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The vast majority of models for spatial dynamics of natural populations assume a homogeneous physical
environment. However, in practice, dispersing organisms may encounter landscape features that signifi-
cantly inhibit their movement. We use mathematical modelling to investigate the effect of such landscape
features on cyclic predator–prey populations. We show that when appropriate boundary conditions are
applied at the edge of the obstacle, a pattern of periodic travelling waves develops, moving out and away
from the obstacle. Depending on the assumptions of the model, these waves can take the form of roughly
circular ‘target patterns’ or spirals. This is, to our knowledge, a new mechanism for periodic-wave gener-
ation in ecological systems and our results suggest that it may apply quite generally not only to cyclic
predator–prey interactions, but also to populations that oscillate for other reasons. In particular, we suggest
that it may provide an explanation for the observed pattern of travelling waves in the densities of field
voles (Microtus agrestis) in Kielder Forest (Scotland–England border) and of red grouse (Lagopus lagopus
scoticus) on Kerloch Moor (northeast Scotland), which in both cases move orthogonally to any large-scale
obstacles to movement. Moreover, given that such obstacles to movement are the rule rather than the
exception in real-world environments, our results suggest that complex spatio-temporal patterns such as
periodic travelling waves are likely to be much more common in the natural world than has previously
been assumed.
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1. INTRODUCTION

The vast majority of models for spatio-temporal dynamics
of natural populations have assumed that populations are
distributed in homogeneous environments. In particular,
minimal attention has been given to the role of large-scale
landscape features that will significantly inhibit the move-
ment of dispersing organisms. Broadly speaking, such
organisms can either find a route around such landscape
features, refrain from moving altogether or simply attempt
to traverse the obstacle. In this paper, we investigate for
the first time, to our knowledge, the effects of these simple
movement rules on the predicted overall spatio-temporal
dynamics of cyclic predator–prey systems.

We begin our investigation using a reaction–diffusion-
type model. This assumes that both predator and prey
populations move continuously in space; and in the fol-
lowing we will discuss an alternative model that instead
assumes that individuals occupy discrete but intercon-
nected spatial sites. Throughout, we study predator–prey
systems that are cyclic, meaning that in the absence of any
spatial variation both prey and predator densities oscillate.
Our model equations, detailed in Appendix A, are a stan-
dard model for this type of predator–prey system and we
solve them on a two-dimensional domain with no-flux
boundary conditions, meaning that individuals cannot
enter or leave the domain. When the domain is homo-
geneous, randomly generated initial population densities
rapidly even out, giving spatially uniform population cycles.

* Author for correspondence (t.n.sherratt@durham.ac.uk).

Proc. R. Soc. Lond. B (2002) 269, 327–334 327  2002 The Royal Society
DOI 10.1098/rspb.2001.1890

Our objective is to consider how large landscape fea-
tures affect dynamical behaviour. To this end, we intro-
duced into the domain a central obstacle, assuming either
no-flux boundary conditions on the edge of the obstacle
or that the population densities are always zero on the
obstacle edge. The latter would correspond to individuals
attempting to cross the obstacle, but always dying in the
attempt. With no-flux boundary conditions, the obstacle
has little effect on the population dynamics that quickly
form uniform oscillations. However, when the population
densities are zero around the obstacle, the behaviour is
quite different (figure 1a; movie clips corresponding to
this and other figures are available at http://www.ma.
hw.ac.uk/�jas/supplements/obstacles/). The randomness
of the initial conditions rapidly disappears, giving rise to
periodic travelling waves moving out from the obstacle
and through the domain. In these waves, there are again
population cycles; however, the cycles are out of phase at
different points in space and it is this that constitutes the
travelling waves.

Spatio-temporal patterns resembling periodic travelling
waves have been observed recently in several natural
populations, including field voles (Microtus agrestis)
(Lambin et al. 1998; MacKinnon et al. 2001) and red
grouse (Lagopus lagopus scoticus) (Moss et al. 2000). In
both of these cases, the underlying cause of these waves
remains unknown. Previous modelling work has also
shown that periodic waves are generated by invasions in
cyclic populations (Sherratt et al. 1997, 2000), but there
is no evidence for such an invasion in these two cases. We
will show that the generation of periodic waves by
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obstacles, in a manner broadly similar to figure 1a, is a
robust mechanism that provides a possible explanation for
the observed behaviour in both field voles and red grouse.

