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Analysis of cytokine dynamics in corneal

allograft rejection
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Motivated by the discovery of oscillations in tumour necrosis factor-oo (TNF-0) concentration in the
aqueous humour of rabbits undergoing corneal allograft rejection, a simple mathematical model is
developed for the regulation of TNF-a, which incorporates both negative feedback and amplification
pathways. Mathematical analysis reveals a surprisingly rich behavioural repertoire for this simple
cytokine pathway, including excitability, threshold behaviour, hysteresis, oscillations and bistability. This
suggests new possibilities for experimental demonstration, and reveals the potential contributions of
nonlinear dynamics to understanding cytokine regulation.
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1. INTRODUCTION

The cornea is a classical site of immune privilege, with
limited major histocompatibility complex (MHC) expres-
sion, constitutive expression of Fas ligand, and local release
of immunosuppressive cytokines and neuropeptides in
addition to the sequestration of antigen by the blood—
ocular barrier (Niederkorn 1990; Streilein et al. 1992;
Ferguson et al. 1995; Griffith et al. 1995; Williams & Coster
1997). However, corneal grafts show a significant failure
rate (about 25% at four to five years) (Williams et al. 1992),
the major cause of which is immunological rejection,
emphazising that immune privilege is a relative concept.

The immune events culminating in graft rejection are
orchestrated by a complex network of cytokines, the regu-
lation of which is still poorly understood. One of the major
cytokines involved is tumour necrosis factor-oo (TNF-a),
which is critical in the successful initiation, maintenance
and resolution of inflammation (Strieter et al. 1993).

The regulation of TNF-a is complex. TNF-a has the
potential for amplifying its own effects, both directly by
autocrine and paracrine pathways (Philip & Epstein
1986; Amiot et al. 1997), and indirectly by enhancing
chemotaxis, adhesion and transmigration of mononuclear
cells (Tracey & Cerami 1994). In addition, several cyto-
kines including interferon-o(IFN-a), interferon-y (IFN-y),
interleukin-1 (IL-1), IL-4, IL-10, IL-13, and transforming
growth factor-B (TGF-), many of which are induced by
TNF-0, can up- and downregulate the expression of

TNTF-o. Finally, the shedding of soluble TNF receptors
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(STNFR) stimulated by TNF-a itself can also contribute
to the damping of TNF-a effects (Heaney & Golde 1996).

We have recently discovered that TNF-o concentrations
in the aqueous humour from rabbits with corneal
allografts undergo striking oscillations, which are not
observed in control rabbits with corneal autografts. These
sustained oscillations have large amplitudes, although we
are unable to determine if they are regular. These data
are described in detail elsewhere (Rayner et al. 1999). A
representative example of the data from one animal is
shown 1in figure 1.

We postulated that these oscillations arose from the
regulatory interactions between TNF-a and its inhibitors,
the most probable candidates being 1L.-10, TGF-B and
sINFR.

Oscillations  often interesting
dynamics, which are best approached via a formal mathe-
matical model. We therefore attempted to understand the
mechanism behind the TNF-a oscillations observed in
rabbit corneal allograft by constructing a simple model of
TNF-o regulation in the eye.

The model predicts that such a cytokine network
would show a rich set of behaviours under certain quanti-
fiable conditions, including excitability, oscillations, exis-
tence of a threshold and bistability.

reveal underlying

2. PRODUCTION OF A MATHEMATICAL MODEL FOR
THE REGULATION OF TNF-a IN CORNEAL
ALLOGRAFT REJECTION

The essential features of the model are illustrated in
figure 2. The various inhibitors of TNF-oo have been
consolidated into a single generic inhibitor, and the
known positive and negative feedback pathways shown.

This informal pictorial model is converted into a
system of ordinary differential equations by simply

© 1999 The Royal Society
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Figure 1. Representative example of experimentally observed
TNF-a fluctuations in the aqueous humour of a rabbit
undergoing corneal graft rejection. Data from one animal out
of ten. The levels of TNF-o were measured using a bioassay in
which the death of actinomycin-sensitized 1929 cells in
response to TNF-o was measured. Experiments were carried
out in triplicate.

assuming that the rate of change of TNF-o and inhibitor
concentration is the difference between its production
and clearance.

