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Typically, in many studies in ecology, epidemiology, biomedicine and others, we are confronted with
panels of short time-series of which we are interested in obtaining a biologically meaningful grouping.
Here, we propose a bootstrap approach to test whether the regression functions or the variances of the
error terms in a family of stochastic regression models are the same. Our general setting includes panels
of time-series models as a special case. We rigorously justify the use of the test by investigating its
asymptotic properties, both theoretically and through simulations. The latter confirm that for finite
sample size, bootstrap provides a better approximation than classical asymptotic theory. We then apply
the proposed tests to the mink-muskrat data across 81 trapping regions in Canada. Ecologically inter-
pretable groupings are obtained, which serve as a necessary first step before a fuller biological and

statistical analysis of the food chain interaction.
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1. INTRODUCTION

Following Elton’s (1924) pioneering work, one of the key
issues in ecology has been to understand the mechanisms
underlying the periodic population fluctuations of
northern regions. For terrestrial vertebrates such as
microtine rodents and the Canadian snowshoe hare,
attention has recently been focused on the food chain
interaction (e.g. plant-herbivore and predator—prey inter-
actions) as a possible explanatory mechanism (see Hanski
et al. 1993; Krebs et al. 1995; Stenseth et al. 19964, 1997,
1998a). Such food chain interactions are typically
nonlinear (May 1981, 1986), which may reflect the so-
called phase dependence due to, among other things, the
different hunting (or escaping) behaviour of the predator
(or the prey) at different stages of the population cycle
(Framstad et al. 1997; Stenseth et al. 1998b). It is therefore
an important question whether the food chain inter-
actions may be grouped according to exogenous factors
such as habitat (see Stenseth et al. 1999). Often we have
only partial information on the food chain interactions.
For example, there is a general lack of data on both
predator and prey from the same area and over the same
time-period. As a result, many statistical analyses of food
chain dynamics rely on formulating models in delay coor-
dinates based on either the predator or the prey data only
(see, for example, Stenseth 1999). The time-series model-
ling of Canadian lynx data is a typical case in point (see,
for example, Tong 1990, § 7.2).

Here we study the annual numbers of muskrats
(Ondatra zibethicus) and minks (Mustela vison) caught over
81 trapping regions in Canada for a period of 25 years
(see Erb et al. 2000). The data are extracted from the
records compiled by the Hudson Bay Company on fur
sales at auction in the period 1925-1949. Such data are
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typically referred to as panel time-series since we have
parallel series during the same time-period over 81 posts
(see, for example, Baltagi 1995). Any approach to model-
ling the mink-muskrat time-series inevitably faces the
difficulty of having only 25 points vis-a-vis a cycle length
of, for example, around ten years. 1o perform a more
powerful analysis based on a larger sample size, the first
important step is to pool the data from those regions that
share a common or similar structure. In fact, this is a
typical problem within the field of ecology because
population abundance data are often available only for a
relatively short time-span. However, sometimes, several
such time-series of data referring to more or less the same
ecological process do exist. Another similar example is
the Hokkaido grey-sided vole data analysed by Hjellvik
& Tjostheim (1999) (see also Stenseth e al. 19966;
Bjornstad et al. 1996, 1998; Lindstrom et al. 1998). To
perform a more powerful analysis based on a larger
sample size, it is essential to pool the time-series data
from those regions that share a similar dynamic
structure.

The mink and muskrat data constitute an exceptional
set of field data, in that we have information on both prey
(the muskrat) and its key predator (the mink) (see
Errington 1961, 1963). These data sets therefore offer a
unique opportunity to carry out systematic statistical
analyses aimed at a deeper understanding of the ecological
interaction from a quantitative point of view. Figure la
shows the locations of the 81 posts, most of which are
located in the so-called boreal forest. Figure 14 depicts the
time-series plots of the mink and muskrat data from eight
randomly selected posts. Most series exhibit cycles with a
period of around ten years (see, for example, Erb e al.
2000). There exists a clear synchrony between the
fluctuations of the two species with a delay of about one or
two years. The ecological interaction between the two
species may differ from one region to another, not least in
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Figure 1. (a) A map of 81 trapping posts for the mink and the muskrat in Canada in 1925-1949. (5) Time-series plots of mink
and muskrat data (on the natural logarithmic scale) from eight randomly selected posts. Solid lines and squares, mink; dashed

lines and circles, muskrats.

