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stone dispersal rates. Proc. R. Soc. Lond. B 266, 2507�2513.

Electronic appendices are refereed with the paper. However, no attempt has been made

to impose a uniform style on the electronic appendix.

Appendix

Notations not de�ned here are de�ned in the main text of the paper.

a. Genetic models of isolation by distance

This section summarizes without derivation some formulae used for computing the prob-

abilities of identity in the lattice models �rst formulated by Malécot (1950, 1951). The

required mathematics may also be found in later accounts, e.g. Malécot (1975) or Nagylaki

(1976), and in textbooks on characteristic functions and Fourier transforms.

The life cycle of Malécot's lattice model is exactly the one described in the text, with

ideally in�nite fecundity. When there may be a cost of dispersal, one must distinguish

forward and backward dispersal rates: the former rate measures the probability that an

o�spring leaves its natal patch, the latter rate measures the probability that an adult had

its parent in a given deme (i.e. after the cost of dispersal is paid and after competition). Let

 � (1�u)2, and let mr be the (backward) probability of dispersal at distance r � (rx; ry).
A basic recursion of the model is
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(Malécot, 1975, equation 2, and Malécot, 1951), here written for probabilities of identity

among o�spring after dispersal but before competition, so that it is also valid for N = 1.

We consider the characteristic function (Fourier transform) of the distribution of back-

ward dispersal distance,  (z) �
P

r
mre

{r�z where { �
p
�1. Likewise we consider Q(z),

the Fourier transform of the Q's: Q(z) �
P

r
Qre

{r�z. From Malécot (1975, equation 14)

we have at equilibrium
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so that inverse transformation yields Qr = Lr(1�Q0)=N where
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where Lr is the inverse transform de�ned for some function Q as

Lr(Q) �
1
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nx�1X
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ny�1X
qy=0
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�{2�qxrx=nxe

�{2�qyry=ny : (A.4)

If the dispersal distribution is axially symmetric,  (�z) =  (z), and it follows that
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is independent of N , and for all r1; r2, Lr1
� Lr2

has a �nite limit as  ! 1 (u! 0). The
di�erences (L0 � Lr)=N qualify as relatedness coe�cients in a narrow sense (see Rousset

and Billiard (submitted) for discussion) and their properties are discussed in Rousset (1997)

where they are described as FSTr=(1� FSTr).

When nx ! 1 and ny = 1 in the one dimensional model, the inverse transform

converges to an integral:
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(Malécot, 1950; Nagylaki, 1976; Sawyer, 1977). Likewise when nx and ny !1 in the two

dimensional model,
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2 (z)
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cos (rxx) cos (ryy) dx dy; (A.7)

with z � (x; y).

Analysis of equation (5) of the main text. Here we simplify equation (5) and obtain an

approximate solution common to all dispersal models. In all models considered here, using

vector indices for the more general two dimensional model, g0(z) = 1� z, and for k 6= 0,

gk = (1� c)zdk where dk is the fraction of o�spring that disperse by k steps on the lattice

among those who disperse, and is determined by the �xed distribution of forward dispersal

distances. Hence @gi=@z = (gi � Æi0)=z where Æi0 is 1 if i = 0 and 0 otherwise, and at the
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in terms of backward dispersal rates, where 1� cz appears as the value of
P

j
gk�j(z) for

any k. From equation (A.1), Q0 = 
P

k
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l
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l
so that the numerator of the above

expression simpli�es to (Q0= � 1)(1� cz)�
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The last sum is limu!0

P
l
ml(L0 � Ll)=N and can be evaluated as follows. We ex-

press this sum of inverse transforms as a sum on (qx; qy) as in equation (A.4). For each

value of (qx; qy), there appears a factor
P

r6=0
mr(1 � cos(2�qx=nxrx) cos(2�qy=nyry)) =

1�  (2�qx=nx; 2�qy=ny) and therefore, using equation (A.4), we can evaluate some terms

of equation A.12 as
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Thus, although we can evaluate the ESS by expressing it as function of several di�erences

Li � Lj and evaluating them, it is more direct to simplify eq. A.12 using eq. A.13 and

to evaluate the resulting expression. In particular, neglecting the (1 � 1=(Nn)) factor in
equation (A.12), if c > 0 the ESS obeys

z =
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; (A.14)

We will deduce a low backward migration approximation to this expression. When high

cost of migration implies low backward migration rate, this will also be an approximation

for high cost of dispersal. To that aim we writemi (i 6= 0) asm�i and let the total backward

dispersal rate m ! 0 for a �xed distribution of dispersal distance (i.e. �j=�i constant for

all i; j 6= 0). We note that  =(1 +  ) = 1=2� (1�  )=4 +O(m2) so that its L0 transform

is (1=2�m=4+O(m2))=N . Neglecting the O(m2) term, in an in�nite population the ESS

satis�es
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The relevant root of this equation is given by equation (7) in the main text.

Generating functions for the di�erent dispersal models. In the one-dimensional stepping

stone model, the generating function of dispersal distance is
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In the four neighbors model,  (z) is
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Finally, in the eight neighbors model,  (z) is
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