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Appendix A: Robustness of the results

1. Model with non-specific immune response.

In principle the non-specific immune response is directed against viral particles in the

bloodstream. To make computations easier, we have assumed this immune response removes

infected cells, a reasonable assumption, given the fact that steady state of virions is often

assumed.

System 1 holds, with the following modifications and additions:
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2. Model with proliferation of CD8 cells not only dependent on the number of infected cells,

but also on the number of CD8 cells available

System 1 holds, with the following modifications:
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With this model,  we find the following :
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We can show for both models that when R0=1 and p2=p1, m=n, and that R0=1 corresponds to a

line of p2 as a function of m with a positive slope. Consequently, the same pattern of exclusion

and coexistence as observed in our model is expected in these modified models, confirming the

robustness of our findings.

Appendix B: Number of epitopes as a function of the killing rate

From (5), we obtain the following expression for the critical number of epitopes:
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Using the implicit function theorem in equation (3), we find :



                   

Using (3),  this can be rewritten as :

          ,     which is positive if the equilibrium (6) exists. 
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Appendix C: Model 2

In the first model, we focused on the function of Nef in enhancing replication. Here, we

proceed to the case in which the crippled form of nef also has a reduced ability to activate

latently infected cells. Two variables are added: latently infected CD4+ T cells carrying the

full-length (L1) or crippled nef genotype (L2). We also add a couple of parameters: f, the

fraction of cells infected going into latent infection, δL, the death rate of latently infected cells,

and α1 and α2, the rates of activation of cells latently infected with full-length and crippled

virus respectively. α1 ≥ α 2, as the second variant has impaired function. An additional

assumption is made here: activation of latently infected CD4+ T cells is solely driven by the

virus.



The default parameter values are:
λ = 1, δT = 0.01, δI = 0.5, β = 0.05, k = 0.1, p1 = 100, c = 3, a = 0.01, δE = 0.02, p2 = 75, but later p1= p2

= p = 100, n = 8, m varies but m ≤ n, δL = 0.01, α1 = 0.001, α2 = 0.00075 when it does not vary between
0 and α1, f = 0.5.

As for the first model, we investigate the possibilities for the crippled variant to invade

a viral population consisting solely of full-length genotypes. Thus, we look at the invasion

criterion for a crippled gene in a population of full-length viruses. R0 can be expressed, as

previously, in terms of the life span of the cell infected with crippled virus multiplied by the

number of infected cells generated by this infected cell.
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A fraction  of cells become latently infected upon infection, a phase which lasts on

average 
1

. The remaining fraction ( - ) goes into productive infection, a phase

lasting on average . A fraction  of latent cells then goes into productive 

infection,  where it has the life span given earlier.
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In the equilibrium with only full-length virus, the following relations hold:
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Replacing  and  in (iii),  and  and  in (ii),  we obtain :  
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The critical number of epitopes can be derived from the invasion boundary:
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where  is not a function of  nor 

Figure A1 draws the boundary condition (R0 = 1) as a function of m and α1, for several

values of f, while burst size is the same for the two variants. This figure can be interpreted as



follows: for α2=7.5x10-4 (default value), m≈7 for the curve corresponding to f = 0.5. The same

conclusion can be drawn for the second model as for the first model, only the critical values are

slightly different. When the crippled form has fewer than 6 epitopes, it is in the majority

compared with the wild-type when activation levels are reduced to 75% of the wild-type

activation (figure A2(a)). When the defective virus presents two epitopes and has retained

more than 25% of its function, it is in the majority (figure A2(b)).
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Figure A1. Outcome of the competition between the two genotypes as a function of the number of
epitopes and activation levels of cells infected with the defective variant, using model 2 (see (i)). Either
the two viral forms coexist ("coexistence") or the full-length form outcompetes the crippled variant
("exclusion"). The boundary is given by the condition R0 = 1 (equation (iv)). Curves are drawn for
different fractions of cells going into productive infection (f = 0.2, 0.5, 0.8).
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Figure A2. (a). Ratio of cells productively infected with full-length virus over cells productively
infected with crippled virus in the coexistence equilibrium, against the number of epitopes in the
crippled form (model 2, see (i)); α2 = 0.00075. Dominant eigenvalues are given for both equilibria. (b).
Ratio of cells productively infected with full-length virus over cells productively infected with crippled
virus in the coexistence equilibrium, against the activation levels of the crippled form (model 2, see (i));
m = 7; f = 0.5.. Dominant eigenvalues are given for both equilibria. In the exclusion steady state
dominant eigenvalue and dominant transversal eigenvalue overlap.

