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Endocrinological studies have contributed considerably to the development of theory concerning the
proximate aspects of the timing of reproduction. In non-domesticated, avian species, the relative
importance of the photoperiodic and non-photoperiodic factors in£uencing later stages of the breeding
cycle, such as the onset of egg laying, remains unclear because egg laying is di¤cult to obtain with
captive populations and laboratory experiments of breeding are rarely carried out in the framework of
long-term ¢eld studies. We set up a special experimental design such that captive Mediterranean blue tits
(Parus caeruleus) can breed with success in large outdoor aviaries at similar latitudes and altitudes to their
wild counterparts. Here we demonstrate experimentally that the non-photoperiodic factors responsible
for large and consistent di¡erences in the expression of natural breeding responses between three captive
outdoor blue tit populations are ignored during long-day treatment. Based on these ¢ndings, an
evolutionary explanation is provided for why the relative importance of the non-photoperiodic factors
decreases with the progress of the season. The hypothesis can explain observed maladapted breeding
dates in free-living populations and could possibly be used to increase the success of breeding
programmes with some endangered, captive, non-domesticated, photoperiodic species.
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1. INTRODUCTION

Seasonally reproducing organisms, such as tits (Parus
spp.), have evolved proximate responses to a series of
environmental cues (photoperiod, climate and food) in
order to regulate reproductive function so that their
o¡spring are in the nest during a brief optimal breeding
time (e.g. Farner 1961; Murton & Westwood 1977;
Wing¢eld et al. 1992; Lambrechts et al. 1997; Visser &
Lambrechts 1999). In addition, breeding is often inhibited
by factors re£ecting energetic constraints, such as food
abundance, ambient temperature or stress (e.g. Perrins
1970; Clamens & Isenmann 1989; Nager & Van
Noordwijk 1995; Silverin 1995; Svensson & Nilsson 1995).
Theory predicts that the relative importance of the
photoperiodic and non-photoperiodic information used in
the regulation of reproductive function changes with
latitude and environmental predictability. The
photoperiod will regulate reproductive function at high
latitudes where the optimal breeding time is highly
predictable across years. Photoperiodic in combination
with non-photoperiodic factors will regulate reproductive
function at lower latitudes where the optimal breeding
time is less predictable across years (Cohen 1967;
Wing¢eld et al. 1992; Maney et al. 1999).

Endocrinological work has contributed much to the
construction of a theoretical framework concerning
the proximate factors used as predictive information in
the timing of reproduction (Wing¢eld 1980; Wing¢eld et
al. 1992; Wing¢eld & Farner 1993; Sharp 1996). In this
context, the relative importance of the photoperiodic and
non-photoperiodic factors in£uencing later stages of the
breeding time, such as the onset of egg laying, has rarely
been examined experimentally in non-domesticated,

avian species. Ovulation has always been di¤cult to
obtain with captive, non-domesticated, avian species held
in standardized indoor conditions, complicating studies of
reproduction and breeding programmes for many years
(e.g. Kendeigh 1941; Wing¢eld & Farner 1980; Silverin &
Westin 1995; but see, for example, Meijer & Schwabl
1989; Meijer & Langer 1995; Gwinner 1996). Photo-
periodic blue tits (Parus caeruleus) are one of the rare, non-
domesticated birds which can breed with success in
captivity using an experimental design with captive popu-
lations held in outdoor conditions at similar latitudes and
altitudes to the wild populations (Lambrechts et al. 1996,
1997, 1999). Unexpectedly, the breeding time of captive
outdoor populations does not always match the breeding
time of their wild counterparts (Lambrechts et al. 1999).
In a six-year experiment with independent samples, three
study populations of blue tits (mainland southern France,
Corsica-Pirio and Corsica-Muro) showed pronounced,
consistent di¡erences in their expression of natural beha-
viour in captivity (Blondel et al. 1999; Lambrechts et al.
1999). The large di¡erences in the onset of egg laying
between the mainland blue tits adapted to a broad-
leaved, deciduous habitat and Corsica-Pirio blue tits
adapted to an evergreen habitat were attributed to
genetic di¡erences in photoresponsiveness during shorter
days (Lambrechts et al. 1996, 1997). In contrast to the
other two study populations, the third, captive, Corsica-
Muro population built nests and laid eggs 1.5 months
after their wild counterparts adapted to a broad-leaved
deciduous habitat (Lambrechts et al. 1999), with average
laying dates never reported in free-living populations.
The very late average breeding time of the captive,
Corsica-Muro population could be described as abnormal
in the sense that much longer days are required for
breeding and can only be attributed to non-photoperiodic
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factors retarding their breeding time in captivity
(Lambrechts et al. 1999).