2. DETAILED INVESTIGATION OF THE
TRAVELLING WAVES

We have varied extensively both model parameters and
the form of the obstacle, and the generation of periodic
waves is a consistent feature of our simulations. For
example, figure 1b shows periodic waves generated by
each of three separate obstacles within the domain. The
three sets of waves interact and those produced by the
largest of the obstacles dominates the overall behaviour.
Note that the parameter values used in figure 1a,b are
based on estimates for the field vole–weasel prey–predator
interaction; the basis for these parameters is discussed
briefly at the end of Appendix A. The domain in the fig-
ures is then ca. 100 km2 and the travelling wave moves
at ca. 3 km yr�1. This is significantly less than the speed
observed in the data (15–20 km yr�1 (Lambin et al. 1998;
MacKinnon et al. 2001)), but within the levels of uncer-
tainty arising from poor data on dispersal rates.

In our various simulations, we have only seen one quali-
tatively different type of behaviour. When the ratio of prey
to predator birth rates is relatively small (close to 1), or
when the consumption of prey by predators saturates at
low prey densities, periodic waves are visible close to the
obstacle, but decay into irregular oscillations further away
(figure 1c). In order to explain this second type of behav-
iour and to better understand the phenomenon overall, we
performed a detailed numerical study in one space dimen-
sion. Barrier shape is clearly not an issue in one dimension
and we consider simply a domain with no-flux conditions
at one end and zero population density at the other; this
corresponds to the region between the edge of the domain
and the obstacle. Again, random initial conditions rapidly
develop into periodic travelling waves, moving away from
the ‘obstacle’ (figure 2a). By gradually changing para-
meters towards those for which irregular oscillations are
seen in two dimensions, we found that the irregularities
arise because the periodic wave generated by the obstacle
is an unstable solution. Thus it is seen close to the
obstacle, but decays rapidly as it propagates.

An oscillatory system of the type we are considering has
a whole family of periodic-wave solutions, with different
speeds and amplitudes. The slowest waves have low
amplitude and short wavelength, while the fast waves have
high amplitude and long wavelength (see Murray (1989)
for a review). This wave family is a function of the model
and parameters only, independent of the domain and of
the boundary and initial conditions. Therefore, in sol-
utions such as those illustrated in figures 1 and 2a, a land-
scape feature is selecting a particular member of the wave
family and it is natural to ask whether this selection (and
thus the wave speed and amplitude) depends on the
(random) initial conditions. We have answered this using
one-dimensional simulations. With a fixed set of para-
meters, we calculated the solution from a range of differ-
ent initial conditions, obtaining in each case a plot of the
solution against space at a given time. We then superim-
posed these plots, applying an appropriate translation so
that the oscillations are in phase. This shows clearly
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(figure 2b) that the periodic wave is the same in all cases,
independent of initial conditions—the differences near the
two boundaries reflect the different initial conditions. This
is an important indicator of the robustness of our mech-
anism of periodic-wave generation.

A second important issue for robustness is whether the
periodic waves depend strictly on our assumption of zero
population densities of both predators and prey at the
edges of the obstacle. We investigated this further, again
in one space dimension, by allowing the predator popu-
lation to move through the obstacle, with the prey density
zero; this could correspond, for example, to a river or lake
acting as an obstacle for terrestrial prey, but not for an
avian predator. Again, our simulations show periodic
waves moving away from the obstacle (not shown for
brevity). The predator dispersal within the landscape fea-
ture does alter the periodic-wave speed and amplitude, but
only slightly. A more significant effect is that there is an
appreciably longer transient behaviour, consisting of small
bands of waves moving in different directions. However,
the long-term behaviour remains the same with travelling
waves moving out from the obstacle.

3. COUPLED MAP LATTICE MODEL

Many natural populations do not exist in continuous
spatial environments, but rather are restricted to discrete,
interconnected patches. In such cases, a coupled map
lattice model is a better representation of the population
than the reaction–diffusion model that we have been
using. Models of this kind have recently been used by
Sherratt et al. (2000) to study the form of travelling waves
in field vole populations, although landscape features were
not included in this work. We consider a coupled map
lattice model on a square grid of patches, based on the
formulation used by Hassell et al. (1991). Each generation
is divided into two substeps. In the first substep, the pred-
ator and prey densities in each patch evolve according to
a standard discrete-time predator–prey model, and in the
second substep, we assume that a given proportion of the
populations move to each of the neighbouring four
patches. This is a standard discrete representation of local
dispersal; details of the model are given in Appendix B.

