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Cooperation is fundamental to many biological systems. A common metaphor for studying the evolution
of cooperation is the Prisoner’s Dilemma, a game with two strategies: cooperate or defect. However,
cooperation is rarely all or nothing, and its evolution probably involves the gradual extension of initially
modest degrees of assistance. The inability of the Prisoner’s Dilemma to capture this basic aspect limits its
use for understanding the evolutionary origins of cooperation. Here we consider a framework for
cooperation based on the concept of investment: an act which is costly, but which benefits other
individuals, where the cost and benefit depend on the level of investment made. In the resulting
Continuous Prisoner’s Dilemma the essential problem of cooperation remains: in the absence of any
additional structure non-zero levels of investment cannot evolve. However, if investments are considered
in a spatially structured context, selfish individuals who make arbitrarily low investments can be invaded
by higher-investing mutants. This results in the mean level of investment evolving to significant levels,
where it is maintained indefinitely. This approach provides a natural solution to the fundamental problem
of how cooperation gradually increases from a non-cooperative state.
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1. INTRODUCTION

Obtaining a  satisfactory  understanding of the
evolutionary origin and stability of altruism or coopera-
tion is an enduring problem in evolutionary biology.
Cooperation seems to have played a fundamental role in
many of the major transitions in evolution (Maynard
Smith & Szathmary 1995), as well as being essential to
the functioning of a large number of existing biological
systems (Hamilton 19644,b; Trivers 1971; Dugatkin 1997).
In the course of the history of life, cooperation appears to
have been crucial at many points. Thus, the earliest
replicating molecules may have cooperated to form larger
replicating entities capable of encoding more information
(Eigen & Schuster 1979; Michod 1983; Maynard Smith &
Szathmary 1995), and the integration of the once
free-living prokaryote ancestors of mitochondria and
chloroplasts into eukaryotic cells seems to have been a
cooperative phenomenon (Maynard Smith & Szathmary
1995). Also, the ancestors of the cells of multicellular
organisms were once free-living single-celled protists, and
the transition from single-celled to multicellular organ-
isms appears to have depended on cooperation between
ancestral cells (Buss 1987, Maynard Smith & Szathmary
1995). Finally, cooperation has also been essential for the
evolution of many social groups (Maynard Smith &
Szathmary 1995; Dugatkin 1997). Thus cooperation has
most probably played a key role in the origin of many
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biological systems and it continues to play a key role in
ensuring the stability of these systems.

However, the difficulty in explaining the evolutionary
origin and stability of cooperation is apparent: selfish indi-
viduals always have a higher fitness than cooperators since
they receive the benefits of cooperation without bearing
the costs. Therefore, in a world of non-cooperators, a
cooperative mutant would be eliminated by natural selec-
tion, and it is hard to see how cooperation could evolve in
the first place. Furthermore, even if cooperation had been
established by some means, one would not expect it to be
stable—selfish mutants could invade the population and
would then increase in frequency until the cooperators
had been eliminated. Thus, the essential theoretical
problem is to elucidate how cooperative behaviour can
originally evolve in a selfish world and how, thereafter, it
can be maintained against invasion by selfish individuals.

