This is an appendix to the paper by Taylor 2000 Maximum force production: why are crabs so strong? Proc. R. Soc. Lond. B 267, 1475–1480.

Electronic appendices are referred with the paper. However, no attempt has been made to impose a uniform editorial style on the electronic appendices.

Appendix A. Muscle stress and sarcomere length values for species used in the scaling analysis. Four stress values for *Menippe mercenaria* claws were not included in the analysis, because no sarcomere lengths (SL) were reported.

Taxa					Sarcomere Length (µm)				Maximum Stress (kN m		m -2)
	Species	Ref.	Body Region	Muscle	Mean (SE)	Range	n	Mean (SE)	Range	n	Method
Crustacea											
	Cancer antennarius	1	chela crusher	dactyl closer	13.7 (0.32)	10.7 - 17.1	27	866 (35)	551 - 1182	24	<i>VV,W,S</i>
	Cancer branneri	1	chela crusher	dactyl closer	12.7 (0.27)	11.5 - 13.7	9	1032 (62)	713 - 1536	12	VV, W, S
	Cancer gracilis	1	chela crusher	dactyl closer	12.7 (0.36)	9.6 - 14.7	15	526 (29)	383 - 743	14	VV, W, S
	Cancer magister	1	chela crusher	dactyl closer	12.2 (0.26)	10.0 - 15.3	26	756 (28)	519 - 963	20	VV, W, S
	Cancer oregonensis	1	chela crusher	dactyl closer	16.5 (0.36)	14.2 - 17.1	9	1007 (30)	817 - 1346	21	VV, W, S
	Cancer productus	1	chela crusher	dactyl closer	16.1 (0.26)	14.4 - 17.8	13	792 (60)	421 - 1224	15	VV, W, S
	Cancer pagurus	2	chela crusher	dactyl closer	12.8 (0.39)	9 - 14	5	496 (321)	320 - 720	18	vt,w,c
	<i>M. mercenaria</i> (temp)‡	3	chela crusher	dactyl closer				1094 (95)	157 - 2187	26	VV, W, S
	<i>M. mercenaria</i> (temp)‡	3	chela cutter	dactyl closer				673 (100)		7	VV, W, S
	<i>M. mercenaria</i> (trop)‡	3	chela crusher	dactyl closer				711 (135)	110 - 1702	12	VV, W, S
	<i>M. mercenaria</i> (trop)‡	3	chela cutter	dactyl closer				896 (90)		6	VV, W, S
	Carcinus maenas	4	chela chrusher	dactyl closer	13.1 ()		2	667 (580)	286 - 1057	16	vt,w,e
	Carcinus maenas	4	chela cutter	dactyl closer	9.5 ()		2	474 (410)	172 - 779	15	vt,w,e
	Macropipus spp	2	chela crusher	dactyl closer	8.9 (0.23)	7 - 9	4	275 (422)		6	vt,w,c
	Macropipus spp	2	chela cutter	dactyl closer	7.5 (0.21)	3 - 5	4	268 (246)		7	vt,w,c
	Callinectes sapidus	5	chela crusher	dactyl closer	11.2 (0.03)	6 - 15	3	638 (178)		18	VV, W, S
	Callinectes sapidus	5	chela cutter	dactyl closer	10.5 (0.09)	6 - 15	3	514 (143)		18	VV, W, S
	C. opilio (mature)	6	chela cutter	dactyl closer	10.4 ()	4 - 17		552 (24)		12	VV, W, S
	<i>C. opilio</i> (immature)	6	chela cutter	dactyl closer	9.5 ()	4 - 17		444 (29)		13	VV, W, S
	Homarus americanus	7&8	chela crusher	dactyl closer	7.6 ()	6 - 10		302 ()	253 - 390	3	VV, W, S
	Homarus americanus	7&8	chela cutter	dactyl closer	4.2 ()	2 - 10		272 ()	182 - 426	8	VV, W, S
	Cherax destructor	9	chela cutter	dactyl closer	8.6 (0.11)	6 - 10	49	305 (17)	100 - 571	49	vt,f,c
	Cherax destructor	9	chela cutter	dactyl closer	3.3 (0.32)	2 - 5	64	186 (8.0)	57 - 278	64	vt,f,c
	Astacus fluviatilis	10	walking leg	extensor	10.5 (0.3)			648 ()	0.0 - 804		vt,f,c
	Homarus americanus	11	adominal	MSE	6.8 (0.37)	6 - 10	25	443 (76)		4	vt,b,c
	Homarus americanus	11	adominal	LDE	2.4 (0.19)	2 - 4.5	25	82 (15)		3	vt,b,c
	Homarus americanus	12 & 13	2nd antenna	slow remotor	10.5 ()	8 - 13	20	275 ()			vt,w,e

