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Inferring con� dence sets of possibly misspeci�ed
gene trees
Korbinian Strimmer* and Andrew Rambaut

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

The problem of inferring con® dence sets of gene trees is discussed without assuming that the substitution
model or the branching pattern of any of the investigated trees is correct. In this case, widely used methods
to compare genealogies can give highly contradicting results. Here, three methods to infer con® dence sets
that are robust against model misspeci® cation are compared, including a new approach based on estimat-
ing the con® dence in a speci® c tree using expected-likelihood weights. The power of the investigated
methods is studied by analysing HIV-1 and mtDNA sequence data as well as simulated sequences. Finally,
guidelines for choosing an appropriate method to compare multiple gene trees are provided.
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1. INTRODUCTION

The assessment of competing evolutionary trees inferred
from DNA sequences is a very important issue in molecu-
lar sequence analysis. Consequently, in recent years a
number of statistical procedures to test gene trees and to
construct corresponding con® dence sets have been sug-
gested, most of them based on computing the likelihood
of trees. Interestingly, a recent review by Goldman et al.

(2000) showed that the available methods essentially fall
into two classes that can give highly contradicting evalu-
ations of the con® dence in the compared trees. This viol-
ates the intuitive notion that two different but equally valid
approaches to analysing the same data should give the
same answer.

Here, this problem is investigated and it is argued that
this apparent difference is due to the potential misspeci® -
cation of the investigated genealogies to which one class
of tree comparison methods is susceptible whereas the
other is not. Gene trees can be misspeci® ed either because
the tree topology or the employed model of substitution
is incorrect. In addition to reviewing this question a simple
method based on expected likelihood weights is proposed
to robustly infer con® dence sets of gene trees.

The rest of the paper is organized to provide an intro-
duction to statistical methods and model comparison with
special emphasis on model misspeci® cation. Following
this, methods to construct con® dence sets of gene trees
are described. Then the datasets reported in Shimodaira &
Hasegawa (1999) and in Goldman et al. (2000) are reana-
lysed and biological reasons are discussed to determine
why the investigated genealogies for these sequences
might be misspeci® ed. Using computer simulation the
ef® ciency of the investigated methods for constructing
con® dence sets are studied. Finally, guidelines are
presented for choosing an appropriate method for the
comparison of gene trees.
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2. THEORY

(a) Models
A statistical model for a random variable X is provided

by a probability distribution for all states x assumed by X.
A dataset x = (x1, x2, ¼ , xn) is a vector of n independent
realizations of X. Typically, the true model F with distri-
bution f(x) that gave rise to the observed data x is not
known. Instead, to explain the data one usually considers
a number of candidate models M1, M2,¼ , Mr with some
proposed distributions m1(x), m2(x), ¼ , mr(x). A set of
models form a composite or parameterized model M( ) if
their distributions have the form m(x; ) where rep-
resents the parameters. It is usually not known whether
the true model F is included in the set of candidate models
(if it is not, the model set is said to be misspeci® ed).

(b) Likelihood

The likelihood framework provides a means of evaluat-
ing data as evidence for a given model (Birnbaum 1962;
Edwards 1972). The likelihood L of a model M is
de® ned by

L = L(M x) = Pr(x M) =
n

i = 1

m(xn), (2.1)

and provides a measure of ® t between the model and the
data. The `law of likelihood’ states that for any two models
M1 and M2, model M1 is better supported by the observed
data x than model M2 if L1 . L2, and the likelihood ratio
L1/L2 measures the strength of evidence in favour of M1

versus M2 (Hacking 1965). Similarly, the evidence wi of
the data for a model Mi relative to the competing models
M1, M2, ¼ , Mr is given by the `likelihood weight’

wi = w(Mi x) = Li Or
j = 1

Lj. (2.2)

The model Mm ax with the highest likelihood, and hence
with the largest likelihood weight wm ax, is called the
maximum-likelihood (ML) model. Similarly, the para-
meter vector m ax that selects the ML model in a
parameterized model set M( ) is the ML estimate of
this vector.
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(c) Model comparison

The likelihood ratio (LR) provides a natural test statistic
for the comparison of the goodness-of-® t of two compet-
ing models. The sampling distribution of the LR statistic,
usually under the null hypothesis of the less likely model,
is easily obtained by Monte Carlo simulation (Cox 1961,
1962). If two fully nested model families are compared,
minus twice the logarithm of the LR statistic has a limiting
central x 2-distribution under suitable regularity conditions
(Wilks 1938). For two non-nested models the limiting dis-
tribution is Gaussian (Cox 1961, 1962; White 1982b).
These tests implicitly assume that at least one of the models
is correct. However, often it cannot be guaranteed that
the true data-generating model is among the investigated
candidate models. Consequently, in the case of misspeci-
® ed models the above tests can be invalid (Foutz &
Srivastana 1977; Kent 1982; White 1982a; Golden 1995).
However, misspeci® cation of a candidate model can be
tested (White 1982a). Moreover, LR tests robust against
model misspeci® cation are constructed using the null
hypothesis that the compared models are equally close to
the (unknown) true model, rather than singling out a
particular model as the null model (Vuong 1989). This
also allows extension to compare multiple models
(Shimodaira 1998).