Most previous theoretical approaches to understanding
the evolution of cooperation among non-relatives are
based on reciprocal altruism and on the iterated
Prisoner’s Dilemma (Trivers 1971; Axelrod & Hamilton
1981). This approach assumes that individuals can adopt
complex strategies that take into account the past history
of their interactions with other individuals (e.g. Nowak &
Sigmund 1993, 1998; Roberts & Sherratt 1998). However,
many of the most fundamental instances of cooperation,
such as those cited above, involve very simple entities for
which such assumptions are often implausible. An alter-
native approach, initiated by Nowak & May (1992), is
based on a non-iterated Prisoner’s Dilemma played in a
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spatially structured population. In this model every
individual either cooperates or defects, and there are no
complex strategies involved. The realization that spatial
structure allows the maintenance of cooperation in the
absence of any strategic complexity represents an impor-
tant advance in the wunderstanding of cooperation.
However, most previous models using either the iterated or
the spatial Prisoner’s Dilemma considered the invasiveness
and stability of fully developed, highly cooperative
interactions, despite the fact that the gradual evolution of
cooperation from an initially selfish state represents a more
plausible evolutionary scenario. Thus, it is more natural to
consider a framework in which different degrees of
cooperation are possible (Mar & St Denis 1994; Doebeli &
Knowlton 1998; Roberts & Sherratt 1998; Wahl & Nowak
19994,b). Once variable levels of cooperation are consid-
ered it becomes possible to study the crucial issue of how
cooperation can evolve gradually from an initial state
consisting of non-cooperative entities. Two recent models
attempt to address this problem. Roberts & Sherratt
(1998) demonstrated that a ‘raise-the-stakes’ strategy in the
iterated Prisoner’s Dilemma both invades and is stable
against a number of other strategies. In this model the
extent of cooperation can increase during a given iterated
interaction between a pair of individuals, and the
frequency of this strategy can increase, but the strategy
itself 1s fixed and does not evolve. Doebeli & Knowlton
(1998) demonstrated that interspecific mutualism could
evolutionarily increase in extent and frequency for iterated
interspecific relationships that take place in spatially
structured populations. In the latter approach, strategies
yielding very low levels of cooperation could evolve
gradually to much more cooperative strategies, resulting in
a high degree of mutualism between pairs of interacting
individuals belonging to different species.

Here we introduce a new model of intraspecific coop-
eration, formulated in terms of the concept of investment,
which develops some of the ideas present in Doebeli &
Knowlton (1998). We will refer to the evolutionary game
that results from our formulation as the Continuous
Prisoner’s Dilemma. We show that intraspecific coopera-
tion ecasily evolves from very low levels in the Continuous
Prisoner’s Dilemma when the game is played in spatially
structured populations.

2. MODEL AND RESULTS

The simplest case for the Continuous Prisoner’s
Dilemma consists of two individuals, each making an
investment. An investment / has the following effects:
(1) the fitness of the investor is reduced by C(), where C
is some function of I (the cost of making the investment);
and (ii) the fitness of the beneficiary is increased by B([),
where B is another function of 7 (the benefit resulting
from the investment). Therefore, if two interacting indivi-
duals X and 1" make investments I; and I,, respectively,
the pay-off to X is S(1}, I,) =B(l,) —C([;) while the pay-
off to V'is S(y,1})) =B(l;) — C(l,). We assume that the cost
and benefit functions are such that for investments
between zero and an upper limit /.., B()>C({).
Possible functions for B(I) and C(I') are shown in figure 1.
This assumption 1s a necessary condition for cooperation
to evolve; otherwise, if every individual invests 7, the
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Figure 1. Possible benefit B(/) and cost C(/) functions.

In the simulations shown in this paper, we take B(/)
=By[l —exp(—B, )] and C(I) =C, I, with By=8, B =1
and C,=0.7. For all investments / between 0 and 7.,
B()>C(I). Iy = (1/B)) In (ByB,/(y) is the investment
maximizing B(I)—((I); for the parameters used here
Iy ~ 2.44.

fitness of every individual is lower if />0 than if /=0.
Moreover, for any positive investments [} </l, <Iy;, where
Iy 1s the investment that maximizes B(I) —C(I), we have
Sy, 1y) >SUy,Ly) > SU, L) > Sy, 1) Thus, restricting the
possible investments to only two values, /; (defect) and I,
(cooperate), results in the standard Prisoner’s Dilemma.
Therefore, the Continuous Prisoner’s Dilemma may be
viewed as a generalization of the standard Prisoner’s
Dilemma in which any level of investment can be made.
This aspect of the system mirrors the ability of biological
organisms to vary the degree to which they cooperate,
with total non-cooperation being one extreme.

