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Coexistence of competitive species is severely limited by the availability of resources and the characteris-
tics of the environment. In particular, the so-called `competitive exclusion principle’ states that, at
equilibrium, the number of coexisting species cannot be larger than the number of resources for which
they compete. However, many in situ observations have revealed prolonged coexistence of a large number
of competitive plankton species, a phenomenon known as `the paradox of the plankton’. Here we investi-
gate this problem and show that ocean mesoscale vortices generate transport barriers and incomplete
horizontal mixing, allowing for a prolonged survival of the less-¢t species, even for fully homogeneous
resource distributions. In such a situation, the temporarily less-¢t plankton species are protected from
competition by the action of the vortices.
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1. INTRODUCTION

In homogeneous and well-mixed environments, species
that compete for the same resources cannot coexist for
long time-periods. This observation is formalized by the
so-called c̀ompetitive exclusion principle’ (Hardin 1960;
Armstrong & McGehee 1980), which states that, at equi-
librium, the number n of coexisting competitive species
cannot be larger than the number k of limiting resources.
Even if the populations can randomly di¡use over the
whole available domain (Okubo 1980), the species char-
acterized by slower multiplication and/or lower survival
rate are rapidly eliminated until n4k.

The communities composing the phototrophic phyto-
plankton are an example of this type, as they compete for a
small number of potentially limiting resources, such as
diluted inorganic materials and light, particularly in the
summer (e.g. Phillips 1973). By contrast, many in situ obser-
vations have revealed prolonged coexistence of a large
number of competitive plankton species.This phenomenon,
known as `the paradox of the plankton’, was formulated
by Hutchinson almost forty years ago (Hutchinson 1961).

In the past, several possible solutions to the plankton
paradoxhavebeenproposed, includingspatialandtemporal
heterogeneity in the physical or biological environment,
incomplete mixing, and non-stationary (periodic or
chaotic) behaviour in the plankton dynamics (Richerson
et al. 1970; Levins 1979; Atkinson & Shorrocks 1981;
Powell & Richerson 1985; Sommer 1985; Muratori &
Rinaldi 1989; Tilman 1994; Truscott & Brindley 1994;
Huisman & Weissing 1999; Huisman et al. 1999;
Scheuring et al. 2000). In particular, externally imposed
or self-generated spatial segregation has been recognized
as a possible reason for the coexistence of competitive
species (Ives & May 1985; Britton 1989; Hassel et al.
1994).

In this work, we examine a scenario where horizontal
mesoscale turbulence, characterized by the presence of
coherent vortices, in£uences the fate of competitive

plankton populations. The vortices generate dynamic
transport barriers and allow for prolonged survival of
competitive species in an otherwise homogeneous envir-
onment. Clearly, vortices alone cannot assure an in¢nitely
long plankton coexistence, as species trapped inside
vortices will sooner or later come into contact with
species outside, due to small-scale turbulent mixing and
the ¢nite lifetime of the vortices themselves. However,
thanks to the shielding e¡ect generated by the vortex
cores, the less-¢t plankton species can survive for several
months, until environmental conditions (related, for
example, to the marching of the seasons) become more
favourable. Mesoscale features can also help to explain
the di¡erent (but somehow related) issue of plankton
patchiness (e.g. Denman & Platt 1976; Steele 1978), as
discussed by Flierl & Davis (1993), Smith et al. (1996),
Abraham (1998), and Spall & Richards (2000).

Long-lived coherent vortices do indeed permeate the
world’s oceans, as revealed by both observation (Hooker
& Brown 1994) and high-resolution numerical simulation
(Chassignet 1992; Paiva et al. 1999). Vortices play an
important role in the transport of material constituents
and dynamic quantities across the ocean, and a¡ect the
overall distribution of eddy kinetic energy (Siegel et al.
2000). The £ow model used here, known as quasi-
geostrophic turbulence (Pedlosky 1987), is a simpli¢ed
dynamical description of mesoscale ocean motions that is
characterized by the spontaneous emergence of coherent
vortices (McWilliams 1984, 1990; Babiano et al. 1987).
Coherent vortices are spatially localized patterns in the
vorticity ¢eld, with a long lifetime (hundreds of rotation
periods). Most of the energy and vorticity of the system is
concentrated in these vortices, which extend their in£u-
ence over large distances (Bracco et al. 2000).

It is known that coherent vortices a¡ect the dynamics
of advected tracers in several ways.Vortices act as barriers
to material exchanges between their cores and the
external background turbulence, and enhance transport
of constituents trapped in their interior (Elhma|« di et al.
1993; Provenzale 1999). This impermeability induces
strong inhomogeneities in the tracer distributions over
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long time-scales. In particular, ocean eddies have been
shown to trap plankton communities in their cores for
periods longer than one year (Ring Group 1981).

