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Appendix A Gradient estimation

The gradient estimation method here is a refinement of the one used in Ellner et al. (1997),

and is described in more detail by Ellner & Seifu (2000). The time series is smoothed by

fourth-order local polynomial regression (Fan & Gijbels, 1996), and the linear coefficient

of the fitted local polynomial at each observation time provides an estimate of the gradient

(i.e., the time derivative of population density). Because the measurement errors here are

small, a small bandwidth H is preferable; we used H = 0.5 d in all instances. (The

bandwidth enters the local regression model as follows: the fitted value at time ti is

obtained by weighted least squares polynomial regression of N(tj) or P (tj) on tj with

weights wij = exp(−((ti − tj)/H)2).) Even with such a small H the smoothing causes

some bias towards zero in gradient estimates (i.e., peaks and troughs are rounded off a

bit). To reduce the bias, we

• apply the estimation procedure to a spline interpolation of the data, for which the

exact gradient at any time can be computed numerically

• use nonparametric regression to estimate a bias-correcting curve (the mean exact

gradient as a function of the estimated gradients)

• un-bias the original gradient estimates by applying the estimated bias-correcting

curve.

The bias correction is quite small (at most about 10% for the data sets here) but in

simulation studies it can visibly improve the accuracy of fitted rate equations (Ellner &

Seifu, 2000).

The gradient is estimated from the whole time series, but in all analyses here the

estimates at the first two and last two observation times were deleted. Local polynomial

fits tend to “wag” at the “tails” of the data, because they are constrained on only one

side and therefore can chase after measurement errors in initial and final data points.

The region where this occurs can be identified by comparing the gradient estimates to

those obtained from local linear regression, which wags less due to the smaller number



of fitted coefficients. On the data here, fourth-order and linear local regression estimates

were nearly identical except at the first and last data points in each series. Trimming two

values at each end was a safety precaution, that sacrificed only a small fraction of the

data.

Appendix B Testing the conservation of mass as-

sumption

Taking the term Nf(Nδ) in equation (2) as known (i.e. using the logistic equation derived

in Figure 2), the prey equation rearranges to

g(N,P ) =
rN(1 −Nδ/K) − dN/dt

P
.

Evaluating this expression at sampling times ti gives a time series of estimated prey

mortality due to predation, ĝ(ti). The predator equation re-arranges to the form

h(Nτ , Pτ ) =
1

P

dP

dt
.

Given the abundances P and the estimated gradient dP/dt, we can then produce a time

series ĥ(ti). We then estimate the functions g(N,P ) and h(Nτ , Pτ ) by nonparametric

regression of ĝ(ti) and ĥ(ti), respectively, on (ni, pi) and (ni,τ , pi,τ ) (ni,τ is a shortcut for

N(ti − τ ), estimated by interpolation). The linear conversion assumption (together with

a constant predator mortality rate) is that h(N,P ) = eg(N,P ) − µ.

In order to maintain independence of the prey and predator equation for this com-

parison, we estimated τ from the predator equation alone by finding the value of τ that

yields the best prediction of 1
P
dP
dt

as a function of (Nτ , Pτ ). Very similar results were ob-

tained from several very different prediction methods: thin-plate splines (Wahba, 1990)

and kernel regression with a range of reasonable bandwidths (both fitted using the FUN-

FITS package, Nychka et al. 1998), and projection pursuit regression with smoothing

spline ridge functions (Roosen & Hastie (1994), fitted using the ASP package from Statlib

(lib.stat.cmu.edu)). The estimated delay times are τ = 0.3 d for series 11a, τ = 0.6 d for

series 12a, and τ = 0.1 d for series 14c. Only the results for series 14c were at all sensitive

to the prediction method, with the optimum τ varying between 0 and 0.2d, because the

goodness-of-fit was relatively constant over this range for any of the prediction methods.

Figure 3 shows the results from this way of assessing the linear conversion assumption,

using thin-plate splines with smoothing parameter selected by GCV2 to estimate h(N,P )

and g(N,P ). For each data series there is an approximately linear relationship in the

scatterplot of h(ni, pi) versus g(ni, pi), with a negative intercept corresponding to the



positive predator mortality rate. The scatter in the plots simply results from the fact that

the fitted two-dimensional functions g and h are not identical since both were estimated

from noisy data sets. We therefore interpret Figure 3 as supporting the linear conversion

assumption, at least as an acceptable first approximation within the accuracy of the data.