opportunities for the muskrat to hide and thereby avoid
the chance of being preyed upon by the mink. Hence, the
mink-muskrat data provides us with both the motive and a
testing ground for developing tests for common structure.
Whereas asymptotic results for large data sets are avail-
able, the problem of testing for common structure in small
data sets has received little attention. In this paper, we
develop a new statistical test based on a bootstrap
approach that serves exactly this purpose. The bootstrap is
known to be a particularly powerful tool for data analysis.
Its good performance in many important statistical
problems such as estimation and model fitting has been
established by theoretical analyses, by simulation studies
and by applications to real data (see, for example, Efron &
Tibshirani 1993; Shao & Tu 1995).
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Within a general setting of regression models, we will
perform tests of homogeneity in the regression functions
and the variances. We justify the applicability of the boot-
strap methods by showing that the asymptotic bootstrap
distributions are indeed the asymptotic distributions of
the test statistics under the null hypotheses. We conduct
simulations for a set of linear models, which show that for
finite sample sizes the bootstrap provides better approxi-
mation to the distributions of the test statistics than
classical asymptotic theory.

The paper is organized as follows. In §2 we introduce
the statistical hypotheses of common structure and the
bootstrap tests. The application to the Canadian mink—
muskrat data is presented in § 3, where we also touch on
the identification of regions for which the mink and the
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muskrat interact with each other in a similar manner,
although this is not the main focus of this paper. The
asymptotic results, which rigorously justify the use of the
test, are given in two appendices. Numerical examples
using simulated models are reported in Appendix C.

2. TESTS FOR COMMON STRUCTURE

(a) Test statistics
Consider p regression models

y‘ik:m<Xik79k)+Eik> izl:"';”k;kzla"'ap>

(1

where 7;, is a random variable, X, is a ¢ X | random
vector, the functional form of m is known from biological
theory, 6, is an unknown d x 1 parameter vector (6,
stands for the autoregressive parameter in the mink—
muskrat dynamic model in §3 below), {{e;},
k=1,...,p} are p independent stochastic sequences
with mean zero and variance

Var(ey) = 0. (2)

Note that for an autoregressive time-series model the set
of covariates consists of lagged values of the response vari-
able, i.e. Xy = (Vi - o o5 Vimgy)™

A common structure implies that the parameters in the
regression functions and the error variances are the same.
Thus, we formulate two null hypotheses:

H0391=...=9/,, (3)

Joioi= ... =0 (4)

Under the assumption of normality of &, classical
statistical theory provides us with the log-likelihood ratio
statistics for testing H, and J,. These are, respectively,
given by

,) A A
Ty ="y milog S;(0) —logS.(0,)}, ()

k=1

r v .
75 =ntog {u 30 5.0} = Yo loghi s, (6
k=1 k=1

where n=n+ ... +mn, § stands for the sums of
squares of error
ny
Si(0) =D Ty — m(X,,0)), (7)
i=1
ék = arg mgin Si(0), (8a)
n 14
f = arg min > m log{S,(0)}, (8b)
=1

where ék is the least-squares estimator of the parameters
of the kth individual model and 6 is the weighted least-
squares estimator based on an overall model.

The standard theory of likelihood ratio tests entails
that 7j and T are both asymptotically y*-distributed
under H, and J,, respectively. In fact, this asymptotic
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property still holds under a more general condition
(theorem Bl in Appendix B). In most cases, the least-
squares estimation in equations (8) involves solving a
nonlinear optimization problem. We adopt the downbhill
simplex method (Press et al. 1992, chapter 10.4) for the
simulations and applications reported in this paper.

We now develop the bootstrap testing approach for
both testing problems where we make use of the likeli-
hood ratio test statistics evolving from classical normal
theory.

(b) Bootstrapping

(1) Bootstrapping for testing H,
Let
Vi = m(Xy, é) + e

=1, .., k=1,...,p,

(9)
where 6 is the estimate given in equation (86) from the

pooled data from all p models. The {e},} are independent
samples from the empirical distribution of the centred

residuals {€;, — &,, i =1, ..., n;}, where

Eip = Vip — m(Xy, é/f)? (10a)
1 n

E=— & (108)
-

and ék is the least-squares estimator in equation (8a). It
can be seen that E(ETkI{)(Z-]- ry}) =0.