3. DETAILS OF THE MATHEMATICAL MODEL

A first-order differential equation is written for each
cytokine involved as a simple balance between production
and clearance, i.e.

rate of change of cytokine concentration

=rate of cytokine production—rate of cytokine clearance

This leads to the following coupled ordinary differen-
tial equations for the model:

dx '+ B

— =y — —dx

dt ~ tatay+6 0
dy x4+ €

a =ky + vy » —dyy,

where the biological interpretation of the various

variables are as follows: x, concentration of TNF-a; y,
concentration of inhibitor; »;, maximal velocity of TNF-o
production (corresponds to stimulation, e.g. by antigen);
vy, maximal velocity of inhibitor production; £,, constant
rate of inhibitor production which is not feedback regu-
lated; d,, clearance rate for TNF-a; d,, clearance rate for
inhibitor; n, Hill coefficient which determines the steep-
ness of the dose—response curve; «, threshold for TNF-a
positive feedback on rate of TNF-a0 production; (3, thres-
hold for inhibitor negative feedback on rate of TNF-a
production; -y, threshold for TNF-a positive feedback on
rate of inhibitor production; €, baseline for the function
representing TNF-o positive feedback on rate of TNF-o
production, €; K @; €, baseline for the function repre-
senting TNF-o positive feedback on rate of inhibitor
production, €, < .

The maximal rate of TNF-a synthesis 1s assumed to be
a function of the stimulation to the system.
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Figure 2. Model for the cross-regulation of TNF-o and
inhibitor.

This might be due to mitogens or to the level of antigen
in the system (acting for example via cytokine release by
Tcells or engagement of antibody coated material). Thus,

o =/ (s), (2)

where s is the degree of stimulation and f(s) is an
increasing saturable function.

The feedback loops are modelled using Hill functions
representing dose—response curves. Hill functions can be
derived from simple mass action kinetics (Segel 1984),
and have the general form A(x) = x"/(s" + x") where x
represents cytokine concentration, s is the concentration
where the reaction velocity is 50% of its maximum
possible, and #n 1s a parameter (known as the Hill coefli-
cient) determining the slope of the function. In parti-
cular, the positive feedback function of TNF-a on its own
production is assumed to be sigmoidal, because recruit-
ment of mononuclear cells is likely to show a nonlinear
dependence on the concentration of TNF-a. It is not
critical whether the other feedback functions have
sigmoidal or hyperbolic dose—response curves because
qualitatively similar behaviour can be observed in numer-
ical simulations. The clearance of cytokine and inhibitor
is assumed to be linear.

By a suitable choice of change of variables, we can arrive
at a system of equations in which the variables are dimen-
sionless. Using this technique of non-dimensionalization,
an equivalent set of equations with fewer parameters
can be derived by substituting « = x/a, v =y/5, and
T =dt,

du W+ E 1
:—:A —
S w0) dr w+1o+1 “ (3)
do u+E,
=—=B+C -D
glwy) = =B+ 00— Dy,

with the parameters 4 = v,/d\a, B = ky/d, 3, C = vy/d, 3,
D =d)/d, E, =¢€|a, By =€]a, and F = v/a.

The above model as outlined in figure 2 will not be
new to immunologists because similar informal represen-
tations of cytokine networks are commonly used. In
formalizing such network models in mathematical terms,
we are simply stating our assumptions and biases expli-
citly in the form of ordinary differential equations, in
order that the behaviour of the system can be studied
using the tools of nonlinear dynamics.
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Our first test of the model is to confirm if it can
replicate previously confirmed experimental results, and
provide a possible explanation for the observed oscillatory
behaviour. We then use bifurcation theory to characterize
the qualitatively different solutions of the model, in order
to understand the range of physiological behaviours
potentially available to the network. Interestingly, we find
solutions that predict unusual responses not previously
documented in the literature, which offer new experi-
mental tests of cytokine network regulatory mechanisms.