The problem of the evolution of cooperation, formu-
lated in terms of investment, is to understand how signifi-
cant levels of investment can evolve from extremely low
initial levels. Since investments are costly, it is intuitively
clear, and can be shown formally by considering a
suitable adaptive dynamics, that a population consisting
of individuals making a positive investment can always be
invaded by mutants making a lower investment—a
process that results in the level of investment evolving to
zero. Thus, in the Continuous Prisoner’s Dilemma, an
increase in the level of investment cannot evolve without
some additional structure. Here we take the additional
structure to be spatial extension. This is a natural choice
as biological systems are spatially distributed. Moreover,
alternative structures, such as individuals adopting
complex strategies to deal with repeated interactions
between the same individuals, often depend on assump-
tions of the individuals’ cognitive abilities that are
nappropriate for simple cooperative entities. We intro-
duce spatial structure following the general approach of
spatial evolutionary game theory (Axelrod 1984; Nowak
& May 1992; Killingback & Doebeli 1996). Space is
represented by a lattice of cells (which, for convenience,
we will take here to be a two-dimensional square lattice).
Each lattice cell j is occupied by an individual who makes
an investment /. In each generation, every individual
interacts with a defined set of local neighbours (here
taken to be the eight immediately surrounding cells) and
the fitness of each individual is given by the sum of the
pay-offs it receives in its interactions with its neighbours.
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Figure 2. Change in the mean level of investment over time
for the cost and benefit functions shown in figure 1. The mean
investment per cell at time ¢, I(¢), evolves from very low initial
values to levels that are a significant fraction of Iy;. The
asymptotic value I is close to Iy = (1/B)) In (ByB, [4Cy)
=1n(8/2.8) ~ 1.05 (see text). The simulation was performed
on a 70 x 70 square lattice with periodic boundary conditions,
starting from an initial configuration with investment values
picked uniformly randomly from the range (0, 0.0001). The
mutation rate per cell was 0.01, and mutations were picked
from a normal distribution with mean equal to the investment
of the cell which was mutating and variance equal to 10% of
the mean.

At the start of the next generation the individual in each
cell adopts the strategy associated with the individual in
its local neighbourhood (including the cell itself) that has
the highest fitness. This corresponds to an evolutionary
scenario in which successful phenotypes replace less
successful ones. To study the evolution of cooperation, we
start this system from an initial configuration consisting
of extremely low levels of investment and allow occasional
mutations that change the level of investment associated
with a given cell.

The evolutionary dynamics of this system 1s shown in
figure 2 for typical benefit and cost functions. The mean
investment per cell increases from an extremely low
starting value, representing an initial situation in which
all individuals are selfish, to a much higher level, which is
a significant fraction of Iy, the investment that maxi-
mizes the mean fitness of the population. Once the mean
investment per cell reaches this higher level, it is main-
tained indefinitely close to this value by the dynamics of
the spatial system. While it may seem surprising that
investments can evolve from arbitrarily low values to
significant levels in such a simple system, the mechanisms
responsible for this are readily comprehensible.

The first mechanism depends on the fact that I-
obtain a mutual benefit from clustering.
Consider, for example, a cluster of I-investors immersed
in a sea of [-investors, where />1'. Let ¢ and j be two
neighbouring cells, occupied by [ and [’-investors, respec-
tively. If I has n neighbours who are I-investors and 8 —n
who are [’-investors, and if j has m neighbours who are
I-investors and 8—m [’-investors, then the necessary
condition for i to be able to take over ; 1is that
mn—m)B(I)—8C()>n—m)B{I') —8C('). Whether this
is also sufficient follows from applying similar arguments
to the other neighbours of ;. It follows from such

investors
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Figure 3. The ability of higher-investing mutations to invade
a world of lower investors is the fundamental process for the
evolution of /(¢). This process is shown here in a simulation of
the spatial theory on a 40 x 40 square lattice with periodic
boundary conditions. Higher investors are represented by
lighter shades. (a) The small local cluster (bottom centre-left
of the frame) that has been established by a higher-investing
mutant (see text). In (4) (nine generations later), and (¢) (24
generations later), this cluster grows through the mechanism
explained in the text, until it has taken over most cells, as
shown in (d) (61 generations later). The repeated functioning
of this process results in /(¢) evolving from arbitrarily low
values to levels that are a significant fraction of /.