In comparison with the reaction–diffusion model dis-
cussed above, the behaviour in the coupled map lattice
model is somewhat more complex because there is a range
of possible behaviours even without landscape features.
When predator and prey motility is high, random initial
conditions do develop into spatially uniform oscillations
on a homogeneous domain, as for the reaction–diffusion
model (figure 3a). However, for lower and more realistic
motility parameters, the long-term solution has the form
of one or more spiral waves (figure 3b,c); a case with many
interacting spirals, such as figure 3c, has a highly irregular
appearance when viewed as a movie (available at
http://www.ma.hw.ac.uk/�jas/ supplements/obstacles/).

In this coupled map lattice model, our landscape feature
consists of a group of whole patches. Our movement rule
implies that in a patch immediately adjacent to this
obstacle, a proportion of the population will enter the
obstacle at each generation and a ‘boundary condition’
corresponds to a rule for the fate of these individuals. We
have studied three such rules:
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Figure 1. Solutions of the reaction–diffusion model. We plot the prey and predator densities in space at a single time-point.
(a) Generation of periodic travelling waves from a single, central obstacle. (b) Generation of periodic travelling waves from
three separate obstacles. Each obstacle generates waves, but those from the largest obstacle dominate the solution.
(c) Oscillations that are irregular, but retain some aspects of the periodic-wave character; these occur because the selected
periodic wave is unstable. In each case, the boundary conditions are zero predator and prey densities at edge of the obstacle
and zero flux at the edge of the domain. The domain is a square with side-length of 400 dimensionless space units and the
solution is plotted at a dimensionless time of 1000. The model equations (A 2) are detailed in Appendix A. The
dimensionless parameter values are: A = 1.8, B = 1.2, � = 2.0 and (a,b) C = 4.9; (c) C = 6.0. The scale bar uses a linear scale
and the limits are chosen differently in each part for maximum clarity: (a) hmin = 0.03, hmax = 0.85, pmin = 0.05, pmax = 0.6;
(b) hmin = 0.03, hmax = 0.84, pmin = 0.007, pmax = 0.6; (c) hmin = 0.005, hmax = 0.93, pmin = 0.02, pmax = 0.61. The equations are
solved numerically using an alternating-direction implicit Crank–Nicolson method. Movie clips corresponding to each part of
this figure are available at http://www.ma.hw.ac.uk/�jas/supplements/obstacles/.

(i) the individuals that would enter the obstacle all die;
(ii) they ‘deflect’ from the obstacle and move to one of

the other adjacent patches; and
(iii) they ‘stay put’, remaining on the patch at the bound-

ary of the obstacle.
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Note that the ‘die’ rule corresponds to the zero population
boundary conditions in the reaction–diffusion model and
the ‘stay put’ rule corresponds to a no-flux condition; the
‘deflect’ rule has no reaction–diffusion analogue.

As one might expect from the results of the reaction–
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Figure 2. Solutions of the reaction–diffusion model (A 2) in
one space dimension. (a) A space–time plot, showing
periodic travelling waves moving away from the boundary at
x = 0, that corresponds to the edge of an obstacle. (b) The
solutions for ten different initial conditions superimposed;
the excellent match between the travelling waves generated
in the different cases shows that the wave selected is
independent of the details of the initial conditions, which is
an important indicator of the robustness of our mechanism
of periodic-wave generation. In both (a) and (b), only the
prey density is plotted for brevity; the predator density has
the same basic form, except for a phase difference in the
oscillations. The boundary conditions are zero predator and
prey densities at the left-hand boundary (p = h = 0 at x = 0),
corresponding to the edge of an obstacle, and zero flux at
the right hand boundary (∂p/∂x = ∂h/∂x = 0 at x = 800). The
dimensionless parameter values are A = 1.6, B = 1.2, C = 4.9,
� = 2.5. In (a), the solution is plotted between 5850 and
6000 dimensionless time units, and in (b) the plot is after
6000 dimensionless time units; these large times allow
transients to dissipate fully. Initially (time t = 0), predator
and prey densities are chosen randomly, between zero and
one, at 60 equally spaced points in the domain, with the
values in between determined via linear interpolation. The
equations are solved numerically using a semi-implicit
Crank–Nicolson method. Note that in (b), a small
translation is applied to each solution prior to plotting, so
that the waves in the different solutions are in phase.