We define a bootstrap statistic 7, in the same way as
Ty in equation (5) with {Xj,, 1} replaced by {X;, 1}
We reject Hy if Ty is greater than the upper a-point of
the conditional distribution of T given {Xj, ¥i}. The
latter can be evaluated via repeated samplings from equa-
tion (9). In fact, the p-value of the test is the relative
frequency of the event {7, Ty} in the bootstrap repli-
cations.

(1) Bootstrapping for testing
We generate bootstrap samples from the equation

i:l,...,nk;k:h...,p,

(11)
where ék 1s given as in equation (8a), and {6;} are inde-

pendent samples from the empirical distribution of
{€xi=1,...,m}, and

Y 1/2
Eix :5'/;]{2&12/10} (Ex — &) (12q)
=1
. 1 <N L -
i =— (i —E1)% (12b)

L

where £;, and &, are given as in equation (10). We define
{€;+} in such a way that the null hypothesis 7, holds under
model (11). It can be seen that

E(el 11X,

¥y} =0, (13a)
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Var(e] l{X;, 1)) = ot = (13b)

)4
> 6.
=1
We define a bootstrap statistic T; in the same way as
75 in equation (6) with {Xj, ¥;} replaced by {X, Vo
We reject Jj if T is greater than the upper a-point of the
conditional distribution of T; given { Xy, ¥, ).
The use of the bootstrap tests 1s justified rigorously by
theorems Bl and B2 (Appendix B), which state that the
asymptotic conditional distribution of T (or T;,) 1s

almost surely equal to the asymptotic distribution of 7
(or T5) under hypothesis H, (or J).

| =

3. CANADIAN MINK-MUSKRAT DATA

(a) Classification

In this section, we aim at classifying the time-series
from the 81 trapping posts shown in figure la into a
smaller number of groups, such that within each group
the mink and the muskrat interact in a similar manner.
Before applying techniques of cluster analysis, we need to
formulate an ecological model to describe the mink—
muskrat interaction. Based on the food chain interaction
model developed by May (1981), Stenseth et al. (1997)
proposed a deterministic model to describe the predator—
prey interaction, namely

{ X —
T, 1
where X, and 7, denote the population abundances, on a
natural logarithmic scale, of a prey and the predator at
time ¢, @;(+) and b;(-) are non-negative functions, and 6, is
an indicator representing the regime effect at time ¢
which 1s determined by X, and/or ¥,. Biologically
speaking, «,(0,) and b,(6,) reflect the within species
regulation whereas a,(0,) and b,(0,) reflect, among
others, the food chain interaction between the two species
(see, for example, Stenseth et al. 1997, 19984), and a,(6,)
and b, (6,) are the intrinsic rates of changes. The imple-
mentation of the above food chain models for the purpose
of data analysis has been facilitated by using a threshold
to reflect the regime effect (see, for example, Stenseth
1999). Successful applications of this strategy include
Framstad et al. (1997), Stenseth et al. (1998a,b) and Chan
et al. (1997). Accordingly, we model the population abun-
dance of mink at year (¢+1), i.e. ¥,,;, as a threshold
regression on its lagged value ¥, and the population
abundance of muskrat at year ¢ i.e. X,, with a threshold
on X,. The implied model in which ¥, is moved from the
left-hand side of the equation to the right-hand side, with
added random noise, has the form

X, =ay0,) —a,(0,)X, —a,(0,)7,,

Y, = by(0,) — b, (0,) 1, + by(6,) X,, (14)

if X <7,

_ bio+ b1 Y, + b1, X, + ¢
Yipr = { if X, >, (13)

bog + b1 ¥, + b X, + ¢,

where 7 1s the threshold that divides the state space into
two regimes called the lower and the upper regime,
respectively. It is easy to see from the second equation in
(14) that in the above model, both b, and by, should be
non-negative. The following analysis is based on model
(15), where we model the mink as a function of the
immediate lagged values of both mink and muskrat.
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Assuming a model of the form (15) for each of the 81
posts, we apply the bootstrap tests for /7, and J, to each
possible pair chosen from the 81 posts. For each test, we
search for the threshold r among the 60% inner sample
range of X,, and we replicate bootstrap sampling 400
times. Because the p-values across different tests are not
always directly comparable in the sense that smaller p-
values do not necessarily imply stronger statistical
evidence against null hypotheses across different tests (see
Gibbons & Pratt 1975), we introduce the following simi-
larity measure for each pair
DT, T°) = e (16)