Note however that although series 11a and 14c are under the same growth conditions,

fitting 14c with the time-delay estimated for 11a increases the nonlinear discrepancy

between g and h.

Appendix C The linear optimization problem

Let (ti, ni, pi)1≤i≤q be the observed time series, and ni,δ (= N(ti−δ)), pi,δ the interpolated

delayed abundances. Based on equations (4) and with xi, yi being the estimated gradients

of prey and predator dynamics respectively, we define

Y =
(
x1 − r(1 − n1,δ

K
)n1, . . . , xq − r(1− nq,δ

K
)nq, y1, . . . , yq

)T
∈ R2q

θ = (β1, . . . , βm+d, µ)T ∈ Rm+d+1

W =




(c2
nn1)

−1 0
. . . 0

0 (c2
nnq)

−1

(c2
pp1)

−1 0

0
. . .

0 (c2
ppq)

−1




∈ R2q,2q

M =




0d,d 0 · · · 0 0d,1

0 α 0 0
...

. . .
...

0 0 α 0

01,d 0 · · · 0 01,1




∈ Rm+d+1,m+d+1

with cn = 0.417 and cp = 0.165. Using the spline base (5) with z = N , N/P or N/Pm,

we can write

Yi =
∑

j

Xijθj =




−ĝ(zi)pi 1 ≤ i ≤ q

eĝ(zk)pk − µpk q + 1 ≤ i ≤ 2q

=




−∑d

j=1 βjz
j
i pi −

∑m
j=1 βj+d(zi − νj)

d
+pi 1 ≤ i ≤ q

e
∑d
j=1 βjz

j
kpk + e

∑m
j=1 βj+d(zk − νj)

d
+ − µpk q + 1 ≤ i ≤ 2q



with k = i− q. The matrix X can thus be written as

X =




0

−B0
...

0

−p1

eBτ
...

−pq




∈ R2(q−1),m+d+1 with

Bτ =




n1,τp1 · · · nd1,τp1 (n1,τ − ν1)
d
+p1 · · · (n1,τ − νm)d+p1

...
...

...
...

nq,τpq · · · ndq,τpq (nq,τ − ν1)
d
+pq · · · (nq,τ − νm)d+pq


 ,

Bτ ∈ Rq,m+d. The delayed population densities are computed by cubic interpolation from

the observed densities (note that since we fitted on a reduced dataset (see Appendix A)

and constrained the delay to be below 1 day, no densities had to be extrapolated).

In this notation we have to optimize the problem

F (e, τ (,m)) = min
θ

[(Y −Xθ)TW (Y −Xθ) + θTMθ]. (C.1)

For the interpolated functions to be almost monotonic we require that ĝ(si+1) > ĝ(si)

(for some series si spanning the range of arguments of ĝ). We choose as the si’s the knots

plus the endpoints, which is sufficient for monotonicity when using linear splines (d = 1),

but even with the quadratic splines that we used this will give a reasonable form of the

reconstructed functional response. Replacing ĝ by equation (5) and requiring parameter

µ to be positive leads to a matrix inequality Cθ ≥ 0 with C ∈ Rm+2,m+d+1 defined by

∀i, Cij =





sji+1 − sji j ≤ d

(si+1 − νj−d)d+ − (si − νj−d)d+ d < j ≤ m + d

δi−2,j−d−1 (Kronecker function) i = m + 2 or j = m + d + 1

Minimization of equation (C.1) under the constraint Cθ ≥ 0 is a standard quadratic

programming problem.

This nonparametric reconstruction is implemented in R (a freeware implementation

of the S-language). The quadratic programming problem was solved with the contributed

library quadprog that is based on the standard LINPACK packages. The nonlinear opti-

mization problems were solved with the standard simplex algorithm in R (code adapted

from Press et al. 1992).