diffusion simulations, the obstacle has little effect when
the ‘stay put’ rule is applied. However, with the ‘die’ rule,
the obstacle significantly alters the spatio-temporal behav-
iour; the results are best discussed in the context of the
behaviour in a homogeneous domain. When there are spa-
tially uniform oscillations in the homogeneous case (such
as in figure 3a), the obstacle generates periodic travelling
waves, moving away from it (figure 3d,g). When a single
spiral wave develops in the homogeneous case (such as in
figure 3b), the obstacle simply alters this behaviour
slightly, with the spiral tending to rotate around the
obstacle (figure 3e,h). Most interesting is the case of para-
meters for which there are many interacting spirals on a
homogeneous domain (such as in figure 3c). Obstacle
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shape then becomes crucial to the results. A square or
round obstacle has only a small effect on the spatio-
temporal behaviour, that again consists of a number of
interacting spirals (figure 3f ). However, a long, thin
obstacle, provided it is sufficiently large, organizes the
behaviour into a single spiral wave, rotating around the
obstacle (figure 3i).

The ‘deflect’ rule at the obstacle edge gives results that
are similar to those of the ‘die’ rule. Although there are
minor differences in behaviour, the key qualitative results
are the same with one exception, namely that the tendency
of the obstacle to organize interacting spirals into a single
spiral is significantly weaker with the ‘deflect’ rule. Again,
with this exception, hybrid rules (such as: 30% of individ-
uals die and 70% deflect) also give very similar results.

4. DISCUSSION

Large-scale landscape features inhibiting dispersal are
present in many real ecological systems. We have shown
that in the case of a cyclic predator–prey system, such fea-
tures tend to organize the spatio-temporal dynamics into
a coherent pattern, consisting of either a periodic travel-
ling wave or a spiral wave, moving away from the land-
scape feature. The two cases, periodic wave (also known
as target pattern) and spiral wave, are very similar and
would be difficult to distinguish without the most detailed
spatio-temporal data—even the very detailed Kielder For-
est data may not be adequate.

Periodic waves are well known as a solution type in
oscillatory systems and have been studied for nearly
30 years (see Kopell & Howard 1973). However, most of
this work has focused on the mathematical properties of
these waves rather than mechanisms that might cause
them to occur in practice. Kaitala & Ranta (1998) have
shown that random initial conditions can develop into
travelling waves on a small grid of spatial patches; how-
ever, this does not generalize to large grids of patches or
to a continuous spatial environment. A more general
mechanism of periodic-wave generation is invasion—for
example, the invasion of a prey population by predators
can leave periodic waves in its wake (Sherratt et al. 1995,
1997; Petrovskii & Malchow 1999). However, once an
invasion is complete, its effects cease and the periodic-
wave pattern is vulnerable to alteration by external factors
(Kay & Sherratt 1999). In contrast, a large-scale landscape
feature can both generate and maintain a pattern of per-
iodic waves as a permanent-solution form over a large
area.

The populations in which periodic waves have been
studied in most detail are field voles (M. agrestis) in the
Kielder Forest on the border between Scotland and
England and red grouse (L. lagopus scoticus) on Kerloch
Moor in northeast Scotland. Kielder is one of the largest
man-made forests in Europe (613 km2) and consists
mainly of sitka spruce (Picea sitchensis) and Norway spruce
(Picea abies), managed on a 40–60 year rotation. Field
voles are common in the grassland areas that follow the
cutting of timber and spatio-temporal data on their popu-
lation dynamics has been gathered since 1984 (Lambin et
al. 1998; MacKinnon et al. 2001). This has shown a pat-
tern of periodic travelling waves, moving in a line about
72° from the north. Notably, this direction is approxi-
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mately orthogonal to Kielder Water, a large reservoir (ca.
10 km long and 1 km across) in the centre of the forest.
Kerloch Moor is dominated by dwarf shrub heather
(Calluna vulgaris), the main food plant of red grouse. Spa-
tiotemporal data were gathered between 1962 and 1978
(Watson et al. 1984; Moss et al. 2000) in a part of the
moor bounded to the north by farms and woodland (these
are not occupied by grouse). The observed travelling wave
has a direction approximately perpendicular to this moor-
land edge.

