether some stimuli
that give increased haemodynamic signals in functional
imaging experiments will necessarily cause a net increase

in the activity of the neuronal population. Second, several
aspects of neuronal tuning, including peak ¢ring rate,
tuning width and baseline ¢ring rate, vary with task and
stimulus. It is not clear how these will interact to
in£uence population activation. This is illustrated with
data recorded from neurons in cortical area MT (data
provided by W. Newsome) while awake behaving
macaques performed a motion discrimination task
(Newsome et al. 1989; Britten et al. 1992). The data provide
an example of an interaction between peak and baseline
¢ring, which could make a functional change invisible to
measures of population activity. Third, we were surprised
by the small e¡ect of visual stimulation on the mean
¢ring rate of visually responsive neurons recorded in the
inferotemporal (IT) cortex of awake macaques (Baddeley
et al. 1997). When animals viewed a blank screen the
mean ¢ring rate was 14Hz, which increased to only 18Hz
when the animals viewed ¢lms. This e¡ect is modest and
is comparable with shifts in the mean ¢ring rate that are
caused by attentional changes without any change in
sensory stimulation in some cortical areas (e.g. Treue &
Maunsell 1996). In the absence of visual stimulation,
increased attention raises the mean ¢ring rate of neurons
in macaque areaV4 from 10 to 13Hz (Luck et al. 1997).

The rest of this paper considers ¢rst, the relationship
between the mean local neuronal ¢ring rate and imaging
signals; second, real electrophysiological data to highlight
possible problems in interpreting imaging signals; and
third, a formal model to explore the relationship between
the behaviour of neurons and the activity of the popula-
tion that they compose.
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2. METHODS AND RESULTS

(a) Population activity and functional imaging signals
In common with other recent work (Tagamets & Horwitz

1998), we suppose a linear relationship between the magnitude
of the imaging signal and the number of spikes ¢red in the local
neuronal population within the volumes that are resolved in
most human imaging experiments (Grinvald et al. 1994;
Malonek & Grinvald 1996; Engel et al. 1997). We think that this
simple approach agrees with widely held assumptions in func-
tional imaging (Boynton et al. 1996; Tagamets & Horvitz 1998).
First, most of the metabolic cost of neural transmission is
incurred at synapses (Yarowsky et al. 1983). Second, there is an
approximately linear relationship between the ¢ring rate of
neurons and metabolic activity at their synapses (Kadekaro et
al. 1987). Third, approximately 90% of synapses in the cortex
are local. The vast majority of both excitatory and inhibitory
nerve terminals in any cortical area originate in nearby cells
(Peters et al. 1994; Douglas et al. 1995; Somers et al. 1995). There-
fore, the metabolic cost of synaptic activity is usually the
consequence of a spike in a nearby neuron. Fourth, extrinsic
thalamocortical and corticocortical connections are excitatory
(Crick & Asamuma 1986). Fifth, both empirical and theoretical
studies suggest that cortical neurons exist in a `high-input
regime' with a local balance between excitatory and inhibitory
neuronal activity (e.g. Somers et al. 1995; Shadlen & Newsome
1998; Tagamets & Horvitz 1998; Van Vreeswijk & Sompolinsky
1998). Strong intrinsic connections mean that substantial
mismatches between extrinsic drive and intrinsic activity are
short lived, local excitatory and inhibitory populations closely
track each others' activity and the population response to
extrinsic drive is linearized (Shadlen & Newsome 1998;
Tagamets & Horwitz 1998; VanVreeswijk & Sompolinsky 1998).
Therefore, it is unlikely that a substantial volume of cortex
could sustain a high level of inhibitory activity, producing a
simultaneously low spiking rate and high metabolic rate
(Raichle 1998), although this may occur to a limited extent at
the level of the cortical column (Somers et al. 1995). For these
reasons, we expect the sum of spikes in the population to be
closely re£ected in local synaptic activity (Arieli et al. 1995,
1996) and metabolic rate (Yarowsky et al. 1983).