P+ {(T = p(T7)) Y /o*(T7)

where T is the test statistic defined as in equation (5), 7"
denotes its bootstrap counterpart, and p(7 ") and o*(T")
are the conditional mean and the conditional variance of
T" given the original observations. In the above expres-
sion, (-), denotes the truncation at zero, i.e. (x), equals x
if x >0 and zero otherwise. Without this truncation,
D(T,T") is the data depth defined by Mahalanobis
(1936), which measures the depth (or the centrality) of a
given point 7T with respect to the (conditional) distribu-
tion of T (see also Liu & Singh 1997). We truncate
(T — ps) because our tests are one-sided.

Testing H,, involves solving a nonlinear optimization
problem for each replication of the bootstrap, which is
time consuming, especially if we also conduct a genuine
search for the threshold parameter . To speed up the
calculation, we assume in the test for H, that the
threshold parameters are given in the bootstrap replica-
tions and are equal to their estimated values from the
original data.

The next step is to perform the classification. There are
several alternatives and we describe below one feasible
method. A full development of optimal classification lies
outside the scope of this paper. Because the data are the
numbers of furs sold in the market, it is conceivable that
different posts have different sampling weights. Therefore,
we first standardized the mink series and the muskrat
series separately for each post; i.e. we subtract the mean
from original data and then divide them by the standard
deviation for each series with length 25. We apply the
following grouping strategy:

(1) apply a test for common structure for each pair
among the 81 posts based on the threshold regression
model (15),

(11) form a similarity measure for each pair based on the
above test using the modified Mahalanobis’ data-
depth (16),

(1i1) group the posts by the complete linkage method
(cluster analysis; see, for example, Sharma 1996,
chapter 7.5).

We use the complete linkage method in order that all
the posts in each cluster have a similar structure in the
sense that the similarity measure between each pair
within each cluster is as large as possible. The discrepancy
in the regression functions across different posts is larger
than the one in the variances. Further, the posts may be
divided into three to seven clusters according to the simi-
larity in the regression functions. Figure 2 presents the
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Figure 2. Classification of mink—muskrat posts based on tests
for hypothesis H,. Locations of the posts labelled according to
the classification with (a) six clusters, and () three clusters.
(¢) Locations of the posts in the three selected groups from (5).
Posts not in the groups are plotted without labels.

geographical map (using the longitude—latitude conven-
tion) of the classification with six clusters in figure 2a and
three clusters in figure 2. In figure 26, the majorities of
clusters 1, 2 and 3 are located in the western, middle and
eastern area, respectively. This grouping has a clear
geographic component and is therefore interesting from
an ecological point of view (see Stenseth et al. 1999).
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Figure 3. Classification of mink—muskrat posts based on tests
for hypothesis 7. Locations of the posts labelled according to
the classification with (a) five clusters, and (4) three clusters.

However, we may also divide the posts into three to
five clusters according to the discrepancy in the variances.
Figure 3 presents the two maps for such classifications
with five and three clusters respectively. It seems that
geographical location plays a less active role in deter-
mining the discrepancy of the variances.

(b) Fitting the pooled data

As an illustration, we report the results on modelling
the pooled data for three selected groups, which consist of
posts in clusters 1, 2 and 3 in figure 25. Specifically, group
1 consists of the western posts in cluster 1, group 2 consists
of the middle posts in cluster 2, and group 3 consists of all
the eastern posts that belong to cluster 3. The locations of
the posts in the three groups are shown in figure 2c.
Model (15) is fitted to each group where the data is
pooled from the posts within these groups. The para-
meters are estimated by least squares and the threshold r
is searched within the 60% inner sample range. The esti-
mated variance of noise 42 is defined as the sum of
squares of residuals divided by the sample size N minus
seven (corresponding to seven free parameters in the
model). The results are summarized in table 1. The stan-
dard errors of the estimated coeflicients are reported in
parentheses, which are calculated under the assumption
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Table 1. Fitting mink model (15) to the data in the selected groups

group N regime intercept coeflicient of ¥, coefficient of X, r I

1 432 lower —0.14 (0.11) 0.48 (0.05) 0.36 (0.08) —0.35 0.41
upper —0.12 (0.06) 0.63 (0.04) 0.18 (0.08)