In both cases, then, the periodic travelling wave moves
in a direction that is orthogonal to a large-scale landscape
feature. Moreover, the obstacle will rarely be crossed, in
both cases. The details of vole behaviour at the edge of
Kielder Water are not established, but the size of the reser-
voir suggests that if the voles attempt to cross it, then the
vast majority would fail. Similarly, red grouse are able to
cross small areas of farmland, but few would manage to
cross the large area that bounds the study region of
Watson et al. (1984) (Piertney et al. 1998). Thus, in both
cases, the obstacle edge can reasonably be represented
either by the zero population boundary condition that we
have considered. Our models then predict travelling waves
orthogonal to these obstacles, as found in practice. Of
course, both of these real situations have many com-
plexities absent from our model: the presence of other
smaller obstacles, strong seasonal effects, etc. Thus more
detailed and specific models would be required to fully
investigate these two cases.

The causes of the population cycles that are character-
istic of many boreal herbivores, including field voles and
red grouse, remain unclear. The vole population may
cycle due to interaction with common weasels (Mustela
nivalis vulgaris), a small rodent specialist predator
(Turchin & Hanski 1997; Lambin et al. 2000); however,
there are many other possible causes (Stenseth 1999). In
red grouse, recent hypotheses for cyclic behaviour include
interaction with a parasite (Hudson et al. 1998; see also
Lambin et al. 1999) and differential territorial behaviour
between kin and non-kin (Matthiopoulos et al. 1998;
MacColl et al. 2000). In our modelling, we have focused
specifically on cyclic predator–prey systems. However, we
believe that the basic phenomenon of periodic waves gen-
erated by obstacles is a general feature of oscillatory sys-
tems. We have two lines of evidence for this. First, we
have found the same behaviour in simulations using other
types of oscillatory model, including the Ricker and
Lotka–Volterra kinetics. These different models have little
in common besides being oscillatory. Second, a more
abstract mathematical study using ‘normal form’ kinetics
for oscillatory systems also shows periodic travelling waves
generated by obstacles, with the only extension to the
behaviour we have reported being that the waves can in
some cases travel towards, rather than away from, the
obstacle (J. A. Sherratt, in preparation).

Empirical studies of periodic waves depend on the
combination of extensive spatio-temporal datasets and
new statistical methods (reviewed by Bjørnstad et al.
1999). The rarity of such data, coupled with the novelty
of the required statistics, mean that it is too early to
assess how widespread the phenomenon of travelling
waves is in oscillatory populations. But since large-scale
landscape features are the rule rather than the exception
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in real ecological environments, our results suggest that
periodic travelling waves are likely to be much more
common in the natural world than has previously been
assumed.
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APPENDIX A

Here, we outline the details of the reaction–diffusion
model discussed in § 1 and § 2 of the main text. Our model
is formulated in terms of predator and prey densities,
p(x, t) and h(x, t), where t is time and x denotes position
in the one- or two-dimensional domain. We assume that
both predator and prey populations disperse via linear dif-
fusion, with dispersal coefficients Dp and Dh respectively;
for terrestrial populations, Dp will typically be significantly
greater than Dh. Our predator–prey kinetics are standard
and have been used previously by a number of authors
(for example Nisbet et al. (1991) and Dunbar (1986)) and
give the following model equations:

predators
∂p
∂t = Dp�

2p
dispersal

+ akph/1 + kh
predation

benefit from

� bp
death

(A 1a)

prey
∂h
∂t = Dh�

2h
dispersal

+ rh(1 � h/h0)
intrinsic

birth and death

� ckph/1 + kh
predation

.

(A 1b)

Here a, b, c, r, k and h0 are positive kinetic parameters.
The prey consumption rate per predator has a maximal
value c at very high prey densities; the constant k reflects
how quickly the consumption rate decreases as prey den-
sity increases. Parameters a and r denote maximal per cap-
ita predator and prey birth rates; for predators, that is the
birth rate when the prey density is very high, while for
prey it is the birth rate at very low prey density. The per
capita predator death rate is denoted by b, and h0 is the
prey carrying capacity.