Clinicians too may find the counter-intuitive behaviour
of aspects of the model a useful caution, as they start
using cytokine agonists and antagonists therapeutically to
perturb the cytokine network. A better formal under-
standing of the regulation of cytokine networks may help
elucidate the paradoxes of success and failure observed in
clinical trials of cytokine-related therapy.

4. RESULTS

Results from the model come from a combination of
mathematical analysis and numerical computation. Only
the main results of biological interest will be presented
here.

(a) Effect of a single antigen bolus

We have simulated the effect of injecting a single
antigen bolus by assuming that the antigen concentration
decreases exponentially with time, and letting the stimu-
lation parameter 4 be related to antigen concentration s
by a hyperbolic function, i.e.

d

d_\;:_d\%

' @
k3+§

where ds and kg are constants. There is an initial surge in
the concentration of TNF-a in response to the stimulation
produced by the antigen, which then decreases gradually
to negligible levels as the antigen is cleared. This is consis-
tent with experimental results, for example, the rapid
induction of TNF-a after injection of tumour necrosis
producing (TNP)-spleen cells into the anterior chamber
(Ferguson et al. 1994).

This 1s an obvious result, and simply shows that the
prediction of the mathematical model agrees with intuition.

(b) Effect of sustained stimulation to the system

The maximal rate of TNF-o0 production reflects the
stimulation via antigen or mitogen, because it is a func-
tion of only the antigen concentration. We can therefore
simulate different antigen loads by increasing this para-
meter. In the context of transplantation we assume that
the stimulation rapidly rises to a peak post grafting,
remaining at a plateau and changing only slowly during
the active phase of graft rejection, and finally decreasing
when the graft is ‘burnt-out’ and destroyed. The assump-
tion of constant antigen stimulation is likely to be true to
a first approximation also for autoimmune disease,
chronic graft-versus-host disease and chronic infections.

We can therefore simulate the increase in stimulation
by increasing the parameter corresponding to the
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maximal rate of TNF-a production. Throughout the
simulation, the antigen load is assumed to be constant,
because we do not consider the final phase of rejection.

There are five main qualitatively different phase
portraits for different antigen loads, depending on the
other fixed parameters.

Type I: single sink. There is a unique equilibrium concen-
tration of TNF-a and inhibitor, and all initial conditions
converge to this.

Type II: two sinks. There are two stable equilibrium
concentrations of TNF-oo and inhibitor. The system
converges to one or the other depending on the initial
conditions.

Type III: stable cycle. There is a stable periodic oscilla-
tion of TNF-a and inhibitor, and all initial conditions
converge to this.

Type IV: sink and stable cycle. There is a stable equili-
brium together with a periodic oscillation of TNF-o. and
inhibitor. The system converges to either an equilibrium
state or an oscillatory state depending on the initial
conditions.

Type V: excitable behaviour. There is a unique stable
equilibrium concentration of TNF-oo and inhibitor, but
the system may converge to this via either a short route or
a long excursion, depending on initial conditions.

These five phase portraits together with their ‘typical’
time-series are shown in figure 3.

(1) Dype I behaviour: single sink

Here there 1s only a single sink, and the concentration
of TNF-a will always eventually settle to this equilibrium
value given sufficient time. The concentration of inhibitor
will also come to a steady state. Such behaviour would
correspond to the expected behaviour of the system,
where the level of cytokine rises in response to the
stimulus, reaches equilibrium and remains at a steady
state for as long as the stimulus remains (figure 3a).

(11) Type Il behaviour: two sinks

Depending on the initial TNF-o and inhibitor concen-
trations, the final value of TNF-a can be either of the two
equilibrium concentrations, as shown in the time-series.
Similarly, there are two corresponding equilibrium values
for the inhibitor concentration. The two sinks are sepa-
rated by a saddle. While the levels of TNT-a at either of
the sinks will be in stable equilibrium, it is possible to
switch from one sink to the other by adding (removing)
sufficient TNF-a or inhibitor to (from) the system. This is
an example of bistability, where two stable solutions
coexist at the same parameter values.