(b) Population activity in area MT
Area MT neurons are highly selective to the direction of

motion within their receptive ¢elds (Zeki 1974; Albright 1984)
and carry behaviourally important motion signals (Newsome et
al. 1989; Britten et al. 1992). To examine the e¡ect of motion
signals on the mean ¢ring rate in a population of MT (data
from W. Newsome) neurons, we used single neuron data that
were recorded in awake monkeys that judged the direction of
motion of attended random dot kinetograms. The population
corresponded to a direction hypercolumn, a local area of
cortex across which all preferred directions of motion are
represented once. These data provide a direct example of a
major functional change that had very little e¡ect on the mean
¢ring rate of a neuronal population.

The mean ¢ring rate in the hypercolumn was calculated
from the ¢ring rates of a large number of neurons recorded in
two stimulus conditions in three di¡erent animals (see the
caption to ¢gure 1). In the ¢rst condition, neurons were shown
patterns of coherently drifting dots, a strong visual motion
stimulus, moving either in their preferred direction or at 1808 to
it. The mean ¢ring rate across the hypercolumn was then
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Figure 1. (a) Neuronal responses across anMT direction
hypercolumn. The dotted and dashed line shows the mean
¢ring rates of MT neurons with di¡erent direction preferences
to a strong motion signal, a 100% coherent random dot
kinetogram moving at 08 (Newsome et al. 1989; Britten et al.
1992). Parameter b1 is the baseline ¢ring rate,m1 is the degree of
response modulation and sn is the standard deviation of
neuronal direction tuning. We estimated the mean ¢ring rate to
coherent motion across the hypercolumn by ¢tting a Gaussian
tuning curve with a peak of b1 +m1, a minimum of b1 and
standard deviation sn , using a mean tuning bandwidth for MT
neurons of 848 (Albright 1984). The dashed line shows the
mean ¢ring rates of neurons to an equivalent stimulus with no
overall direction of motion, a 0% coherent random dot
kinetogram. Here, b2 is the baseline ¢ring rate andm2, the
degree of response modulation, is zero. For this stimulus
condition, the mean ¢ring rate across the hypercolumn was
simply b2. The areas under the dashed and the dotted and
dashed lines are similar, indicating a similar mean ¢ring rate
across the hypercolumn in the two conditions. (b) The mean
¢ring rate across the MT population can remain constant
despite marked changes in information processing. The grey
scale represents the mean ¢ring rate (in Hz) across the
hypercolumn and was computed from the Gaussian neuronal
response curve. The axes show the mean response modulationm
( y-axis) and mean baseline ¢ring rate b (x-axis). Parametersm
and bwere the mean peak and baseline ¢ring rates of large
numbers of single neurons recorded in area MT in three
animals under the same two stimulus conditions outlined in (a);
100% coherent kinetograms (M+ ) and 0% coherent kineto-
grams (M7). For each individual animal (e, j and w), the lines
link points showing the response modulationm, baseline ¢ring
rate b and mean ¢ring rate within the hypercolumn in the M+
andM7 stimulus conditions. AlthoughMT neurons show
unambiguous directional responses in theM+ condition and
no directional tuning in theM7 condition, there is either a
very slight reduction (animal e) or a very slight increase
(animal j) in the mean population ¢ring rate fromM+ toM7.
This is because the reduction in response modulation is
balanced by an increase in baseline.



computed from the known tuning properties of MT neurons
(Albright 1984). In the second condition, neurons were shown
dynamic twinkling dots, which lack coherent motion (¢gure 1a).
Figure 1b shows that a reduction in response modulation
between the coherent motion (M+ ) and non-coherent motion
(M7) conditions may be balanced by an increase in the
baseline ¢ring rate. This shows how an unequivocal di¡erence
in information processing in a neuronal population can be
accompanied by small and individually variable di¡erences in
the mean ¢ring rate. In fact, this analysis is likely to under-
estimate the e¡ect of baseline shifts (see below) and overestimate
the e¡ect of changes in response modulation as it assumes MT
neurons are tuned to a single stimulus dimension, direction of
motion. In this case, stimulus speed and location were also
adjusted to suit each neuron (Britten et al. 1992).