Here we demonstrate experimentally that the three,
captive, blue tit populations exposed to long-day
treatment lay eggs at similar dates. During the long-day
treatment, blue tits ignored the non-photoperiodic factors
responsible for large population di¡erences in the
expression of natural behaviour in captivity during
shorter days. Based on these ¢ndings, a new evolutionary
view is presented for why the relative importance of the
photoperiodic and non-photoperiodic factors in£uencing
egg laying dates changes with the progress of the season,
which also explains maladapted breeding responses in
the wild. Long-day treatment could possibly force
photoperiodic zoo and/or captive animals to ignore the
non-photoperiodic factors causing unnatural breeding
responses in captivity.

2. MATERIAL AND METHODS

Captive, outdoor blue tits from all three populations were
presented with food ad libitum and two light treatments, i.e. a
natural increase in day length (natural period (NP), 1986^1998)
versus a sudden exposure to long days from 14 December onwards
in the same aviaries (arti¢cial period (AP), December 1992 and
1998) (¢gure1). All the protocols and methods used are described
in detail in Lambrechts et al. (1996, 1997, 1999). The samples
included data used in former publications (see Lambrechts et al.
1997, 1999) and additional breeding data gathered in 1999. All
birds exposed to the long-day treatment were at least one year in
captivity under natural photoperiodic conditions so that their
photoperiodic history (e.g. Sharp 1984) was similar for all the
birds tested. Because of the high annual repeatabilityof individual
and average laying dates in captivity, data from di¡erent years
were combined (cf. Lambrechts et al. 1996, 1997). As in former
analyses, the e¡ects of light treatment (NP versus AP) and popu-
lation (mainland versus Muro versus Pirio) and their interactions

on the onset of nest construction and egg laying were tested using
two-wayANOVAs (SAS Institute, Inc.1989)

3. RESULTS

During the long-day treatment, the birds were exposed
to photoperiods exceeding those which trigger repro-
duction in the wild (cf. Lambrechts et al. 1996, 1997). If
the breeding time with long-day treatment were to be
determined proximately by photoperiod in combination
with other non-photoperiodic factors, such as stress, food
or climate, we would predict winter breeding in all three
study populations and that the large di¡erences in
breeding time observed during natural days would be
preserved with long-day treatment. However, if the
average breeding time were to be determined proximately
by photoperiod only during the long day-treatment, we
would predict similar average winter breeding times for
all three study populations.

The results clearly supported the second prediction
(¢gure 1). The three, captive populations exposed to the
arti¢cially long photoperiods bred at least three months
before the wild and captive populations treated with
natural days. The onset of nest building (F1,52 ˆ1201 and
p 5 0.0001) and egg laying (F1,46 ˆ 3257 and p 5 0.0001)
di¡ered highly signi¢cantly between the two treatments
(NP versus AP). The e¡ects of the interaction between
treatment (NP versus AP) and population (mainland
versus Muro versus Pirio) on the onset of nest building
(F2,52 ˆ 8.12 and p 5 0.001) and egg laying (F2,46 ˆ11.82
and p 5 0.0001) were highly signi¢cant. All three captive
populations had similar nest-construction (F2,16 ˆ1.19 and
p 4 0.10) and egg-laying (F2,15 ˆ1.64 and p 4 0.10) dates
during the long-day treatment.

4. DISCUSSION

Our aviary experiments with natural and arti¢cial
days demonstrated that blue tits are photoperiodic and
that the non-photoperiodic factors responsible for the
large between-population di¡erences during natural days
are ignored during long-day treatment. Our three,
captive, outdoor, blue tit populations exposed to
arti¢cially long photoperiods started nest building and
egg laying at least three months before the captive and
wild populations in natural outdoor conditions. Further-
more, breeding was triggered ¢ve to six weeks after the
start of arti¢cial photostimulation, which is a shorter
period than the seven- to eight-week time interval
between the start of rapid gonad development and egg
laying reported in wild tits (Lebeurier & Rapine 1944;
Silverin et al. 1989). We obtained winter breeding despite
low ambient temperatures (see Lambrechts et al. 1997).
Thus, the unfavourable climatic conditions did not
inhibit breeding during long-day treatment. In addition,
our blue tit populations showed large and consistent
di¡erences in breeding time with natural days and bred
at the same time when suddenly exposed to long days.
This has been shown in tits exposed to arti¢cially long
photoperiods with natural winter temperatures
(Lambrechts et al. 1997; this study) and natural long
photoperiods with natural summer temperatures
(Lambrechts et al. 1997).
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Figure 1. Onset of egg laying (average standard deviation in
Julian dates; 1 Januaryˆ 1 and 1 February ˆ 32) of wild,
optimal-habitat blue tits (¢lled symbols) and captive, outdoor
blue tits (open symbols) from three French Mediterranean
study sites exposed to two light treatments (natural period
(NP) versus arti¢cial period (AP)).