In biological terms, this would mean that under the
same conditions, the system could have relatively high or
low TNF-a levels which would be stable unless there was
a sufficient perturbation of the system, whereupon there
would be a sudden change to the other state. Which
equilibrium the system settles to would be a function of
the initial starting conditions.

(iil) Type I behaviour: stable cycle

The TNF-a level never settles to an equilibrium, but
instead converges to an oscillation with constant ampli-
tude and period. The inhibitor concentration will also
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Figure 3. The figure shows type I, 11, ITII, IV and V
behaviour (a-e, respectively). () Single sink: stable steady
behaviour where A =3, B=0,C=5,D=1, £, =0.1,

E, =0.01, F=1,n=2; (b) two sinks: threshold behaviour
where A=5,B=0,C=1,D=1,E, =01, £k, =0.1, F =1,
n = 2; (¢) stable cycle: sustained oscillation where 4 = 21,
B=0,0=5D=02E =0.1,E, =001, F=1,n=2

(d) sink and stable cycle: coexistence of oscillations and steady
state where A =11.6, B=0,C=1,D=0.1, £, =0.1,

E, =0.01, F =1, n=2; (¢) excitable behaviour where 4 =7,
B=0,C=1,D=0.18,FE, =0.1, £, =001, F=1,n=2.
The time-series is shown on the left-hand side and the
corresponding phase portrait-vector field on the right-hand
side. The antigenic stimulation is assumed to be constant.

See the text for a description of behaviour. Filled circles, sinks;
solid closed loops, stable cycles; dashed closed loops, unstable
cycles.
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oscillate, lagging behind the TNF-o oscillations (not
shown). This may be similar to the fluctuations in TNF-o
levels shown in our transplant model.

(iv) Dype IV behaviour: sink and stable cycle

Depending on the initial TNF-a and inhibitor concen-
trations, the final result may be either an equilibrium or an
oscillation. This is therefore a different form of bistability.
If such a system could be observed experimentally, it
would be possible to stop oscillating TNF-o and inhibitor
concentrations by simply adding or removing (e.g. with an
antibody) TNF-a or inhibitor. Conversely, a steady state
concentration of TNT-a and inhibitor can similarly be
induced to oscillate by adding or removing TNF-a or inhi-
bitor. However, it is unlikely such bistability is biologically
relevant in the corneal allograft model for two reasons.
(1) The basin of attraction of the sink is very small
compared with that of the cycle, in all the numerical
simulations we have run. This means that most combina-
tions of TNF-a and inhibitor concentration found in the
nitial state will eventually end up on the cycle and thus
show oscillatory behaviour, while only a small fraction of
combinations of TNF-o and inhibitor initial concentra-
tions lead to the sink. (i1) More importantly, the region of
parameter space (see below) where bistability exists is very
small. This means that the parameter values necessary for
such behaviour are very limiting. With the inevitable noise
and variation in biological systems, it is unlikely that such
tight control of the parameter values would be seen experi-
mentally or physiologically.

(v) DpeV behaviour: excitable behaviour

For some parameter values, although there is only a
single stable equilibrium, the system may exhibit excit-
ability, 1.e. relatively small perturbations from the equili-
brium can result in a large excursion in phase space
before returning and converging back to the equilibrium.
In practical terms this means that a large transient spike
in the levels of TNF-o and inhibitor can result from an
apparently negligible perturbation to the system.

Because the steady state is stable, sufficiently small
perturbations from it will always result in the TNTF-a and
inhibitor concentrations remaining close to steady state
concentrations as they eventually settle back to equili-
brium. Slightly larger perturbations may, however, result
in the dynamics taking the trajectory on a large excursion
in phase space before returning to the steady state. We
thus see that whether or not we observe a large spike in
TNF-o and inhibitor concentrations depends on the
precise details of the perturbation to the system. This is
illustrated in figure 3e, where two initial conditions, close
to each other and both close to the equilibrium, result in
dramatically different transient behaviours, before both
eventually settling down to the equilibrium.