(c) Model of population activity and single neuron
tuning

We extended the reasoning applied to electrophysiological
data from area MT to explore systematically the relationship
between the response properties of single neurons, the total
number of spikes ¢red by neurons in the population and the
magnitude of the imaging signal. Our model (described in
detail below) was as simple as was consistent with an excellent
¢t of the experimental data. Five parameters represent the
activity of the single neurons: d is the number of stimulus
dimensions to which neurons are tuned, x is the single neurons'
preferred stimulus vector, sn is the single neuron tuning width
relative to the range of neuronal preferences in the population
that generates the imaging signal, m is the di¡erence in neuronal
response probability between best and worst stimulus and b is
the baseline neuronal response probability (¢gure 1a).

These parameters capture major aspects of single neuron
tuning. Real neurons are tuned to several stimulus dimensions,
including azimuth, elevation, orientation and direction and
speed of motion in the case of MT (Albright 1984). Real
neuronal preferences vary across the population and can change
substantially with attention (Maunsell & Ferrera 1995; Connor
et al. 1997) and learning (Miyashita 1988; Sakai & Miyashita
1991; Sobotka & Ringo 1993). The stimulus-dependent modula-
tion of single neuron ¢ring (m) can vary with stimulus intensity
(e.g. contrast of visual stimuli), stimulus characteristics (Albright
1984), attention (Motter 1993, 1994; Treue & Maunsell 1996;
Connor et al. 1997; Luck et al. 1997) and, possibly, learning
(Miyashita 1988; Sakai & Miyashita 1991; Fahy et al. 1993;
Sobotka & Ringo 1993). The neuronal tuning width relative to
the range of preferences of neurons contributing to the imaging
signal (sn) can vary with stimulus characteristics (Albright 1984),
learning (Miyashita 1988; Sakai & Miyashita 1991; Sobotka &
Ringo 1993) and imaging method. Baseline ¢ring (b) is very
sensitive to attention in some cortical areas (Treue & Maunsell
1996; Luck et al. 1997), can vary with stimulus type (Albright
1984; Newsome et al. 1989; Britten et al. 1992) and may be modu-
lated by other factors such as arousal, cognitive load or learning.

Our model consists of a large population of neurons within a
voxel of cortex.The population's instantaneous neuroimaging signal
is the sum of activity of all the neurons in the voxel, givenbyA,

A �
Z

p(r)dV . (1)

Here, p(r) is the instantaneous probability of a spike per neuron
(proportional to the mean ¢ring rate in the population) and the
integral is over all neurons in the imaging voxel. The discharge

probability p(r) can be expressed in terms of the response prob-
ability (p(rjx)) of a neuron ¢ring a spike given that the neuron's
optimum stimulus is x and the probability p(x) that a neuron
sampled at random in the voxel has an optimum stimulus of x
(¢gure 2a,b),

p(r) �
Z

p(r jx)p(x)dx. (2)

The term p(r) is calculated by integrating over all stimulus
preferences (the area under the solid line in ¢gure 2c). The ¢rst
term of the integral, p(r jx), corresponds to the neurons' recep-
tive ¢eld (¢gure 2a). In our model, this is characterized by a
multivariate Gaussian distribution with standard deviation sn,
where xs is the presented stimulus itself (¢gure 2a),
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Figure 2. The activation model. In the example here, cells are
tuned to a single stimulus dimension within a voxel in which
neuronal preferences are centred on the presented stimulus,
xp� xs� 0. (a) The single neuron response probability p(r jx)
varies with the neuronal preference x. Parameter sn, in this
case 0.25, is the standard deviation of the neuronal tuning
curve, b represents the neurons' baseline response probability
and m represents the di¡erence in response probability
between most and least active neurons (equation (3)).
(b) p(x), the relative frequency of neurons with di¡erent
preferences within the voxel (equation (4)). The standard
deviation of neuronal preferences within the voxel is sp, which
we set to one. The single unit tuning sn, is thus the ratio of the
tuning width of single cells to the range of preferences within
the voxel. For most of our analyses sn� 0.25, so sp can be
regarded as less than one direction hypercolumn in area MT
(Albright 1984) or less than one orientation hypercolumn in
area V1 (Somers et al. 1995). This ratio of single neuron
tuning width to voxel size is higher than is resolved in most
human functional imaging experiments, but is lower than the
resolution of mapping signals in optical imaging. (c) The solid
line shows p(r jx)p(x), the contribution of di¡erent components
of the population to p(r), the instantaneous probability of a
spike per neuron, which corresponds to the area under the solid
line (equation (2)). Here, p(r jx)p(x) is the product of the single
neuron response probability p(r jx) (dashed line) and the
relative frequency of single neurons with di¡erent preferences
p(x) (dotted line) within the voxel.