2 720 lower —0.28 (0.12) 0.11 (0.05) 0.35(0.09) —0.58 0.46
upper —0.07 (0.04) 0.43 (0.04) 0.53 (0.05)

3 216 lower —0.46 (0.18) 0.64 (0.10) —0.03 (0.15) —0.26 0.65
upper 0.15(0.11) 0.45 (0.10) 0.06 (0.14)

Table 2. Fitting mink model (1) to the data in the western and central areas

area N regime intercept coefficient of 1, coeflicient of X; r &2

western 667 lower —0.31 (0.09) 0.39 (0.05) 0.25 (0.08) —0.35 0.44
upper 0.09 (0.05) 0.61 (0.04) 0.20 (0.06)

central 989 lower —0.19 (0.11) 0.27 (0.05) 0.29 (0.08) —0.57 0.46
upper —0.09 (0.03) 0.45 (0.03) 0.53 (0.04)

that the threshold r is given (see Tong (1990) for an
asymptotic justification).

The estimated coeflicients of X, are almost always posi-
tive. This reflects the fact that a large muskrat population
will facilitate growth of the mink population, although
the intensity of the increase is stronger in the middle core
boreal forest (group 2) than in the western and eastern
groups (groups 1 and 3). In fact, the food chain inter-
action of muskrat on mink is at its weakest in the eastern
arca where there may be a larger array of prey species for
the mink to feed on. It should first be observed that the
values of the estimated parameters are consistent with the
predator—prey interaction specified in model (14). Our
parameter estimates do specifically support an earlier
suggestion (e.g. Errington 1961, 1963) that the mink and
the muskrat relate to each other in a specialized food
chain manner.

The coeflicients of ¥, in model (15) correspond to the
degree of self-regulation. The smaller are b, and b,;, the
stronger is the self-regulation. Hence, we may conclude
that the weakest self-regulation in the mink is found in
group 3. The strongest self-regulation within the mink
population is found in group 2, where also the depen-
dency on the muskrat in general is the largest. This
suggests that group 2 corresponds to the region where
there exists the closest predator—prey interaction between
the mink and the muskrat. It seems plausible that this
group corresponds to the core habitat of the muskrat in
the boreal forest of Canada.

To reinforce the above analysis, we repeat the fitting for
the pooled data from all posts in each of the western and
central areas (without deleting the ‘outliers’). The sample
size 1s now 667 for the western area and 989 for the
central area. The results are reported in table 2.
Comparing it with table 1, the fitted models are not
adversely different from the models based on the selected
groups. The basic pattern described before is unchanged.

The threshold r defines the phases: the lower regime
corresponds to the low and early increase phase, whereas
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the upper regime corresponds to the peak and decrease
phase. Table 2 shows a clear phase dependency (see
Framstad et al. 1997, Stenseth et al. 1998b) where the
coefficients of the two regimes are significantly different
for each of ¥, and X,. The only exception is group 3
where the coeflicients of X, are very close to zero. The
results for group 3 are different from those of the other
two groups. In the light of what is known about this
region, this should not be surprising: not only is there a
larger array of prey species for the mink to feed on
(making it less dependent on the muskrat), but also it is
observed that foxes have a much more pronounced influ-
ence on the entire system of this region (e.g. Elton 1942).

4. CONCLUSIONS

By combining the information in panels of short time-
series, we have been able to deduce the structure of the
ecological process, which in our example is the predator—
prey interaction between muskrat and mink over most
parts of Canada. We have also deduced the existence of
three ecological zones, each of which is characterized by
different parameters in the ecological model. In the
follow-up papers we will explore the ecological implica-
tions of the observed common ecological structure within
the three regions. Over and beyond the ecological insight
deduced from the model-fitting (briefly summarized in
§3(b)), we believe that our approach is of general interest
and of wide applicability to the analysis of ecological and
epidemiological time-series (both focusing on population
biological processes) and to other fields wherever we are
faced with panels of short time-series that share a
common or similar underlying structure.