Any real cytokine network will be subject to noise or
other apparently random perturbations. One can envi-
sage that in some situations these will occasionally be
sufficiently large to result in spikes while at other times
they will lead only to small fluctuations about the steady
state. The net effect will be to generate an intermittent
sequence of spikes at random intervals. This may be
another possible explanation for the observed TNF-a
spikes during corneal allograft rejection.
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(c) One-parameter bifurcation diagrams

The most important parameter in the model is
obviously the degree of stimulation, and plotting the
concentration of TNT-a against the stimulus allows us to
characterize the qualitative changes that may occur in the
phase portraits. In particular, how the various behaviours
listed above change with varying degrees of stimulation
will be explored. A graph showing the equilibrium
concentration of TNF-a for a range of values of the
stimulation parameter 4 is known as a bifurcation
diagram for the parameter 4.

As the stimulation is increased, the equilibrium TNF-a
concentration can either change smoothly or become
unstable. There are two ways it can destabilize—it can
‘jump’ to a new and higher steady state concentration at a
certain threshold stimulation or it can start to oscillate.
Which route of destabilization occurs depends on the
other fixed parameters, as will be discussed in §4(d).

(1) Equilibrium remains stable

If the dose response curve for the positive feedback effect
of TNF-a on itself is not steep enough (the Hill coefficient
is low—see § 4 (b)), then there is only a single stable equili-
brium for all values of the antigenic stimulation. As the
stimulation is increased, the TNF-a concentration will also
increase, but nothing unexpected happens.

(1) Threshold behaviour

At low amounts of stimulation, the equilibrium concen-
tration of TNF-o is low, and increases gradually with
increasing stimulation (figure 4q). However, as the stimula-
tion passes a certain threshold (point A), the equilibrium
concentration of TNIF-o suddenly jumps’ to a new and
higher level. Technically, this is known as a fold or saddle-
node bifurcation. In biological terms, this means that
around the threshold point, a small increase in the activa-
tion stimulus will result in a sudden large increase in TNF-o.
Such behaviour would allow a rapid and strong response to
a pathogen once it crosses some antigenic threshold, which
makes good evolutionary and physiological sense.

Proc. R. Soc. Lond. B (1999)
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Figure 4. One- and two-
parameter bifurcation
diagrams determined
numerically, showing the
ranges of parameter values
where type I-IV behaviours
exist. (a) Threshold
behaviour and hysteresis
where B=0,C=1,D =1,
E =0.1,E =001, F=1,
n = 2; (b) zones of oscillatory
behaviour, variables as in
(a); (¢) two-dimensional
bifurcation diagram in A-D
space, variables as in (a);
(d) a blow-up of (¢);

(e) two-dimensional
bifurcation diagram in 4-n
space where B =0, C =1,
D=0.1,E =0.1, E, = 0.01,
I = 1. See text for detailed
explanation.
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When the stimulation is decreased, there is a different
threshold (point B) at which the new equilibrium jumps’
back to a low steady state concentration of TNF-a. Thus
the cytokine network exhibits hysteresis. Hysteresis
represents the history dependence of physical systems,
and refers to the fact that the system does not return
completely to its original state when the stimulation is
decreased, showing instead a lag in the values of equili-
brium TNF-a concentrations. Reversible hysteresis loops
would occur if the stimulation to the system is repeatedly
increased and decreased.

This means that the threshold stimulation needed to
switch from a high to a low TNF-a equilibrium is lower
than that needed to switch from low to a high TNF-o.. Put
simply, once high levels of TNF-a are induced, it is
harder to turn the system off—the activation must be
reduced to well below that needed to turn the system on.
There will be levels of stimulation at which the system
could be in either a high or a low TNF-a level, depending
on the previous stimulation history. This would allow the
immune system to turn off the response to a pathogen at
a lower threshold than that needed for activation, thus
ensuring adequate clearance.

Therefore the positive feedback of TNF-o on itself
allows the cytokine network to function as a switch
between low and high activity levels. The negative feed-
back loops serve to stabilize its behaviour.

(ii1) Oscillatory behaviour

In this route (figure 44), the TNF-a concentrations
begin to oscillate when the stimulation is increased. Inter-
estingly, the oscillations can begin with small amplitude
and grow larger as the stimulation is increased further, or
they can emerge suddenly ‘fully grown’ The main factor
determining which type of behaviour occurs is the slope
of the positive feedback dose response, with ‘fully grown’
oscillations occurring when the slope is steeper.