(Appendix A: continued)

Taxa				Sarcomere Length (µm)			Maximum Stress (kN m ⁻²)			
Species	Ref.	Body Region	Muscle	Mean (SE)	Range	n	Mean (SE)	Range	n	Method
Uniramia										
Schistocerca gregaria	15	hindwing	flight	3.9 ()	3.1 - 4.1		157 ()			vt,b,e
Schistocerca gregaria §	16	wing	metathoracic	3.9 ()			295 (23)		12	<i>vv,w,e</i>
Schistocera americana	17	wing	metathoracic	3.9 ()			363 (14)		5	<i>vv,w,e</i>
N. robustus ¥	18	singing/wing	mesothoracic	3.3 (0.3)		3	109 ()		7	<i>vv,w,e</i>
N. robustus ¥	18	wing	metathoracic	3.1 (0.3)		3	240ç ()		5	<i>vv,w,e</i>
N. triops §¥	18	singing/wing	mesothoracic	3.3 ()			124ç ()		6	<i>vv,w,e</i>
N. triops §¥	18	wing	metathoracic	3.1 ()			214ç ()		6	<i>vv,w,e</i>
Schistocerca gregaria †	19 & 20	hind leg	tibia extensor	11.0 ()			705 ()	660 - 750		<i>vv,w,e</i>
Vertebrata										
Scyliorhinus canicula	21	postanal	myotomal white	2.6 ()	2.3 - 2.8		241 (22)		7	vt,b,e
Cyprinus carpio	22	mid-line	myotomal red	2.1 ()			116 (4)	102 - 125	5	vt,b,e
Makaira nigricans	23	trunk	myotomal white	2.3 ()			176 (2)		13	vt,f,c
Makaira nigricans	23	trunk	myotomal red	2.3 ()			57 (9)		11	vt,b,c
Xenopus laevis	24	hind leg	IL (1N fibres)	2.3 ()			396 (54)		10	vt,f,e
Xenopus laevis	24	hind leg	IL (2S fibres)	2.3 ()			337 (38)		12	vt,f,e
Xenopus laevis	24	hind leg	IL (2F fibre)	2.3 ()			312 (36)		6	vt,f,e
Xenopus laevis	24	hind leg	IL (2N fibres)	2.3 ()			300 (49)		8	vt,f,e
Pseudemys scripta	25	hind leg	IL (fast glycolytic)	2.3 ()			183 (5)		17	vt,f,s
Pseudemys scripta	25	hind leg	IL (fast oxidative)	2.3 ()			120 (3)		16	vt,f,s
Pseudemys scripta	25	hind leg	IL (slow oxidative)	2.3 ()			71 (3)		19	vt,f,s
Rattus spp.	26	hind leg	EDL	2.5 ()			209 (10.7)		8	vt,b,e
Rattus spp.	26	hind leg	soleus	2.5 ()			198 (19)		8	vt,b,e
albino mice	27	extraocular	inferior rectus	2.6 (0.12)		6	102 (11)		6	vt,w,e
albino mice	27	hind leg	EDL	3.1 (0.14)		6	249 (10)		6	vt,w,e

(Appendix: continued)

Таха					Sarco	Sarcomere Length (µm)			Maximum Stress (kN m ⁻²)			
	Species	Ref.	Body Region	Muscle	Mean (SE)	Range	n	Mean (SE)	Range	n	Method	
Vertebrata												
	albino mice	27	hind leg	soleus	2.8 (0.08)		6	177 (22)		6	vt,w,e	
	albino mice	27	diaphram	hemidiaphram	2.7 (0.09)		6	211 (9)		6	vt,b,e	
	Homo sapien ¶	28 & 29	hind leg	triceps surae	2.7 ()			120 (4)	101 - 151	5	VV, W, S	
	Homo sapien ¶	28 & 29	hind leg	quadriceps	2.7 ()			239.4 (8)	191 - 277	5	VV, W, S	
	Homo sapien ¶	28 & 29	hind leg	hip extensors	2.7 ()			127.4 (8)	74 - 187	5	VV, W, S	