There has been a huge amount of literature on
analysing panel data in econometrics (see, for example,
Baltagi (1995) and references therein). In this paper we
have focused specifically on the issue of population
dynamics (as exemplified by the muskrat-mink inter-
action in Canada). It is our hope that the approach



developed in this paper will be of general applicability
beyond the field of population biology. Indeed, we believe
that the interplay between statistics and the areas posing
difficult scientific problems may be greatly and mutually
beneficial. Through the example used in this paper, we
have shown the great merits of such work within the field
of population ecology.
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Table Cl. The specification of the simulated models
model a X, e &
() 1 N(O, 1) N(0,0.25) J\’(O, 1
(2) 1 ulo, 1] Ul-1,1] [—/3, V3]
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(4) 0 uo,1) N0, 1) N0, 1)
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APPENDIX A. REGULARITY CONDITIONS

We always assume that n, =fn for some fixed
€ (0,1) whenn — o0, k=1,...,p.

(a) Condition Al

{{ex), k=1, ..., p} are p independent sequences. For
each fixed £, {Xj, 13} is jointly strictly stationary, and
{ei+} 1s a sequence of independent and identically distrib-
uted random variables with E(e;) = 0 and Var(sik) = o}.

Furthermore, ¢; is independent of {X),, j < ¢} for each ¢

and £.

J/C)

(b) Condition A2
All the second-order partial derivatives of m(z, 8) with
respect to 6 exist, and

Eler}lj] (Xrll(; ek)m ( s9.,k> 9&) ( 53,k 0/() m;, (Xu,k; 0/()'

<00,

for 1 <ji<d, 1<s (A1)

s <moand 1 <

k<p,

where m;(x,0) denotes the partial derivative of m with
respect to the ith component of 6.

(c) Condition A3

Lk(9> = EGL{Ylk - m(Xlk, 9)}2. Then aLk(9>/89 =0 if
and only if § = 6,, and
0°L,(6)
0 k=1,...p.
9000 |,_, SRR
Further, for L(0) =Y"_ t,log{L,(0)}, there exists a

unique 6, under hypothesis H, for which

oLe)| 9L (0)
0 |y~ o000 |, "

(d) Condition A4
For k=1,...,p Egk(|6lk|4+”)<oo, where 7 >0 is a
constant.

(e) Condition A5

For each 1 < £ < p, {X};} is ergodic, i.e. for any measur-
able f,
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1 & a.s.
=D SXu) = By (X)) as g — 00,
k=1

provided Ey | f(X;)] < o0.

(f) Remark Al

It is easy to see that 0L, (0)/00 =0 if 0 =0,. The
assumption that 6, is its unique root (as well as the
uniqueness of 6, ) in condition (A3) is imposed to simplify
the proof and is not essential.

APPENDIX B. ASYMPTOTIC PROPERTIES

We now present some theoretical properties of our
tests. Theorem Bl states the asymptotic distributions of
the test statistics under their null hypotheses; theorem B2
presents the results for their bootstrap counterparts. The
proofs of the theorems are available upon request. We
always assume in this section that the regularity condi-
tions listed in Appendix A hold.

(a) Theorem Bl
As the sample size 7 tends to oo:

(i) Ty converges in distribution to a y’-distribution
with (dp — d) degrees of freedom under hypothesis
H;

(ii) 75 converges in probability to the quadratic form
U™ ¢ U under hypothesis 7,, where U is a d x | stan-
dard normal vector, and ¢ = (p;) is a pxp
symmetrical matrix with

1 —1

vi = (enfo)ty — 13,
1
iy = =5 () By ((erifor)'y = 11

i %]

Further, if Egk{elk/ok)A’} =3 for all 1 < £ < p, the asymp-
totic distribution of 75 is y* with (p—1) degrees of
freedom.

x [Eg (20" =117,

(b) Theorem B2
Conditionally on {Xj,
tends to oo that

Y}, it holds almost surely as n

(i) T;; converges in distribution to a y>-distribution
with (dp — d) dcgrccs of freedom, and
(i1) T converges in probability to the quadratic form

v,

where U and ¢ are the same as in theorem BI.