considerations that in suitable circumstances, a cluster of
higher investors can expand in a sea of lower investors.
Thus clustering can result in the growth of geometrical
structures of higher-investing strategies once basic clusters
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Figure 4. The results of simulations showing the change of
I(t) with time for various random effects and spatial
irregularities. (@) Stochastic updating in which successful
neighbours take over a lattice site only with 80% probability,
otherwise the occupant is left unchanged. () Asynchronous
updating, in which cells are picked randomly and updated
independently. (¢) Deterministic updating on a random lattice
in which each cell can have a different number of neighbours
(this is obtained by deleting a randomly picked proportion of
cells in a square lattice). (d) Deterministic updating on a
regular lattice, but with 10% of the mutations in each
generation being in the range (0, 0.0001) of highly selfish
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of them have formed. The second mechanism relates to
how such basic clusters of more cooperative individuals
become established in the first place. Consider a situation
in which a given cell j, with associated investment I, has
higher fitness than some of its neighbouring cells. In this
case, in the next generation, the occupant of j may take
over these cells to form a cluster of I-investors. However,
if the strategy associated with j undergoes a mutation to a
higher-investing strategy I’ (where I'>1), then if I’ is
only slightly greater than [ it may be that the occupant of
J (now with the mutant strategy [’) still has a higher
fitness than some of its neighbours. In this case, a cluster
of I'-investors will be formed. It now follows from the first
mechanism that this cluster of higher-investing indivi-
duals may be able to expand in the sea of lower investors.
For any benefit and cost functions, satisfying the one basic
assumption stated above, the repeated operation of these
two mechanisms will drive up investments from arbitra-
rily low values to levels that are a significant fraction of
Iy. The process of a higher-investing mutant forming a
basic cluster of higher investors, and the subsequent
expansion of this cluster in a sea of lower investors, is
shown in figure 3.

An analytical estimate for the asymptotic value I” to
which the average investment evolves can be obtained as
follows. First, we can give an approximate lower bound
I .., on I" by considering the invasion of a 3 x 3 cluster of
slightly higher investors (investing I + d, d small and posi-
tive) in a sea of [-investors. By considering what happens
at the edge of the 3 x 3 cluster of higher investors, one can
show that such a cluster cannot grow further when
I> 1, = (1/B)) In (BB, [4(y).

Second, one can obtain an approximate upper bound
... on I" by considering the invasion of 3 x 3 clusters of
slightly lower investors (investing /—d, d small and
positive) in a sea of Iinvestors. By considering what
happens at one of the corners of the 3 x 3 cluster of lower
investors, one can show that such a cluster cannot grow
further when I<1,,, where we find 7 ,, to be equal to
1 .- Thus, as the approximate upper and lower bounds on
I" are equal, we deduce the following analytical estimate
for I": I, = (1/B))In (ByB,[4C,). Tt appears from our
simulations that /; is a good approximation to the
asymptotic level of investment /*. (We are grateful to Tom
Sherratt for pointing out the possibility of such an
argument to us.)

As noted, the mechanisms described above that drive
up the mean investment from very low values to much
higher levels work for any choice of benefit and cost func-
tions that satisfy the one basic assumption that for a
range of investments benefits are higher than costs (and
this assumption is a necessary condition for cooperation
to evolve in any situation). The form of the cost and

Figure 4 (Cont.) investments. In each case the randomness
leads to more rapid evolution of /(¢) from very low values
than in the original case (figure 2), although the asymptotic
level I” is slightly lower with the various random effects. The
simulations for (a), () and (d) were performed on a 70 x 70
square lattice with periodic boundary conditions. The
simulation for (¢) was performed on a random lattice obtained
by randomly deleting 20% of the cells in a 78 x 78 square
lattice with periodic boundary conditions.
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benefit functions used here was chosen because it has the
cost being proportional to investment and the benefit
obeying a law of diminishing returns with increasing
investment. This type of cost and benefit function is
typical of what might realistically be expected in many
biological situations, such as, for example, those discussed
by Hart & Hart (1992) and Wilkinson (1984).