Let us look at the effect of the proportion of cells going into productive infection. When

f = 0, there is no latent phase, and loss of function has no effect, as there is no disadvantage to

low activation levels. Thus, there is always coexistence. As f increases, more cells go into

latent state upon infection, and the parameter region in which coexistence occurs becomes

smaller, as the loss of function of the crippled form has increasing effect.

We now wish to know what the effect is, more generally, of the latent phase on coexistence of

the two viral types. Thus, we look at model 2, but instead of altered activation level, the

crippled variant has a reduced replication potential, as in our first model. Figure A3 gives the

coexistence and exclusion regions for different levels of latency. When f  = 0 (no latency), we

find the line shown in figure 1. Figure A3 shows that when the proportion of cells going into

productive infection becomes smaller (f increasing), the parameter region in which only the

full-length gene can survive becomes larger.
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Figure A3. Outcome of the competition between the two genotypes as a function of the number of
epitopes and burst size of cells infected with the defective variant, using model 2 (see (i)). Either the
two viral forms coexist ("coexistence") or the full-length form outcompetes the crippled variant
("exclusion"). The boundary is given by the condition R0 = 1. Curves are drawn for different fractions
of cells going into productive infection (f= 0, 0.5, 1; α2 = α1= 0.001).

This is the same as when we look at different activation levels, but the explanation is different.

When all cells go into latency before eventually going into productive infection, the pool of

productively infected cells is considerably smaller than when all cells immediately go into

productive infection. The specific immune response acts on productively infected cells. The

presumed advantage of the crippled protein is that it is less susceptible to attack by the immune

system. However, this advantage will be reduced when the cells are less exposed to the

immune response. Hence, when all cells go into latency before going into productive infection

(f = 1), the parameter range for coexistence of the two variants becomes comparatively smaller.

Appendix D: Dominant eigenvalues for the steady states

Figure A4 gives the dominant eigenvalue associated with the equilibria of system 1, for

varying immunogenicity (fig. A4(a)) and burst size (fig. A4(b)) of the crippled form. They give

an indication of how fast the system regains its equilibrium value after a perturbation. The



characteristic return time, the time needed for the system to return half-way between the

perturbation value and the equilibrium value is denoted t1/2. We know that 1/2 I0 ≈ I0 eΛt1/2,

where I0 represents the value of the variables at perturbation, Λ the dominant eigenvalue. So

t1/2 = (ln 2) / (-Λ).

An indication of how fast the system approaches the exclusion equilibrium is given by

the dominant transversal eigenvalue (Hofbauer & Sigmund 1989). This corresponds to the

characteristic return time of the mutant virus in a wild-type population.

Finally, the dominant transversal eigenvalue for a wild-type virus in a completely mutant

population is given to indicate how fast the wild-type can invade.

Fig. A4 shows that the fastest process is the invasion of a wild-type in a mutant

population: when 0<m<8, 1.98<t1/2<3.15 days, and when 20<p2<80, 0.46<t1/2<6.93 days. Then

comes the process of disappearance of the crippled form in the equilibrium with only wild-type

virus: when 4<m<8, 3.46<t1/2<34.65 days, and when 0<p2<60, 1.13<t1/2<13.81 days.

Coexistence is attained slowest, the dominant eigenvalue having very low absolute value,

leading to t1/2 = 63 days. This pattern seems remarkably robust against changes in parameters.
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Figure A4. (a). Dominant eigenvalues and dominant transversal eigenvalues of the steady states against
the number of epitopes in the crippled form, system (1); p2 = 75. (b). Dominant eigenvalues of the
steady states against the burst size of the crippled form (system (1)); m = 2. The dominant transversal
eigenvalue associated with the rate of change of wild-type virus in a mutant population (bold curve)
goes off the scale, and tends to infinity for burst sizes approaching zero.



For model 2, dominant eigenvalues are around -0.001 for the exclusion equilibrium and

-0.0018 for coexistence (as a function of m, fig. A2(a)); it is -0.0045 for the exclusion

equilibrium as a function of activation level of the defective virus, and -0.0009 for coexistence

(fig. A2(b)). Characteristic return times vary on average between 5 months and around 2 years.

This slower process is a consequence of the introduction of viral latency in the model, delaying

evolution of the system. If a change in the function of Nef is only expressed as a change in

activation level, viral latency obviously is the rate-limiting factor. However, if the burst size

and activation levels of the defective genotype are decreased in combination, it yields a much

faster rate of appearance. We have done these computations, and for a p2=75 and α2=0.00075,

we found dominant transversal eigenvalues, for varying m, between 0.107 and 0.15, yielding a

doubling time between 6.47 and 4.62 days (calculations not shown). Hence, wild-type virus

will grow rapidly in a population of only defective variants.
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