The first type of oscillation begins when a sink
becomes unstable, and a stable cycle is created at a super-
critical Hopf bifurcation as the stimulation is increased.
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In a supercritical Hopf bifurcation, the amplitude of the
created stable cycle starts small and grows larger with
increasing stimulation. In the second type of oscillation, a
large amplitude stable cycle is initially created at a
saddle-node bifurcation of cycles. However, the current
equilibrium 1is still stable with a decreasing basin of
attraction as the stimulation increases. The basin of
attraction of the sink is bounded by an ever-shrinking
unstable cycle, which finally collides with the sink at a
subcritical Hopf bifurcation. Trajectories starting outside
this boundary are attracted to a large amplitude stable
cycle. At the subcritical Hopf bifurcation, the current
equilibrium becomes unstable, leaving only the large
amplitude cycle created earlier, resulting in the sudden
creation of large amplitude oscillations.

Surprisingly, in both cases, as the stimulation is
increased further, the oscillations disappear again. There-
fore the oscillations only exist for a limited range of
antigen concentration, which may explain why such TNF-o
oscillations are not commonly observed. We believe that
these oscillations are ‘side-effects’ of the need to ramp up
TNF-a production rapidly in response to pathogen, and
are unlikely to have a specific function, unlike the case of
intracellular calcium oscillations, for example.

(b) Two-parameter bifurcation diagrams

Similar to the concept of phase space, parameter space
1s the multidimensional space with the various parameter
variables as axes. At nearly all points in parameter space,
the system will have one of the five types of dynamical
behaviour listed above. Details of the analysis and calcu-
lation of the various bifurcations where one type of beha-
viour changes into another can be found in standard
nonlinear texts, for example Glendinning (1994) or
Kuznetsov (1995).

By taking a two-dimensional slice of parameter space,
we can study the bifurcation behaviour of the cytokine
network with respect to any two parameters of interest.
In particular, it shows how stable a particular behaviour
(e.g. oscillations) is with respect to change of any two
parameters at a time. The two most interesting
parameters in addition to the degree of stimulation A4 are
the Hill coeflicient n, which represents the steepness of
the dose—response curve for positive feedback, and the
ratio of clearance of inhibitor to TNF-a, D.

Figure 4¢,d shows the effect of a range of values for 4
and D on the system behaviour. The most interesting
prediction made is that oscillations in such a system
cannot arise unless the clearance of TNF-a is relatively
faster than that of inhibitor. Such a difference may arise
from different decay times or diffusion rates.

Figure 4¢ shows how the dynamic behaviour varies
with different values of 4 and n. Regardless of the degree
of stimulation, it shows that the Hill function must have a
minimum steepness (n ~ 1.55) for oscillations to occur.
Below this value of #n, there is only a single equilibrium
for all values of the stimulation parameter 4. Similarly,
threshold events also require a minimum steepness for the
positive feedback curve, and we indicate regions where
one sink or two sinks exist.

If the necessary biological parameters can be experi-
mentally established with sufficient accuracy, then we can
use such diagrams to predict what sort of dynamical
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behaviour to expect if we were to experimentally change
various parameters. This has possible use in calculating
therapeutic doses of cytokines or cytokine antagonists.

5. DISCUSSION

The role of cytokine networks in the regulation of
immune responses is well accepted. This has led to
considerable effort in developing new strategies for the
treatment of autoimmune diseases, septic shock and the
prevention of graft rejection, that rely on disrupting
components of the network by use of recombinant
cytokines, soluble receptors or antibody (Dallman 1993;
Nickerson ez al. 1997; Kalden ez al. 1998).

However, the complexity of the network can make it
difficult to predict the effect of therapy with such agents.
For example, while strategies aimed at blocking TNF-a
activity have been successful in the treatment of rheuma-
toid arthritis and other diseases, they can increase
morbidity when used in septic shock (Fisher et al. 1996),
due to the alterations in the half-life of the cytokine.
Models that increase our understanding of the networks
may allow both design of the nature, dosage and timing
of such therapeutic interventions.