(d) Con® dence sets

The objective of a con® dence set is to provide an inter-
val estimate that gives a measure of precision for a point
estimate (the ML model). An estimated con® dence set
can be de® ned as the smallest subset of the investigated
models that contains the true model for a prespeci® ed
fraction C, of all possible datasets of size n, generated
under the true model (e.g. Garthwaite et al. 1995). An
alternative de® nition of a con® dence set is based on model
selection probabilities. In this perspective, a con® dence set
is the smallest subset of the candidate models that have
together probability C to be selected as outcomes for a
random dataset of length n drawn from the true distri-
bution. These two interpretations of con® dence sets are
equivalent for correctly speci® ed model sets but the latter
is also applicable in situations where the true model is not
included in the set of candidate models. It also generalizes
to multidimensional problems and is implicit in Monte
Carlo procedures for the construction of con® dence sets
(Buckland 1984). Note that in either de® nition the con® -
dence set takes hypothetical data other than the observed
x into account.

(e) Inferring con® dence sets

Con® dence sets are closely related to hypothesis tests:
the acceptance region 1 2 a of a test H0 (true model) ver-
sus H1 is a con® dence set with coverage 1 2 a . This allows
the inference of con® dence sets of models using the LR
tests described earlier.

However, con® dence sets can also be constructed more
directly using model selection probabilities (following the
second de® nition of a con® dence set). The selection prob-
ability ci for an individual model Mi given a random data
sample from the true model can be estimated by the
expected relative evidence for that model, i.e. by
ci = EF(wi), where the expectation is taken with respect to
the true model F. If two models M1 and M2 have the same
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likelihood for all possible samples from the true distri-
bution, then by de® nition they also have the model selec-
tion probability (c1 = c2). The expected likelihood weight
ci can be directly interpreted as con® dence in a model. As
it is additive (note that S

r

i = 1ci = 1) the con® dence of a sub-
set of the compared models M1, M2, ¼ Mr is the sum of
the con® dence values of all models in that subset. The
smallest con® dence set with maximum probability for a
prescribed level of con® dence C is constructed by col-
lecting the models with the largest con® dence values in
decreasing order, until the accumulated level of con® -
dence meets the threshold C.

(f ) Computing con® dence values

To calculate the expected likelihood weights ci the true
model F for the data sample x needs to be known. As this
is hardly ever the case, an approximation such as

ci = EF(wi) EFÃ (wi)
1

BO
B

b = 1

w(Mi x b) (2.3)

is useful, where x b is one of B bootstrap samples drawn
with replacement from the data x and FÃ is the non-
parametric empirical distribution (Efron 1982; Efron &
Tibshirani 1993). Under suitable regularity conditions the
® rst approximation (FÃ F) is valid for large sample size
n, whereas the second requires a large number B of boot-
strap replicates. In this expression ci can also be inter-
preted as the `bagged’ variance-reduced estimator for wi

(Breiman 1996). The variance reduction, with typically no
signi® cant increase in bias, is implicit in the bootstrap
averaging (Efron & Tibshirani 1997). It is expected that
more ambitious bootstrap estimators for ci can also be
fashioned (Efron 1987; DiCiccio & Efron 1996).

(g) Bootstrap weights and coverage
Related to the expected likelihoods weights are the

weights si = EF(Ii), where Ii = I(Mi|x) is an indicator func-
tion of the ML model, i.e. Ii = 1 if i is the best-® t model
otherwise Ii = 0. In comparison, for each random data
sample the indicator function gives evidence only to one
model, whereas the likelihood weights give evidence to all
models. Several bootstrap estimators for si exist
(Felsenstein 1985; Efron et al. 1996). Most often, the esti-
mated values are interpreted as p-values (Hillis & Bull
1993), which contrasts with the understanding of
expected likelihood weights as a con® dence distribution.