3. DISCUSSION

Here we have studied the Continuous Prisoner’s
Dilemma in spatially structured populations. The Contin-
uous Prisoner’s Dilemma is an evolutionary game that is
a natural extension of the standard Prisoner’s Dilemma.
It is based on the concept of investment. Investments can
take on continuously varying values, and they are costly
for the investor but beneficial for the recipient. In
spatially structured populations, in which the Continuous
Prisoner’s Dilemma is played on two-dimensional spatial
lattices, investments evolve readily from very low levels to
significant levels corresponding to cooperation. This
occurs under very general assumptions as long as the
spatial lattices are large enough for the interactions
between individuals to be local enough compared with
the spatial extension of the whole population.

The ease with which cooperation evolves and is main-
tained in the spatial Continuous Prisoner’s Dilemma
suggests that cooperation may not be such a difficult
evolutionary paradox after all. To support this claim we
have tested various aspects of the model for robustness.
So far the theory considered has deterministic synchro-
nous updating and is formulated in a completely regular
spatial domain. However, the real world abounds with
random disturbances and spatial irregularities. Thus any
model that secks to explain the evolution of cooperation
must be robust enough to perform well in the presence of
these effects. We have investigated the model with
stochastic noise in the updating (Mukherij et al. 1995),
with asynchronous updating (Huberman & Glance 1993;
Nowak et al. 1994), defined on a random spatial lattice
(Nowak et al. 1994), and when a significant fraction of the
mutations in each generation is to highly selfish indivi-
duals. The results are shown in figure 4. Not only does the
essential feature of the model remain—in each case the
mean investment per cell evolves from very low values to
significantly higher levels—but the rate at which the
investment evolves to the higher level is considerably
faster than that for the deterministic updating—spatially
regular model. Although the detailed mechanism
operating in each case depends on the specific features of
the model, the general effect underlying these results is
that, in each case, the various random influences and
irregularities allow some higher-investing mutations to
form basic clusters when they would be unable to do so in
the deterministic updating—spatially regular case. This
results in the mean investment per cell evolving more
rapidly to high levels.

The present model is much simpler than the approach
outlined in our earlier work on mutualism. There we
studied a continuous version of the iterated Prisoner’s
Dilemma in spatially structured host and symbiont popu-
lations arranged on dual lattices. Here we consider a
single spatially structured species in which individuals
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play the Continuous Prisoner’s Dilemma without itera-
tion. Remarkably, even in the absence of the possibility of
sophisticated iterative strategies, cooperation evolves
much more easily in this situation. Moreover, it is main-
tained at a more stable level, in contrast to the large
fluctuations in the degree of investment that we observed
in our simulations of the evolution of interspecific mutual-
isms (Doebeli & Knowlton 1998). The difference probably
stems from the fact that mutualists interact with members
of the other species but must compete with conspecifics.

In conclusion, a spatially structured theory of
investment provides a natural resolution of many of the
difficulties associated with the evolutionary origin and
maintenance of cooperation in a selfish world. In fact,
our results suggest that strict selfishness should be rare in
spatially structured and localized intraspecific inter-
actions: any action whose benefits to the receiver exceed
the costs to the donor may be favoured if the investments
can evolve. This poses a new dilemma, because while
the existence of cooperation is widely acknowledged,
most interactions are still assumed to be competitive.
Some competitive interactions, such as competition
between males for mates, are essentially a zero sum
game, so that the cost to the cooperator is always
comparable with the benefit received by a partner.
Competition for other types of resources is more likely
to meet the assumptions of our model. In particular,
many organisms are spatially distributed and interact
much more with neighbouring individuals than with
individuals that are far away Thus, our model may
provide a basis for understanding the gradual evolution
of cooperative interactions in many spatially structured
systems, where the entities involved can range from
replicating molecules to whole organisms (Wilson 1980;
Michod 1983; Buss 1987, Maynard Smith & Szathmary
1995; Dugatkin 1997). Since the natural world is invari-
ably noisy and irregular, it is encouraging that our
theory is robust against these effects. Future extensions of
this model may be relevant for understanding the evolu-
tion of both mutualism (Doebeli & Knowlton 1998) and
the hypercycle (Eigen & Schuster 1979; Maynard Smith
1979; Boerlijst & Hogeweg 1991).
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