In this paper, we explore a simple cytokine network
with just three components (TNF-o, an inhibitor of
TNF-0, and an extrinsic stimulation). We demonstrate
that even such a simple system can lead to surprisingly
rich and even counter-intuitive behaviour, exhibiting
threshold effects, hysteresis and oscillating behaviour.
Similar pathways are found in many cytokine networks,
and therefore the behaviour may be quite widespread.

The original observation that provoked this study was
the spikes of TNF-a activity that we observed in a
corneal allograft setting. As shown in the model, oscil-
lating behaviour of TNF-a levels can be predicted under
certain parameters. We believe that such oscillations in
cytokine levels are not directly adaptive, but rather reflect
inherent properties of a system designed to produce a
rapid response to pathogens. Oscillations in cytokine
levels are not unusual in the clinical setting, for example
in a spiking fever that may result from changes in TNF-o
or other endogenous pyrogens. In addition, juvenile
rheumatoid arthritis (Rooney et al. 1996) and familial
Mediterranean fever (Schattner et al. 1991) are associated
with spikes in temperature and cytokine levels. An under-
standing of any positive and negative feedback pathways
involved in such oscillations may allow better treatment
of these diseases.

The model makes several specific and surprising
predictions about the behaviour of such a cytokine
network under different degrees of antigenic stimulation
which may be tested experimentally or observed in clin-
ical settings.

One such prediction is that a reduction in the causal
stimulus may push the system from having a stable equili-
brium concentration of TNF-a to having oscillatory beha-
viour, where both the peak and mean levels of cytokine
may be higher than pretreatment. Clinically, this might
mean that in some cases inadequate treatment may be
worse than no treatment at all.

Another prediction is that with increasing antigenic or
mitogenic stimulation to the cytokine network, we should
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see threshold and hysteresis behaviour. Clearly this could
be of adaptive benefit, resulting in a threshold of stimula-
tion that causes a switch from low to high TNTF-a produc-
tion. This again has a number of clinical parallels; small
changes in an underlying infection can lead to sudden
changes in the condition of a patient. At points close to
this threshold, small alterations can have a dramatic
effect, which is clearly important when devising new
treatment strategies.

The hysteresis in the response curve ensures that it is
difficult to turn off a response once it has started—in
other words, a stimulus below the threshold necessary to
lead to high equilibrium levels, will be capable of main-
taining the system in the high equilibrium state. These
threshold and hysteresis effects are recognized features of
many inflammatory diseases; small changes in either the
stimulus or some of the parameters may result in a
threshold change leading to an inflammatory state. When
the threshold has been crossed the system is ‘locked in’ the
inflammatory state and requires large changes in the
conditions such as high doses of anti-inflammatory drugs
before it can revert to the quiescent state. This may also
be related to ‘flare ups’ seen in many autoimmune
diseases.

A third prediction is that for oscillations to arise in
such a cytokine network, the slope of the positive feed-
back dose—response curve must exceed a minimal steep-
ness. In addition, the clearance rate TNF-o must be faster
than the clearance rate of inhibitor. These two conditions
can be seen from figure 4e,c, respectively.

While the model is undoubtedly a simplification of the
actual process, the assumptions made are biologically
justifiable, and its predictions should be experimentally
verifiable. The weakness of the model is that reliable
estimates of the relevant parameters are not currently
available, though there appears no technical reason why
they cannot be experimentally determined. Even with
purely qualitative predictions, the model already serves
the useful function of suggesting new phenomena to look
out for, and possible new experiments to bring out such
behaviour.

When the kinetic data are available, it will be possible
to make quantitative predictions, and also to modify or
extend the model in the light of experimental findings.
Eventually, it is possible to envisage a ‘virtual laboratory’
in which one can test the effect of various interventions and
their combinations on cytokine networks i silico, which
would be prohibitively time-consuming and expensive in
the immunological laboratory. The promising interven-
tions identified in this way can then be tested convention-
ally, and hopefully result in useful therapeutics.
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