Method symbols: vv = in vivo, vt = in vitro, w = whole muscle, b = bundle of fibres, f = single fibres, e = stimulated electrically, c = stimulated chemically, s = self stimulated. Muscle abreviations: MSE = medial superficial extensor, LDE = lateral deep extensor, IL = iliofibularis, EDL = extensor digitorum longus. Species abreviations: *M. mercenaria* = *Menippe mercenaria*, *C. opilis* = *Chionoecetes opilio*, *N. robutus* = *Neoconocephalus robustus*, *N. tripos* = *Neoconocephalus triops*. ‡ sarcomere length measurements are not available for claws of M. mercenaria crabs. However, mean claw mechanical advantage is reported at 0.390 (N = 77) for the crusher and 0.304 (N = 29) for the cutter (Blundun, 1988). Using the regression in figure A2-3 (MA verses SL; y = 25.858x + 4.8104), an average SLs of 14.9 µm for the crusher and 12.7 µm for the cutter-claw were predicted. Assuming these SL's are reasonable estimates, the mean stress of both claw types are within the 95% confidence limits of the regression, resting SL verses maximum stress (Fig. A2-2).

§ sarcomere length assumed to be the same as found for a closely related species.

¥ stress has been corrected for myofibril area.

† only A-band length measured, therefore sarcomere length estimated by doubling this value.

¶ sarcomere length estimated by taking the mean sarcomere length for mammalian muscles referenced in Josephson (1993).

Ref.= references, temp = temperate, trop = tropical

References: 01) Taylor, (data presented here); **02)** Warner & Jones, 1976; **03)** Blundon, 1988; **04)** Warner *et al.*, 1982; **05)** Govind & Blundon, 1985; **06)** Claxton, *et al.*, 1994; **07)** Govind, 1984; **08)** Elner & Campbell, 1981; **09)** West *et al.*, 1992; **10)** Zachar, & Zacharova, 1966; **11)** Jahromi, & Atwood, 1969; **12)** Mendelson, 1969; **13)** Bevengut, et al., 1993; **14)** Griffiths, et al., 1990; **15)** Weis -Fogh, 1956; **16)** Malamud, et al., 1988; **17)** Malamud, & Josephson, 1991; **18)** Josephson, 1984; **19)** Bennet-Clark, 1975; **20)** Cochrane, *et al.*, 1972; **21)** Curtin & Woledge, 1988; **22)** Rome & Sosnicki, 1990; **23)** Johnston & Salamonski, 1984; **24)** Lännergren, 1987; **25)** Mutungi, & Johnston, 1987;

26) Ranatunga, 1984; **27**) Luff, A.R. 1981; **28**) Thorpe et al., 1998; **29**) Josephson, 1993.

Bennet-Clark, H. C. 1975 The energetics of the jump of the locust *Schistocerca gregaria*. J. Exp. Biol. 63, 53--63.
Bevengut, M., McTeague, J. A. & Govind, C. K. 1993 Fiber composition of antennal muscles in the lobster *Homarus americanus* and the crayfish *Procambarus clarkii*. J. Crust. Biol. 13, 256--267.

Blundon, J. A. 1988 Morphology and muscle stress of chelae of temperate and tropical stone crabs *Menippe mercenaria*. *J. Zool. Lond.* **215**, 663--673.

Claxton, W. T., Govind, C. K. & Elner, R. W. 1994 Chela function, morphometric maturity, and the mating embrace in male snow crab, *Chionoecetes opilio. Can. J. Fish. Aquat. Sci.* **51**, 1110–1118.

Cochrane, D. G., Elder, H. Y. & Usherwood, P. N. R. 1972 Physiology and ultrastructure of phasic and tonic skeletal muscle fibres in the locust, *Schistocerca gregaria*. J. Cell Sci. **10**, 419--441.

Curtin, N. A. & Woledge, R. C. 1988 Power output and force--velocity relationship of live fibres from white myotomal muscle of dogfish, *Scyiorhinus canicula*. *J. Exp. Biol.* **140**, 187--197.