Here we show that the presence of coherent vortices
can slow down the selection process to time-scales that
are long enough to allow for the survival of competitive
phytoplankton species.

2. SIMULATED PLANKTON DYNAMICS

In the following,we adopt a mixed Eulerian^Lagrangian
description of the turbulent dynamics and integrate the
motion of plankton-carrying £uid elements in a £ow
representing the surface layer of the ocean. For simplicity,
we consider only two passively advected plankton species
that compete for a homogeneously distributed resource.

In our approach, vertical motions of the £uid elements
are not allowed. Thus, the £uid patches considered here
represent vertically integrated sample portions of the
surface mixed layer, and the model dynamics describe
large and mesoscale horizontal mixing by geostrophic
turbulence.

The time integration of the model proceeds as follows.
Each £uid element, labelled by j, is located at the position
(Xj, Yj) at time t. A generic £uid element contains two
competitive phytoplankton populations, called A and B,
that have concentrations aj(t) and bj(t), respectively. Note
that both species can be present in the same £uid parcel.

The £uid elements are advected by a turbulent hori-
zontal velocity ¢eld, u ˆ (u, v), that is a function of space
and time. The positions of the £uid elements evolve in
time as

dX ˆ u(X, t)dt, (1)

where dX ˆ (dX , dY) is the in¢nitesimal increment in
the position of the £uid parcel and dt is an in¢nitesimal
time increment. We keep a di¡erential notation instead of
the more standard time derivative because the velocity
¢eld can be a stochastic variable.

In the model, we make the simplifying assumption that
the concentrations aj and bj can change only at speci¢ed
time intervals (e.g. once a day due to the diurnal cycle),
when the two species compete and their concentrations
change due to the di¡erent reproduction and survival
rates. To practically implement the competitive dynamics,
at the selected time intervals we evaluate the local
concentrations of the two species on a spatial Eulerian
grid, as obtained by averaging the concentrations carried
by all the £uid elements that are inside a given grid cell
with size e, where e de¢nes the length of small-scale
homogenization. This leads to the de¢nition of two aver-
aged macroscopic concentration ¢elds ae(x, y, t) and
be(x, y, t), where (x, y) are the coordinates of the grid
points (i.e. geographical coordinates on the ocean
surface). The concentrations after competition are then
given by

a 0
e ˆ

¬ae

¬ae ‡ ­ be

,

b 0
e ˆ

­ be

¬ae ‡ ­ be

,
(2)

where ¬ and ­ are the multiplication rates. Clearly, the
species with the largest multiplication rate selects out the
other one. The new concentration in each grid cell is then
assigned to all the £uid elements contained inside that
cell, simulating di¡usion and homogenization on the
scale of one grid cell. Note also that the total concentra-
tion in each grid cell and for each £uid element is normal-
ized such that a ‡ b ˆ 1 at any time (however, the results
remain qualitatively the same if a ‡ b is normalized to
another constant or to a slowly decaying function of time,
for example representing mortality).

In the model considered here, the annual cycle of
planktonic ecosystems is not taken into account. In
nature, this cycle leads to the creation of a mixed layer at
the end of winter, followed by a phytoplankton bloom at
the beginning of spring. Then, during summer and fall,
phytoplankton growth is limited by the availability of
nutrients, and inhomogeneities in the environment can
dominate over bloom behaviour. In the present approach,
the role of turbulence is tested on time-scales of at most
six to nine months, corresponding to the period between
two subsequent spring blooms.

Clearly, the model assumptions are very crude. The
model, in particular, neglects sinking, incomplete vertical
mixing, relative grazing and interactions between
nutrient limitation and competition for light, even though
those factors can have a major impact on the species
compositions. However, the extreme simpli¢cation of this
model allows for clear elucidation of the basic e¡ects of
horizontal mesoscale structures on phytoplankton coexis-
tence.

3. THE FLOW MODELS

(a) Geostrophic turbulence
The equation that describes barotropic turbulence in

the quasi-geostrophic approximation (see Pedlosky (1987)
for a complete derivation) is

D!

Dt
ˆ

@!

@t
‡ J ‰Á, !Š ˆ D ‡ F, (3)

where D=Dt is the total advective derivative, J‰Á, !Š
ˆ @xÁ @y! ¡ @yÁ @x! is the two-dimensional Jacobian
operator, Á is the streamfunction and ! ˆ r2Á is relative
vorticity. The velocity ¢eld u ˆ (u, v) is given by
u ˆ ¡@yÁ and v ˆ @xÁ. The dissipative term D represents
horizontal eddy viscosity and it provides a parameteriza-
tion of both unresolved small-scale motions and large-
scale friction (see below). The forcing F represents an
energy input from large-scale motions.