Our captive outdoor Muro study population exposed to
natural days displayed abnormally late breeding in the
sense that these breeding dates were never reported in
Mediterranean tits. Captives from Muro started breeding
more than 1.5 months after their natural counterparts.
However, they behaved normally, that is like the other two
populations, when exposed to a long-day treatment. Thus,
if the bad reproductive performance of the captive Muro
population results from population-speci¢c, behavioural
problems in coping with an arti¢cial environment
(Dawkins 1998; Lambrechts et al. 1999), long-day treat-
ment could be a way of forcing blue tits to ignore the factors
which trigger these behavioural responses in captivity.

Within a season, parents of late broods produce fewer
o¡spring than parents of early broods (e.g. Dias &
Blondel 1996; Verboven & Visser 1998). Late reproduction
may therefore increase their ¢tness costs. However, a late
onset of reproduction, that is with a longer photoperiod
late in the season, may be adaptive, for instance when few
breeding opportunities are available in the following
breeding season. Late breeding can happen in late-
arriving individuals after migration or in £oaters which
suddenly acquire a territory (e.g. Lambrechts & Dhondt
1988; Verboven & Visser 1998). In some free-living, blue
tit populations, late breeders start egg laying with days
exceeding 17 h of light (B. Silverin, personal communica-
tion). Based on our ¢ndings with captive blue tits, we
hypothesize here that, at the adaptive level, the relative
importance of the photoperiodic and non-photoperiodic
factors in£uencing the observed breeding time changes
within a year as the season progresses. Late-reproducing
individuals in a population should proximately use photo-
periodic information only because of two potential
reasons. First, the adaptive ¢ne-tuning mechanisms and
non-photoperiodic factors (see ½ 1) in£uencing early
breeding are not required for late breeding. A response
mechanism should therefore be available which allows
reproduction in the absence of non-photoperiodic factors.
Second, a long photoperiod as an overriding factor
perhaps speeds up the reproductive cycle thereby
reducing the potential ¢tness costs associated with a late
reproductive attempt. The long-day treatment we used
could therefore be considered as a simulation where
photoperiodic organisms are suddenly exposed to an
advanced breeding season during which non-
photoperiodic factors are not used to time reproduction.

A long photoperiod as an overriding factor in the
timing of reproduction could explain the maladapted
breeding responses of mainland blue tits adapted to an
early, broad-leaved, deciduous, oak woodland and
breeding in man-introduced, late, evergreen, oak wood-
land. In southern France, mainland blue tits are
confronted with habitat mosaics constituted of both broad-
leaved, deciduous and evergreen, oak woodland patches
(e.g. Blondel et al. 1993; Dias & Blondel 1996; Lambrechts
et al. 1997). Gene £ow between the di¡erent woodland
types exists (Dias et al. 1996). The optimal breeding time,
which lasts three weeks, occurs at most one month earlier
in broad-leaved, deciduous than in evergreen woodlands
(Dias & Blondel 1996; Blondel et al. 1999). Mainland blue
tits match the brief optimal breeding time in deciduous
habitat nicely, but breed in evergreen habitat at least three
weeks before the short local optimal breeding time (Dias

& Blondel 1996; Lambrechts et al. 1997). Our proximate
explanation is that a long photoperiod as an overriding
factor is only adapted to deciduous habitat with a short
optimal breeding time early in the season. It explains why
mainland, evergreen blue tits start reproduction well
before the occurrence of the non-photoperiodic cues (e.g.
bud burst) (Wing¢eld 1980; Blondel et al. 1993) proxi-
mately required to anticipate the late optimal breeding
time in evergreen habitat. At the ultimate level, it assumes
that landscapes which are dominated by broad-leaved,
deciduous habitat and not the local habitat selected the
response mechanism (see also Lambrechts et al. 1997;
Visser & Lambrechts 1999).

Our adaptive explanation also predicts that long-day
treatment simulating a late season can help to stimulate
reproduction in some photoperiodic, captive and/or zoo
animals having problems with breeding. This is because a
long-day treatment would proximately force animals to
become insensitive to non-photoperiodic factors including
captivity stress during shorter days. We therefore do not
exclude the possibility that long-day treatment could be a
way of increasing the success of breeding programmes
with at least some endangered, non-domesticated, photo-
periodic animals.

We are grateful to J. Banbura, J. Blondel, A. Caizergues, M.
Gibernau, D. W. Thomas and M. E. Visser for comments on
di¡erent versions of the manuscript, B. Silverin for discussion
and two anonymous referees for constructive comments. Renë
Ferris helped with drawings. Birds were trapped with a licence
from the Ministe© re de l’Environnement, France.
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