Appendix D Methods for selecting the value of α

Our first selection method was k-fold cross validation, KCV. In this method the data are

divided into nonoverlapping “blocks” (after rearranging the data in increasing order of

the value of the independent variable in the regression to avoid temporal autocorrelation

between blocks). The goodness of fit at a particular value of α is determined by repeat-

edly fitting the model to reduced data sets with one block omitted, and then generating

predicted values for the omitted block. The KCV fitting criterion is the weighted sum of

squared errors over all data points in all blocks. Ordinary cross validation (OCV) uses

blocks of size 1. The purpose of using larger blocks is to eliminate spuriously good fits

due to correlations in the data: a data point is not really “omitted” if the remaining

data set has a high probability of containing a nearly identical data point. Block sizes

were varied from 10 to 15 data points, each time estimating α by using a standard uni-

variate optimizer, and the final α was taken as the maximum of these estimates to avoid

overfitting.

The second method was by generalized cross validation (GCV, Wahba 1990). GCV is

an approximation to OCV, in the sense that the smoothing parameter selected by GCV

converges to that selected by OCV in the large sample limit. Following Nychka et al.

(1992) we used the modified GCV criterion GCV2, which slightly overpenalizes model

complexity in order to reduce the chance of spuriously overfitting. The GCV2 criterion

estimates the smoothing parameter as the value of α which minimizes the expression

GCV 2 =
MSE

(1 − 2ρ/n)2
,

where n is the number of fitted data points, MSE is the mean squared error, and ρ is the

trace of the smoothing matrix,

ρ = tr(X(XTWX + M)−1XTW ).

In the presence of correlated errors, the GCV2 criterion must be modified to

GCV 2 =
MSE

(1 − 2Φρ/n)2

(Altman, 1999), where Φ is a measure of the spatial autocorrelation in the regression

errors. If correlated errors are suspected, Φ can be estimated by making a pilot fit to the

data and estimating Φ from the spatial correlation function of the residuals from the pilot

fit (Altman, 1999). For our pilot fit we used the Hassell-Varley II functional response

and found little or no spatial autocorrelation in the residuals, so we used Φ = 1 for all

datasets. The risk in using a particular parametric model for the pilot is that if the model

cannot capture all of the structure of the data, residuals will have correlations (even if



the errors do not) and Φ will be overestimated. For our data this did not occur, as the

pilot fit led to Φ being set at the lowest possible value.

Appendix E Raw data

prey growth in isolation

========================

CC = 0.5

From Figure 2b in Veilleux 1976, see our Figure 2(a)

time (days) density (#ind./ml)

0.00 15.58

0.50 30.04

1.00 66.05

1.50 141.60

2.00 274.60

2.50 410.00

3.00 468.80

3.50 526.40

4.00 472.50

4.50 496.60

5.00 489.50

5.50 492.00

6.00 496.80

6.50 473.00

CC = 0.375

From Figure 2c in Veilleux 1976, see our Figure 2(e)

time (days) density (#ind./ml)

0.00 16.56

0.50 24.67

1.00 42.25

1.50 74.04

2.00 133.10

2.50 230.00

3.00 355.40

3.50 393.20

4.00 401.30

4.50 363.10

5.00 403.20

5.50 374.60

6.00 385.10

6.50 376.60



predator-prey interaction

=========================

CC = 0.5

From Figure 11a in Veilleux 1976, see our Figure 1(a)

time (d) prey(#ind/ml) predator(#ind/ml)