p(r jx) � b� meÿ(xÿx
2
s )=2

2
n . (3)

Similarly, the probability that any neuron sampled at random
from the population has a stimulus of preference x is a multi-
variate Gaussian with standard deviation sp (¢gure 2b). This
term describes the distribution of neuronal preferences in the
population that contributes to the imaging signal,

p(x) � eÿ(xÿx
2
p )=2s

2
p . (4)

Equation (4) embodies the topography of functional speciali-
zation of any neuronal population, as stimulus preferences are less
likely to be found in a given voxel if they depart substantially from
the voxel's central preference xp. From the point of view of our
enquiry, the critical determinant of responses is the tuning width
of single neurons relative to the population.Therefore, we assume
that sp is unity so sn becomes the ratio of single neuron tuning
width to the range of neuronal preferences within the voxel.

In neuroimaging, the maximal responses in an area are gener-
ally considered. One can therefore assume that, in these voxels, xs
and xp are the same. This lets us reformulate equations (2)^(4) in
terms ofD, the distance between a neuron's stimulus preference in
feature space and the voxel's central stimulus preference where
D � jxÿ xpj � jxÿ xsj. Under these assumptions,

p(r) �
Z
D
p(r jD)p(D)dD (5)

where p(r jD) � b� meÿD
2=2s2n , p(D) � (SdDdÿ1=2)eÿD

2=2s2p and Sd
is the surface area of a unit sphere in a d-dimensional space.

The results of our model do not depend on the precise nature
of the neuronal tuning curve, nor on the precise distribution of
preferences within the voxel. We have explored other plausible
non-Gaussian tuning curves and distributions of neuronal
preference, with very similar results.

(d) Results of the activation model
Changes in single neuron tuning width, response modulation

and baseline ¢ring all in£uenced activity in the voxel in a way
that depended on the number of stimulus dimensions to which
neurons were tuned (¢gure 3). Changes in response modulation
and tuning width mainly in£uence the signal from neurons
whose preferences lie close to the presented stimulus. Changes in
baseline ¢ring a¡ect all neurons, including neurons with
preferences a long way from the presented stimulus. When
neurons are tuned to more stimulus dimensions, simple geo-
metrical considerations reduce the proportion of neurons whose
preference lies close to the presented stimulus. This reduces the
impact of response modulation and tuning width but greatly
ampli¢es the impact of baseline on imaging signal.

Figure 4 shows how the total population activity A varies with
baseline, response modulation, tuning width and the number of
stimulus dimensions to which neurons are tuned. First, in line
with the MT example (¢gure 1), simultaneous changes in
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Figure 3. Variations in response modulation, baseline ¢ring and neuronal tuning width in£uence the imaging signal. The vertical
axis represents p(r jx)p(x), the contribution of di¡erent components of the population to p(r), the instantaneous neuronal response
probability. Both p(r) and the imaging signal A are proportional to the area under each curve. The horizontal axis representsD, the
absolute di¡erence between neuronal preference and both the central preference of the voxel and the presented stimulus (see text).
The e¡ects of response modulation, baseline ¢ring and neuronal tuning width depend strongly on the number of stimulus dimensions
to which neurons are tuned. The top, middle and bottom rows of plots show populations tuned to d� 1, d� 2 and d� 3 stimulus
dimensions. The solid line is comparable across all plots and was computed with response modulation m� 60Hz, baseline b� 10Hz
and tuning width sn� 0.25. In all plots, b� 10Hz, m� 60Hz and t� 0.25 unless stated otherwise. (a), (d ) and (g) Graphs computed
with tuning widths sn� 0.15 (dashed line), 0.25 (solid line) and 0.35 (dotted line). (b), (e) and (h) Graphs computed with baselines
b� 5 (dashed line), 10 (solid line) and 15 (dotted line)Hz. (c), ( f ) and (i) Graphs computed with response modulations m� 20
(dashed line), 60 (solid line) and 100 (dotted line)Hz. Changes in response modulation, baseline and tuning width all in£uence the
imaging signal. However, when neurons are tuned to more stimulus dimensions, a smaller proportion of neurons will be driven at
high rates by any given stimulus. Therefore, small changes in baseline ¢ring (h) can have a much greater impact than large changes
in response modulation (g) or tuning width (i) on population activity (proportional to the area under the curve).