Here it is argued that the likelihood weights ci = E(wi)
are preferable as model selection probabilities over the
weights si = E(Ii) for four reasons. First, if prior infor-
mation (e.g. in the form of a likelihood) is available it can
be incorporated easily into the likelihood weight (Edwards
1972). For small sample size this information will be reco-
vered in E(wi) but not in E(Ii). Second, con® dence sets
inferred using E(Ii) tend to undercover and usually need
upward calibration, e.g. by employing the double boot-
strap (Efron & Tibshirani 1993). By contrast, the distri-
bution given by E(wi) is wider than that given by E(Ii).
Preliminary simulations indicate (data not shown) that as
a result, con® dence sets based on E(wi) rarely undercover.
Third, the expected likelihood weight ci has a further
interpretation as a predictive model selection criterion
emphasizing generalizability of a model in addition to
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goodness-of-® t (Akaike 1974; Linhart & Zucchini 1986;
Myung et al. 2000). Fourth, for large sample size, the like-
lihood weight wi degenerates to the indicator function Ii

for the best-® t model, and hence the weights si can be
considered a special case of the expected likelihood
weights wi.

(h) Gene trees

Gene trees describe the evolutionary relationship of
genes. The statistical dependencies between the gene
sequences in an evolutionary tree are commonly explained
using directed graphical models (Felsenstein 1981; Hendy
et al. 1994; Strimmer & Moulton 2000). These probabilis-
tic models consist of two distinct parts: a graph (the tree
structure and branch lengths) and an associated stochastic
process (the substitution model); both determine together
a distribution for all possible site patterns observable in a
column of a sequence alignment. A sequence dataset x of
length n corresponds to n samples from this distribution.

Statistical comparison of gene trees is widely applied.
Goldman (1993) was the ® rst to propose parametric boot-
strapping using the LR statistic (Cox 1961, 1962). A var-
iety of applications of LR tests for gene trees are reviewed
in Huelsenbeck & Rannala (1997). Felsenstein (1985)
used bootstrap proportions to assess the reliability of a
tree. Kishino & Hasegawa (1989) devised an approach
similar to that reported by Vuong (1989) to compare two
gene trees. An extension of this method to multiple com-
parison of trees, following Shimodaira (1998), is described
by Shimodaira & Hasegawa (1999). A further likelihood
approach to multiple comparison of trees is given by Bar-
Hen & Kishino (2000). Goldman et al. (2000) provided
a recent technical overview of LR tests for gene trees and
associated con® dence sets; they also discuss the appropri-
ate use of the test by Kishino & Hasegawa (1989).

3. APPLICATION

(a) Mammalian protein sequences

The ® rst example to illustrate the inference of con® -
dence sets of gene trees is taken from Shimodaira &
Hasegawa (1999) who analysed mitochondrial protein
sequences from six mammalian species (human, harbour
seal, cow, rabbit, mouse, opossum). The alignment has
length n = 3414 amino acids. For all 105 possible topo-
logically different trees for the six sequences ML branch
lengths were estimated using the mtREV+ G amino acid
substitution model (Adachi & Hasegawa 1996). Sub-
sequently, two sets of candidate models were investigated.
The ® rst test set consisted of the 15 most likely gene trees
as reported in Shimodaira & Hasegawa (1999); in the
second set, all 105 genealogies were included as candi-
date models.

Shimodaira (2001) points out that in this example the
gene trees are misspeci® ed as they are all rejected in LR
tests (Cox 1961, 1962). This does not necessarily imply
that the data do not ® t to a tree; it can also indicate that
the substitution model is not adequate. Therefore, to infer
95% con® dence sets, only procedures robust against
model misspeci® cation were employed. In particular, the
KH method (Kishino & Hasegawa 1989), the SH method
(Shimodaira & Hasegawa 1999) and the approach based
on the expected likelihood weight as measure of con® -
dence were used. The results are summarized in table 1.
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Figure 1. Tree T1 used for simulating data. Branch lengths
denote expected nucleotide substitutions per site.

Two distinct patterns can be observed. First, the con® -
dence set inferred using the expected likelihood weights is
the smallest and contains four trees. The KH test pro-
duced a slightly larger con® dence set with ® ve trees,
whereas the SH test gives the most conservative estimate
(8± 16 trees). Second, the SH test is sensitive to the
inclusion of additional but unlikely gene trees. When the
15 best genealogies are investigated the SH con® dence set
contains only the gene trees 1± 8, but when all 105 trees
are compared it consists of the trees 1± 15 and 17.

These con® dence sets contrast with the result of a Cox-
type LR test for the same data presented in Goldman et
al. (2000), which strongly favours the ML gene tree as the
only appropriate explanation for the data. However, this
test may be misleading; in the presence of model misspeci-
® cation, LR tests based on the assumption that one of the
candidate models is the true data-generating model are
not applicable (Foutz & Srivastana 1977; Kent 1982;
White 1982a).