Elner, R. W. & Campbell, A. 1981 Force, function and mechanical advantage in the chelae of the American lobster *Homarus americanus* (Decapoda: Crustacea). *J. Zool. Lond.* **193**, 269--286.

Govind, C. K. 1984 Development of asymmetry in the neuromuscular system of lobster claws. *Biol. Bull.* **167**, 94--119.

Govind, C. K. & Blundon, J. A. 1985 Form and function of the asymmetric chelae in blue crabs with normal and reversed handedness. *Biol. Bull.* **168**, 321--331.

Griffiths, P. J., Duchateau, J. J., Maeda, Y., Potter, J. D. & Ashley, C. C. 1990 Mechanical characteristics of skinned and intact muscle fibers from giant barncle, *Balanus nubilus*. *Pflügers Arch.* **415**, 554–565.

Jahromi, S. S. & Atwood, H. L. 1969 Correlation of structure, speed of contraction, and total tension in fast and slow abdominal muscle fibers of the lobster (*Homarus americanus*). *J. Exp. Zool.* **171**, 25--38.

Johnston, I. A. & Salamonski, J. 1984 Power output and force--velocity relationship of red and white muscle fibres from the Pacific blue marlin (*Makaira nigricans*). *J. Exp. Biol.* **111**, 171--177.

Josephson, R. K. 1984 Contraction dynamics of flight and stridulatory muscles of tettigoniid insects. *J. Exp. Biol.* **108**, 77--96.

Josephson, R. K. 1993 Contraction dynamics and power output of skeletal muscle. *A. Rev. Physiol.* **55**, 527--546. Lännergren, J. 1987 Contractile properties and myosin isoenzymes of various kinds of *Xenopus* twitch muscle fibres. *J. Muscle Res. Cell Motil.* **8**, 260--273.

Luff, A. R. 1981 Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscle of the mouse. *J. Physiol. Lond.* **313**, 161--171.

Malamud, J. G. & Josephson, R. K. 1991 Force--velocity relationships of a locust flight muscle at different times during a twitch contraction. *J. Exp. Biol.* **159**, 65--88.

Malamud, J. G., Mizisin, A. P. & Josephson, R. K. 1988 The effects of octopamine on contraction kinetics and power output of a locust flight muscle. *J. Comp. Physiol.* A **162**, 827--835

Mendelson, M. 1969 Electrical and mechanical characteristics of a very fast lobster muscle. *J. Cell Biol.* **42**, 548--563.

Mutungi, G. & Johnston, I. A. 1987 The effects of temperature and pH on the contractile properties of skinned muscle fibres from the terrapin, *Pseudemys scripta elegans. J. Exp. Biol.* **128**, 87--105.

Ranatunga, K. W. 1984 The force--velocity relation of rat fast- and slow-twitch muscles examined at different temperatures. *J. Physiol.* **351**, 517--529.

Rome, L. C. & Sosnicki, A. A. 1990 The influence of temperature on mechanics of red muscle in carp. *J. Physiol.* **427**, 151--169.

Thorpe, S. K. S., Li, Y., Crompton, R. H. & Alexander, R. M. 1998 Stress in human leg muscles in running and jumping determined by force plate analysis and from published magnetic resonance images. *J. Exp. Biol.* **201**, 63-70.

Warner, G. F. & Jones, A. R. 1976 Leverage and muscle type in crab chelae (Crustacea: Brachyura). *J. Zool. Lond.* **180**, 57--68.

Warner, G. F., Chapman, D., Hawkey, N. & Waring, D. G. 1982 Structure and function of the chelae and chela closer muscles of the shore crab *Carcinus maenas* (Crustacea: Brachyura). *J. Zool. Lond.* **196**, 431--438.

Weis-Fogh, T. 1956 Tetanic force and shortening in locust flight muscle. J. Exp. Biol. 33, 668--684.

West, J. M., Humphris, D. C. & Stephenson, D. G. 1992 Differences in maximal activation properties of skinned

short- and long-sarcomere muscle fibres from the claw of the freshwater crustacean *Cherax destructor*. J. Muscle Res. Cell Motil. **13**, 668--684.

Wray, J. S. 1979 Structure of the backbone in myosin filaments of muscle. Nature 277, 37--40.

Zachar, J. & Zacharova, D. 1966 The length--tension diagram of single muscle fibers of the crayfish. *Experienta* **22**, 451--452.