di¡erent tuning parameters may balance out, giving no net
change in population activity despite marked changes in
information processing. This is shown by the `isoactivity
contours' in ¢gure 4, where di¡erent combinations of tuning
parameters give identical activation levels. Second, changes in
response modulation, the component of neuronal activity often
thought to convey the most stimulus-related information, are
likely to be hard to detect if neurons are tuned to several
stimulus dimensions and/or neuronal tuning is narrow. Third,
changes in baseline ¢ring are likely to be highly detectable,
particularly when neurons are tuned to several stimulus
dimensions. Fourth, changes in tuning width can have a major
impact on population activity, particularly when neurons are
tuned to several stimulus dimensions.

3. DISCUSSION

Consideration of data from cortical area MT and
evidence from our model suggests that population
activation cannot distinguish between contributions from
response modulation, tuning width, baseline ¢ring and
stimulus. Simultaneous changes in these variables can
render functional changes `invisible'. Baseline shifts are
likely to be highly detectable relative to changes in
response modulation, particularly when neurons are
tuned to several stimulus dimensions. If the widely held
assumption that imaging signals are closely related to
the massed activity of the population of neurons within
the voxel is true (Boynton et al. 1996; Tagamets &
Horwitz 1998), then these results have important
implications.

First, it is possible that many functional imaging signals
are dominated by changes in attention and not directly by
changes in task or stimulus, even in experiments that are
not primarily concerned with attention. Psychophysical
data show that attentional resolution is orders of magni-
tude coarser than the corresponding sensory resolution
(He et al. 1997). Electrophysiology shows that the neurons'
attentional modulation is far less selective than the
neurons' sensory tuning (Motter 1993; Luck et al. 1997).We
suppose that this arrangement prevents the attentional
¢lter from setting too strict criteria for stimuli whose
precise characteristics are uncertain before their arrival. If
the neurons'attentional tuning is indeed broader than their
sensory tuning, attentional changes will in£uence the
baseline ¢ring of relatively many cells, but the response
modulation of relatively few cells. This may explain why
attention is a limited resource and why attentional changes
can produce strong signals in functional imaging experi-
ments (e.g. Corbetta et al. 1991; Woldor¡ et al. 1997). In
addition, as Luck et al. (1997) pointed out, stimulus-depen-
dent activation is often transitory, lasting a couple of
hundred milliseconds, while attention can increase base-
line and response modulation for long periods. Such
sustained changes will be even more important than our
model suggests when measures of population activation
have a temporal resolution longer than the transitory
stimulus-driven component of the neuronal response. This
is probably the case in human functional imaging where
acquisition times are typically several seconds. Therefore,
it is particularly important for functional imaging experi-
ments to recognize and explicitly control for factors that
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Figure 4. (a) d � 1, (b) d � 2, (c) d � 3, (d) d � 1, (e) d � 2, ( f ) d � 3: Activation (A) varies with baseline activity, response
modulation, tuning and the number of dimensions to which neurons are tuned. The level of activation A is shown by the grey scale,
with lighter shades indicating higher activation. Parameters m and b are expressed in units of the mean ¢ring rate and cover physio-
logical ranges. Figure 4a^c shows the e¡ects of varying response modulation, m, and baseline ¢ring, b, on population activation, A,
when neurons are tuned to (a) one, (b) two and (c) three dimensions. The tuning width was sn� 0.25. Response modulation and
baseline changes have additive e¡ects on population activation, so simultaneous shifts in these parameters can make functional
changes `invisible'. However, when neurons are tuned to several stimulus dimensions (c) small baseline shifts may outweigh large
changes in response modulation. Figure 4d^f shows the e¡ects of varying response modulation, m, and tuning width, sn, on popula-
tion activation, A, when neurons are tuned to (d ) one, (e) two and ( f ) three dimensions. Changes in the ratio of the tuning width to
the range of preferences in the voxel can have a marked e¡ect on population activation. Figure shows `isoactivity contours', regions
where di¡erent combinations of tuning width, baseline and response modulation produce identical activity levels.



modulate baseline ¢ring, such as attention (and possibly
arousal and cognitive load).