(b) HIV nucleotide sequences

The second dataset was taken from Goldman et al.

(2000). It consists of six HIV-1 nucleotide sequences of
length n = 2000 bp from the gag and pol genes. The
sequences are from four subtypes (A, B, D, E) and are
referred to as A1 (HIV-1 common name Q23), A2
(U455), B (BRU), D (NDK), E1 (90CF11697) and E2
(93TH057). For all 105 possible genealogies for these
sequences, ML branch lengths were estimated under the
REV+ G nucleotide substitution model (e.g. Yang 1994).

These data are interesting as HIV-1 is known to be sub-
ject to frequent recombination (e.g. Robertson et al.

1995), and hence sites along the sequence alignment may
well have different evolutionary histories. In other words,
any tree-like model for the relationship of the genes is
likely to be incorrect. In this case application of methods
robust against model misspeci® cation is advised. Table 2
shows the 95% con® dence sets as inferred by the KH and
SH methods as well as by our approach.

The KH test and the approach based on expected likeli-
hood weights agree that the three most likely trees form a
suitable con® dence set. By contrast, the SH test is much
more conservative and includes 12 more gene trees includ-
ing one with a log-likelihood difference to the best tree as
large as D l = 35.83. In this example, the small con® dence
set has a straightforward interpretation. The three
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Table 1. Con® dence sets of mammalian gene trees.
(Trees are listed in the order of their likelihood. Abbreviations: D l, log-likelihood difference to most likely tree; c, con® dence
value (expected likelihood weight); KH, p-value for the two-sided KH test; SH, p-value for SH test. The number of bootstrap
replicates (c, SH) was B = 1000. Bold type indicates trees included in the corresponding 95% con® dence set ( p . 0.1 for the KH
test; see Goldman et al. 2000).)

number of candidate trees

the best 15 trees all 105 trees

tree D l c KH SH c KH SH

1 0.00 0.5603 1.0000 1.0000 0.5460 1.0000 1.0000

2 2.52 0.3263 0.7395 0.8060 0.3295 0.7395 0.9300

3 7.41 0.0397 0.2391 0.5820 0.0507 0.2391 0.8390
4 17.74 0.0110 0.0814 0.1770 0.0173 0.0814 0.5730

5 19.07 0.0347 0.1311 0.1590 0.0275 0.1311 0.5470
6 20.09 0.0073 0.1021 0.1130 0.0067 0.1021 0.5320

7 20.79 0.0165 0.0956 0.1000 0.0157 0.0956 0.4700

8 22.22 0.0026 0.0634 0.0770 0.0030 0.0634 0.4630
9 25.67 0.0000 0.0025 0.0290 0.0000 0.0025 0.3750

15 36.54 0.0000 0.0006 0.0020 0.0000 0.0006 0.1650

16 48.73 0.0000 0.0003 0.0480
17 49.39 0.0000 0.0002 0.0500

size of set 4 5 8 4 5 16

Table 2. Con® dence sets of HIV-1 gene trees.
(For de® nition of abbreviations see table 1. The test set includes all 105 possible trees.)

tree topology D l c KH SH

1 (E1, E2,(A2,(A1,(D,B)))) 0.00 0.6780 1.0000 1.0000
2 (E1, E2,(A1,(A2,(D,B)))) 3.61 0.1609 0.4289 0.8600

3 (E1, E2,((A1,A2),(D,B))) 3.90 0.1526 0.3840 0.8600
4 (E1,(E2,(D, B)),(A1,A2)) 19.67 0.0033 0.0268 0.4000

5 (E1,(E2,(A1, A2)),(D,B)) 19.67 0.0032 0.0268 0.4000

15 (E1,((E2,A2),A1),(D,B)) 35.83 0.0000 0.0007 0.1390

size of set 3 3 15

included trees indicate that the genealogical relationship
between the sequences A1 and A2 relative to the two
groups E1/E2 and D/B is unresolved.

Parametric bootstrap tests as described in Goldman et
al. (2000) reject all trees but the ML tree. As before, it
can be argued that this result may be biased, as a result
of the misspeci® cation of the investigated gene trees. In
contrast to the mammalian sequences, where the substi-
tution model is likely to be incorrect, in the case of the
HIV-1 data, net-like rather than tree-like evolution may
be the cause of the misspeci® cation.