Barotropic turbulence is characterized by a direct
cascade of enstrophy (the integral of squared vorticity, Z)
towards small scales and by an inverse cascade of kinetic
energy from small to large scales (Kraichnan 1967; Batch-
elor 1969). In this £ow, a random initial vorticity ¢eld
spontaneously evolves into coherent vortices that carry
most of the energy and vorticity of the £ow and dominate
the dynamics (McWilliams 1984, 1990). Figure 1 shows a
picture of the vorticity ¢eld after vortex emergence.

In the following, forcing is imposed at a given wave-
number kf, keeping the energy at this scale ¢xed in
time. Thus, inverse energy cascade is observed for
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k < kf and direct enstrophy cascade for k > kf. With this
type of forcing, vortices have a size close to the forcing
scale. The dissipative term is given by the sum of two
terms, D ˆ Dv ‡ Df . Here Dv is a hyperviscous term
acting at small scales, Dv ˆ ¡¸r8r2Á where ¸ is the
viscosity coe¤cient, and Df is a friction term,
proportional to Á, which acts at the largest scale to
dissipate the energy piled up by the inverse energy
cascade. Forcing and dissipation are balanced to give a
statistically stationary turbulent £ow. In this system,
plankton-carrying £uid elements are advected by using
equation (1).

Equation (3) is numerically integrated on a doubly
periodic square domain with size L ˆ 2º by using a
pseudo-spectral code with standard 2=3 dealiasing and
2562 collocation points (see Canuto et al. (1987) for
details of the numerics). The forcing wavenumber is
¢xed as kf ˆ 10, and dissipation and forcing are kept as
small as possible to achieve a large Reynolds number.
The time integration of the vorticity ¢eld is performed
by a third-order Adams^Bashforth scheme. When the
£ow has reached statistical equilibrium between forcing
and dissipation, 2562 plankton-carrying £uid elements
are uniformly released in the domain. The motion of
the £uid elements is integrated by using a third-order
Adams^Bashforth time integration scheme and a third-
order spectral spline interpolator for a total time
T ˆ 20.

To obtain a physical estimate of the time- and space-
scales of the model, we recall that the typical eddy-
turnover time Te in the ocean is about 8 days. In the
present simulation, Te ˆ Z¡1=2 º 0:25. Comparing the
two values, we ¢nd that one adimensional time unit of the
model corresponds to a physical time-span of one month.
In physical units, the total integration time is thus
T º 20 months. The physical length-scale can be deter-
mined by recalling that the typical forcing scale in the
ocean is of the order of 50 km. Since kf ˆ 10 in the
model, the physical size of the integration domain can be
¢xed as L º 500km, and one grid spacing corresponds to
about 2 km.

(b) Random walk
Together with vortex-dominated, self-consistent geo-

strophic turbulence, we also consider two standard homo-
geneous stochastic models (see Gri¡a (1996) for a review)
in order to have test cases of plankton dynamics in
unstructured turbulence. The continuous limit of these
models leads to various forms of standard reaction^
di¡usion dynamics.

The ¢rst stochastic model we consider is a classic
`random walk’, and it assumes that the tracer position is a
Markov variable. The equation that describes the tracer
motion can be written as

dX ˆ udt,

du ˆ (¼2=TL)1=2dw.
(4)

Here dX is the total displacement of the particle during
the time dt, du is the velocity increment, ¼2 is the velocity
variance, TL is the average Lagrangian integral time-
scale and dw is a random increment extracted from a
normal distribution with hdwi ˆ 0 and hdwi(t) dwj(t 0)i
ˆ 2¯i, j ¯(t ¡ t 0) dt, where the subscripts indicate vector
components and h¢i indicates ensemble average.

The second model, usually referred to as an Ornstein^
Uhlenbeck process, assumes that the particle position X
and the turbulent velocity u are jointly Markovian. In
this case, the advection equations become

dX ˆ udt,

du ˆ ¡ 1
TL

udt ‡ (¼2=TL)1=2dw,
(5)

where u is drawn from a Gaussian distribution with zero
mean and variance ¼. This stochastic process has been
shown to provide an approximate description of the
second-order particle statistics in the upper ocean (Gri¡a
1996), although it does not capture the e¡ects of vortex
dynamics (Pasquero et al. 2000).

For consistency, we ¢x the values of ¼2 and TL in the
stochastic models equal to those obtained from the
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Figure 1. Vorticity distribution at the time when plankton-
carrying £uid elements are released. The grey scale indicates
relative vorticity.
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Figure 2. Distribution of ae(x, y, t) at time t ˆ 10 º 10
months after release, as indicated by the grey scale. Black
patches contain only species A; white patches are dominated
by species B.



gostrophic turbulence simulation. In particular, the
average Lagrangian integral time-scale is de¢ned as

TL ˆ
…1

0

R…t†dt, (6)

where R(t) is the ensemble-averaged Lagrangian velocity
autocorrelation, i.e.