Second, learning is accompanied by a reduction in
signal in functional imaging (Raichle et al. 1994; Jueptner
et al. 1997) and by increased sparsity in the neural code
(Miyashita 1988; Sakai & Miyashita 1991). Since
increasing the tightness of tuning reduces the total popu-
lation activation (¢gure 3), the decline in neuroimaging
signal with learning may re£ect learning-dependent
improvements in neural coding e¤ciency (Foldiak 1990;
Barlow 1994). Unfamiliar tasks or stimuli may evoke
more easily detectable functional imaging signals.
Third, population activation measures are more likely

to detect stimulus-driven responses and changes in
response modulation by using high-resolution methods to
focus on small volumes in which neurons have very
similar tuning properties and by exploiting stimulus
dimensions that are mapped locally across the cortical
sheet. This reduces the e¡ective tuning width and dimen-
sionality of the local neuronal representation. Di¡erential
intrinsic optical signals, for example, can resolve cortical
columns in which many neurons are simultaneously
activated by a single stimulus (Malonek & Grinvald
1996), thus e¡ectively sampling from the most active
components of the population distribution.

Fourth, parametric imaging experiments are much less
likely to miss functional changes than simple c̀ognitive
subtractions' (Friston et al.1996). For example, a parametric
experiment is unlikely to obtain responses that all run along
an `isoactivation contour' (¢gure 4; see Friston 1997). At
present, however, even factorial designs cannot completely
overcome the interactions between tuning width, baseline
¢ring and response modulation because these parameters
cannot be manipulated independently. Stimulus character-
istics may simultaneously in£uence response modulation,
tuning width or baseline ¢ring (Albright 1984; Britten et al.
1992). Attention may simultaneously in£uence response
modulation, neuronal preference, tuning width or baseline
¢ring (Maunsell & Ferrera 1995; Treue & Maunsell 1996;
Luck et al. 1997). Learning may also simultaneously shift
neuronal preference, tuning width and response modula-
tion (Miyashita 1988; Sakai & Miyashita 1991; Fahy et al.
1993; Sobotka & Ringo 1993). Hence, the possible ambigu-
ities we identify may be minimized by good design in
imaging experiments, particularly by careful control of
attention, but cannot at present be resolved entirely.

Our results suggest that functional imaging may focus
on the many neurons whose ¢ring rates vary a little since
changes in these cells cause the largest changes in popula-
tion activation. In contrast, conventional single unit
electrophysiology has focused on the few neurons whose
¢ring rates vary greatly. Recently, single unit studies have
taken more interest in the functional role of the low ¢ring
rates that most neurons have for most of the time (e.g.
Baddeley et al. 1997; Rolls et al.1997; Gallant et al.1998). For
example, Rolls et al. (1997) found that most of the inform-
ation carried about a limited set of visual objects by ITcells
is carried by neurons with low ¢ring rates. This is because
fast-¢ring neurons, although capable of transmitting large
amounts of stimulus-related information, always constitute
a small minority of the total population.

We have developed a simple model, based on single cell
tuning curves, that accounts for a wide range of results in

functional imaging. The novelty of the model resides in
the fact that the relationship between single cell and
population activity is not the one that is generally
supposed. In some cortical areas, baseline shifts, rather
than response modulation, may dominate imaging
signals. Whatever the relationship between functional
imaging and population activation, imaging in humans
currently presents a problem of two unknowns: the
relation between the signals and underlying neuronal
population dynamics is poorly understood and strikingly
little is known of the details of human brain neuro-
anatomy and neurophysiology (Crick & Jones 1993). It is
therefore vital that the relationship between functional
neuroimaging and neuronal population dynamics is
clari¢ed by animal studies in which established neuro-
physiological techniques run in parallel with imaging
methods (e.g. Logothetis et al. 1998).

We are grateful to Bill Newsome for MT data and to Karl
Friston, Gary Green, ShigeruYamane, Bruce Cumming, Roland
Baddeley and Frank Sengpiel for helpful comments. This study
was supported by theWellcomeTrust.
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