0.00 15.65 5.76

0.50 53.57 9.05

1.00 73.34 17.26

1.50 93.93 41.97

2.00 115.40 55.97

2.50 76.57 74.91

3.00 32.83 62.52

3.50 23.74 27.04

4.00 56.70 18.77

4.50 86.37 31.11

5.00 121.00 58.31

5.50 71.48 73.13

6.00 55.78 63.21

6.50 31.84 52.46

7.00 26.87 40.07

7.50 53.24 27.67

8.00 65.59 26.00

8.50 81.23 24.32

9.00 143.90 21.00

9.50 237.90 33.35

10.00 276.60 64.67

10.50 222.20 94.34

11.00 137.20 103.40

11.50 46.45 82.74

12.00 27.46 65.40

12.50 41.46 51.35

13.00 44.73 28.24

13.50 88.42 23.27

14.00 105.70 38.09

14.50 155.20 14.97

15.00 205.50 24.84

15.50 312.70 49.56

16.00 213.70 75.93

16.50 163.40 104.00

17.00 85.78 106.40

17.50 48.64 100.60

18.00 44.49 84.08

18.50 63.44 45.30

19.00 71.66 35.37

19.50 127.70 35.35



20.00 206.90 41.10

20.50 309.90 52.62

21.00 156.50 120.20

21.50 63.30 112.80

22.00 77.29 92.14

22.50 45.11 65.72

23.00 57.45 33.54

23.50 69.80 21.14

24.00 121.70 17.82

24.50 185.20 26.04

25.00 175.30 65.61

25.50 139.00 76.30

26.00 77.11 96.07

26.50 57.29 68.84

27.00 54.79 54.79

27.50 75.38 35.80

28.00 87.73 32.48

28.50 136.40 24.21

29.00 290.60 35.73

29.50 345.80 55.50

30.00 271.60 93.41

30.50 156.10 117.30

31.00 71.10 95.02

31.50 43.86 85.92

32.00 30.64 82.60

32.50 35.56 66.08

33.00 52.03 63.58

33.50 37.99 37.99

34.00 62.71 25.60

34.50 103.90 23.10

35.00 187.20 37.09



CC = 0.375

From Figure 12a in Veilleux 1976, see our Figure 1(b)

time (d) prey(#ind/ml) predator(#ind/ml)

0 61.21 3.448

0.5 86.21 3.448

1 94.83 5.172

1.5 138.8 9.483

2 212.9 9.483

2.5 302.6 10.34

3 346.6 14.66

3.5 311.2 24.14

4 212.1 38.79

4.5 162.9 63.79

5 93.1 91.38

5.5 63.79 78.45

6 67.24 47.41

6.5 80.17 30.17

7 87.93 14.66

7.5 106 18.1

8 131 20.69

8.5 175.9 24.14

9 223.3 19.83

9.5 274.1 23.28

10 283.6 27.59

10.5 233.6 41.38

11 180.2 55.17

11.5 162.1 69.83

12 125 57.76

12.5 105.2 51.72

13 111.2 38.79

13.5 128.4 31.03

14 113.8 28.45

14.5 129.3 16.38

15 133.6 8.621

15.5 149.1 12.93

16 182.8 18.1

16.5 200 19.83

17 225 27.59

17.5 201.7 34.48

18 176.7 57.76

18.5 150.9 42.24

19 129.3 34.48

19.5 124.1 11.21

20 132.8 13.79

20.5 161.2 15.52



21 203.4 20.69

21.5 235.3 25

22 212.9 37.93

22.5 184.5 50.86

23 150.9 53.45

23.5 137.1 51.72

24 123.3 38.79

24.5 126.7 35.34

25 131.9 25.86

25.5 156 10.34

26 184.5 15.52

26.5 240.5 25

27 256 39.66

27.5 219.8 56.9

28 220.7 45.69

28.5 193.1 22.41

29 150 9.483

29.5 161.2 6.897

30 179 8.621

30.5 196.6 10.34

31 223.3 16.38

31.5 243.1 28.45

32 254.3 43.97



CC = 0.5

From Figure 14c in Veilleux 1976, see our Figure 1(c)

time (d) prey(#ind/ml) predator(#ind/ml)

0 15.49 5.424

0.5 20.86 7.12

1 92.11 23.46

1.5 63.62 41.65

2 47.93 60.74

2.5 61.53 55.13

3 64.15 50.42

3.5 88.73 42.04

4 134.4 45.58

4.5 118.7 81.15

5 76.45 68.2

5.5 35.14 41.55

6 46.9 26.77

6.5 79.73 19.31

7 142.8 15.53

7.5 237.8 24.54

8 321.9 28.08

8.5 384.9 37.11

9 420.5 44.29

9.5 453.3 52.41

10 448.6 64.18

10.5 420.1 91.5

11 302.8 108.8

11.5 126 100.4

12 115.8 70.98

12.5 126.7 53.47

13 165.9 43.28

13.5 231.7 45.89

14 322.2 52.17

14.5 339.5 74.01

15 291.7 80.3

15.5 221.1 83.82

16 162.4 80.05

16.5 153.1 45.13

17 171.3 41.33

17.5 238.9 41.21

18 281.8 53.9

18.5 294.5 65.66

19 248.6 79.26

19.5 200.9 88.28

20 176 85.41

20.5 180.5 61.49



21 192.3 47.63

21.5 260.8 53.91

22 320.2 58.37

22.5 329.2 70.14

23 293.4 81.92

23.5 255.7 76.29

24 181.4 76.15

24.5 170.3 53.16

25 189.4 44.77

25.5 243.3 49.22
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