R…t† ˆ lim
T !1

1
¼2

…T

0

hu(t) ¢ u(t ‡ t)dti, (7)

where the average h¢i is taken over the ensemble of £uid
elements advected by the barotropic turbulent ¢eld.

4. RESULTS

In the following, we discuss the dynamics of the two
competitive plankton populations A and B, advected by
the di¡erent types of turbulent models described in ½ 3.

The competitive dynamics start with all £uid elements
in 0 < x < L=2 occupied by species A (here, ae ˆ 1 and
be ˆ 0 at t ˆ 0) and elements in L=2 < x < L occupied by
B-type entities (here, ae ˆ 0 and be ˆ 1 at t ˆ 0). We
choose the species A to be the competitively inferior one,
i.e. ¬=­ < 1.

Figure 2 shows the concentration ¢eld ae(x, y, t) at
time t ˆ 10 º 10 months for the case of geostrophic
turbulence, with e ˆ 1 grid spacings (physically, this
corresponds to di¡usive plankton homogenization on
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Figure 3. Time evolution of the average concentration of species A for advection: by geostrophic turbulence, equation (3) (solid
line); by the Ornstein^Uhlenbeck process, equation (6) (dashed^dotted line); and by the Brownian random walk, equations (5)
(dashed line). The values of the parameters are as follows: (a) ¬=­ ˆ 0:9 and e ˆ 1 grid spacings; (b) ¬=­ ˆ 0:67 and e ˆ 1 grid
spacings; (c) ¬=­ ˆ 0:9 and e ˆ 2 grid spacings; (d) ¬=­ ˆ 0:67 and e ˆ 2 grid spacings.



scales of about 2 km) and ¬=­ ˆ 0:9. After several
months, A-type entities are still concentrated inside the
coherent vortices that were initially in 0 < x < L=2 and
in the vorticity ¢laments generated during vortex^vortex
interactions. During this time, the vortices have moved
around in the whole domain. Due to the strong vorticity
gradients present on their edge, the vortices have acted as
transport barriers, protecting the A-type weaker plankton
present in their cores from competition with the other
species. This, in turn, allows for a prolonged survival of
the less-¢t species.

By contrast, the less-¢t species survives for a much
shorter time when unstructured stochastic advection is
considered. To provide a quantitative comparison of the
di¡erent cases, in ¢gure 3 we show the time evolution of
the average concentration of A for di¡erent values of ¬, ­
and e, for the three types of advection discussed above. In
panels (a) and (b), e is one grid spacing. The ratio ¬=­ is
(a) 0:9 and (b) 0:67. In panels (c) and (d), e is set equal to
two grid spacings, again with ¬=­ ˆ 0:9 and 0:67.
When tracers are advected by Brownian motion or by
an Ornstein^Uhlenbeck process, the concentration of the
species with the lower multiplication rate decreases
rapidly, and the less-favoured plankton population is
soon eliminated. After just a few months, the average
concentration of A in the turbulent mesoscale £ow is
already much larger than for random advection. At
t º 10 months, for random dispersion with no coherent
vortices, the system is homogeneously occupied by B-
type entities.

We performed several simulations, varying the homo-
genization range e, the ratio ¬=­ and the time interval
between subsequent competition events, ¢nding analo-
gous results. For all values of ¬=­ that we considered, the
concentration of the population with the lower multiplica-
tion rate mantains a signi¢cant level for a longer time
when it is advected by geostrophic turbulence. The value
of the homogenization range e is more critical, because
the survival of the less favoured population is signi¢cantly
shortened as e grows beyond a few kilometres. All
together, these results indicate that when small-scale hori-
zontal plankton homogenization is con¢ned below about
5 km and mesoscale advection is dominated by vortex
dynamics, the less-¢t species can survive over relatively
long time-scales (about ten months) inside the coherent
vortices.

5. CONCLUSIONS

In this work, we have studied the dynamics of di¡erent
planktonic species that are in competition for the same
resources, and we have explored the role of mesoscale
vortices in the advecting £ow. We have shown that
coherent vortices in a turbulent environment can lead to
strongly non-uniform spatial planktonic patterns and to
prolonged survival of competitive species, preventing the
less-¢t species from being driven out completely during
the most critical months. Because in real ecosystems the
environmental conditions vary in space and time, a
weaker competitor at a given location in one year can
become the stronger one in the following year or in
another place. Thus, competing phytoplankton, with the
help of mesoscale vortices, can remain in non-equilibrium

coexistence on very long time-scales. On the contrary,
horizontal dispersion by unstructured random walks
with mixing-length step size with a homogeneous
resource distribution is not able to sustain the great
number of coexisisting planktonic species observed in
oceanic surface waters, leading to disappearance of the
less-¢t species on time-scales that are presumably shorter
than those associated with the varying environmental
conditions. This provides a further indication of the
important dynamical role that coherent vortices play in
the ocean.
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