2466 Q. Yao and others

Common structure in panels of short ecological time-sertes

109 @ — .-
0.8
0.6

0.4

0.2

p-value
(i
| I

[

]|

b

| sERIIRT

-l

1.0+ ()

]
)
]

0.8 1

0.6

0.4

0.2

p-value
|

i

i [

0.0

Ml linnn

12&312&4 1&2 1&3 1&4

Figure C1. Simulation results for four linear models: (from
left to right) boxplots of p-values for testing models 1, 2 and 3,
models 1, 2 and 4, models 1 and 2, models 1 and 3, and
models 1 and 4. (a) Bootstrap test for Hy. () Bootstrap test

for Jo.

APPENDIX C. NUMERICAL PROPERTIES

We illustrate the methods via a set of linear models.
The basic model is set as

¥, =a+25X 4182 +s,

where X, £, and ¢, are independent. We allow the inter-
cept a as well as the distributions of X,, £, and ¢, to vary
as in table Cl.

Note that model 4 has a different mean function from
the others, while the variance of the noise in model (3)
differs from the other three models. We test H, and ¥, for
five different combinations of the models: the first three
models, models 1, 2 and 4, models 1 and 2, models 1 and
3, and models 1 and 4. We set the sample size n, = 24; the
bootstrap replications are 200 times. We repeat the
simulation 200 times.

Figure Cla,b displays the boxplots of the p-values. We
cannot reject H, when the first three models are

Proc. R. Soc. Lond. B (2000)
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Figure C2. Comparison of bootstrap approximations and
asymptotic approximations for distribution functions of test
statistics: (@) Ty in testing H, for the first three models, and
(b) Ty in testing J, for models 1 and 4. The thick solid curve
is the empirical distribution of the test statistic in a simulation
with 200 replications; the thin solid curve is its asymptotic
distribution; the three others are typical examples of bootstrap
approximations.

considered together, although there is overwhelming
evidence to reject 7, then. The hypothesis H, would be
rejected but not f; when models 1, 2 and 4 are consid-
ered. We could not reject both H, and [, when we
narrow our attention to models 1 and 2. The hypothesis
Jo would be rejected but not H; when we compare
models 1 and 3, and the hypothesis H, would be rejected
but not , when we compare models 1 and 4. Note that
the differences in the distributions of X,, <, and ¢, are
irrelevant to the hypotheses concerned. The reliable
performance of the tests is further supported by table C2,
which reports the simulated powers of the tests at the
three different nominal levels (i.e. o= 0.01, 0.05 and
0.10) in the above simulation.

We also compare the bootstrap approximations with
the asymptotic approximations provided by theorem BI.
Figure G2 presents the (approximated) distribution
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Table C2. Simulated powers of the bootstrap tests for Hy and
Fo for the four linear models

power

models hypothesis average

tested tested  p-value (a=0.01) (a=0.05) (a=0.10)
1,2,3 H, 0.510 0.01 0.04 0.09
Jo 0.011 0.84 0.95 0.98
1,2,4 Hy 0.063 0.47 0.70 0.79
Jo 0.493 0.01 0.05 0.10
1,2 Hy 0.569 0.01 0.03 0.06
Jo 0.515 0.02 0.04 0.14
1,3 H, 0.482 0.02 0.06 0.11
Jo 0.029 0.70 0.82 0.92
1,4 H, 0.058 0.54 0.72 0.84
Jo 0.470 0.05 0.11 0.16

functions under the null hypotheses in two different
settings: (1) the distribution of T in testing H, for the
first three models, and (ii) the distribution of 75 in
testing 7, for models 1 and 4. We plot the empirical distri-
bution of a test statistic in a simulation with 200 replica-
tions, together with its asymptotic approximation, which
is x?(6) in case (i) and z*(1) in case (ii), and three typical
examples of its bootstrap approximations. A typical boot-
strap approximation is selected in such a way that the
corresponding p-value is equal to its 25th percentile
(dotted curve), or the median (dot—dashed curve), or the
75th percentile (dashed curve). For the given sample size,
bootstrap provides a better approximation than the
asymptotic method, even for linear models.
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