(c) Ef® ciency of SH con® dence set

In the previous examples, the SH method gave the most
conservative estimates of con® dence sets and also
appeared to be sensitive to the inclusion of unlikely mod-
els in the test set. To study further the statistical ef® ciency
of the SH con® dence set we simulated sequences along
tree T1 in ® gure 1. This tree relates six sequences A± F
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and contains a multifurcation next to sequences A, B and
C. Using a Kimura (1980) substitution model with a
transition± transversion ratio of 2, we generated datasets of
various lengths (n = 100, 500, 1000, 2000, 3000, 4000
and 5000 bp). As candidate trees we considered all 105
possible binary trees. As the true multifurcating genealogy
T1 is not available in this set, we expect the con® dence set
to include the three trees necessary to resolve the poly-
tomy in T1.

Table 3 shows the sizes of the con® dence sets inferred
for these data using the KH and SH tests and the expected
likelihood weight. All approaches essentially agree on a
con® dence set containing three trees. However, in con-
trast to the alternative methods the SH test requires an
order of magnitude more data (4000 bp versus 500 bp) to
restrict its con® dence set to the best three trees. For very
short sequences (100 bp) all methods are conservative,
with the expected likelihood weight leading to the overall
smallest con® dence set (10 trees).
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Table 3. Size of con® dence sets in dependence of sequence
length.
(For de® nition of abbreviations see table 1. Sequences were
evolved along T1 in ® gure 1. The tree test set includes all 105
possible genealogies. Con® dence sets that contain three trees
correspond to those trees necessary to resolve the polytomy in
® gure 1.)

sequence length c KH SH

100 10 15 15
500 3 3 15
1000 3 3 15
2000 3 3 15
3000 3 3 15
4000 3 3 3
5000 3 3 3

4. DISCUSSION

(a) Multiple comparison of gene trees
Three methods for constructing con® dence sets of gene

trees were compared. The KH and SH con® dence sets are
based on LR tests; in addition, a simple approach using
expected likelihood weights as a measure of con® dence in
a model was described. By construction, all these methods
are robust against model misspeci® cation.

The KH con® dence set and the con® dence set derived
from expected likelihood weights are very similar, with the
latter being slightly smaller. By contrast, the SH con® -
dence set is much more conservative and requires a large
sample size to eliminate unlikely models. This was
observed in the two sequence examples and also in the
simulated datasets.

The SH test is conservative as it aims at multiple com-
parison with the unknown best model (Hsu 1996). By
contrast, the KH test is a pairwise method, and special
provisions are necessary for comparison with the ML
model (Goldman et al. 2000). The method based on
expected-likelihood weights is the most direct approach.
It provides a simple and intuitive method for multiple
comparison of models and construction of corresponding
con® dence sets.

(b) Misspeci® cation of gene trees
Goldman et al. (2000) show that there can be dramatic

differences in the outcome of LR tests to compare gene
trees. In this paper it is argued that the contradictory
results are a result of model misspeci® cation. In particular,
if either the substitution process or the actual branching
pattern is incorrect in the investigated gene trees, then LR
tests based on the assumption that the true data-generat-
ing model is among the candidate models may be mislead-
ing. For the sequence examples studied here and in
Goldman et al. (2000), the reasons for misspeci® cation are
likely to be insuf® cient complexity of the substitution
model (mtDNA) or recombination (HIV-1).

Here, it is emphasized that methods for comparing gene
trees are available that are robust against model misspeci-
® cation. For example, both the KH and SH tests and the
method based on expected-likelihood weights do not
require correct speci® cation of the candidate gene trees.
These approaches are conservative and avoid overcon® d-
ence in the ML model. Hence, unless further precautions
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against model misspeci® cation have been taken, they
should be preferred over parametric bootstrap tests based
on one particular gene tree.

This paper bene® ted greatly from discussions with Nick Gold-
man and Tim Massingham. Valuable comments from Carsten
Wiuf, Robert Freckleton and two anonymous referees were
also highly appreciated. This work was supported by an Emmy
Noether research fellowship by the Deutsche Forschungsgeme-
inschaft (K.S.) and the Wellcome Trust (A.R.).

APPENDIX A: COMPUTER PROGRAMS AND
IMPLEMENTATION

All described methods for the robust construction of
con® dence sets of gene trees (KH and SH methods,
expected-likelihood weights) have been implemented in
Java and are available in the software library PAL
(Drummond & Strimmer 2001); see the PAL Web page
at http://www.pal-project.org for further details.

Direct implementation of equation (2.2) for computing
the likelihood weight is not possible in most standard pro-
gramming languages (this would require accurate arithme-
tic for extremely small ¯ oating point numbers). This
problem is circumvented by rewriting equation (2.2) as

wi =
e l

i2 l
max

Or
j = 1

e l
j2 l

max

, (A 1)

where li = log Li and lm ax is the log likelihood of the ML
model.
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