Equations (A 1) can be simplified somewhat by non-
dimensionalizing, using the following rescalings:

p∗ = p·c/rh0 h∗ = h/h0 t∗ = rt x∗ = x�r/Dh

�∗ = Dp /Dh A∗ = a/b B∗ = r/a C∗ = kh0,

where the asterisks denote a dimensionless quantity.
Dropping these to ease notation gives the following equa-
tions:

∂p
∂t = ��2p +

p
AB � ACh

(1 + Ch)
� 1� (A 2a)

∂h
∂t = �2h + h(1 � h) �

Cph
(1 + Ch)

. (A 2b)

Straightforward mathematical analysis shows that the kin-
etics in this model are oscillatory provided that the para-
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Figure 3. Solutions of the coupled map lattice model, with prey density plotted in space at a single time-point. The rows show
simulations for the same set of parameters, with no obstacle (a–c), with an approximately circular obstacle (d–f ) and with a
long thin obstacle (g–i), using the ‘die’ rule at the obstacle edge. The columns are for different parameter sets, chosen to give
different behaviours in the case of no obstacle. The results show the strong tendency of a landscape feature to generate
travelling waves. Note, however, that for the parameters in the third row (c, f,i), travelling waves occur for the long thin
obstacle (i), but the more irregular dynamics persist when the obstacle is approximately circular ( f ). The model equations
(B 1 and B 2) are detailed in Appendix B and the parameter values are: (a,d,g) a = 2, b = 4, �h = �p = 0.7; (b,e,h) a = 2, b = 3.3,
�h = 0.05, �p = 0.4; (c, f,i) a = 2, b = 4, �h = 0.05, �p = 0.4. The limits on the scale bar are chosen differently in each row, for
maximum clarity: (a,d,g) and (c, f,i) hmin = 0.16, hmax = 1.0; (b,e,h) hmin = 0.33, hmax = 0.7. In each case, we solve on an 80 ×
80 grid of patches and the solution is plotted after 20 000 time-steps. The initial conditions are generated using a random-
number generator before the obstacle is superimposed, with the same seed used for all of the simulations shown. Movie clips
corresponding to each part of this figure are available at http://www.ma.hw.ac.uk/�jas/supplements/obstacles/.

meter C is above the critical value (A + 1)/(A � 1); note
that A � 1 is required for predators and prey to coexist.

In figure 1a,b, we choose parameter values for this
model based on the field vole–weasel interaction; we now
summarize briefly the basis for these estimates. The
dimensional parameters r and a are the maximal birth
rates (when resources are abundant) for prey and pred-
ators, respectively. A female field vole (M. agrestis) can
have as many as six litters per season in optimal con-
ditions, with an average litter size of 5 (Dyczkowski &
Yalden 1998). Moreover, early-born females can breed
themselves, giving a maximum per capita annual pro-
ductivity of 27.5 [ = 0.5(6 × 5 + 2.5 × 5)]. Thus er = 27.5 ⇒
r = 3.3 yr�1. Similarly, when prey is abundant, female wea-
sels (M. nivalis) can have two litters per season, averaging
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six young per litter, and the average of three females in
the first litter can breed themselves in the same season
(King 1989). This gives a maximum per capita pro-
ductivity of 15 yr�1, so that a = 2.7 yr�1. Annual mortality
for weasels is 77.5% (King 1989), so that e�b =
0.225 ⇒ b = 1.5 yr�1. These estimates imply A � a/b = 1.8
and B � r/a = 1.2. With A and B fixed, we chose C to give
an appropriate ratio (about 30) between the maximum
and minimum vole densities. In the model, this ratio
increases with C and C = 4.9 gives the required value. For
the vole dispersal coefficient Dh, we assume that 0.05% of
individuals move a distance of 2 km in one year; this very
rough estimate is based on limited mark-capture data (see
Sherratt et al. 2000). Neglecting the kinetics and assuming
just simple linear diffusion, this implies Dh � 0.2 km2 yr�1.
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The remaining parameter to be estimated is the dispersal
coefficient for weasels; this will be larger than that for
voles but we are not aware of any relevant data. In figure
1a,b we arbitrarily assume � = Dh /Dp = 2; if this ratio is
increased, the model continues to predict periodic waves,
but of a larger wavelength.

APPENDIX B

In this Appendix, we give details of the coupled map
lattice model, that is discussed in § 3. The model assumes
a rectangular grid of interconnected patches; most of our
simulations are on an 80 patch × 80 patch domain. We
solve for the densities of predators p and prey h in each
patch, at a series of discrete generations. Following stan-
dard modelling procedure, we divide each generation into
two substeps: ‘dispersal’ and ‘population kinetics’. In the
dispersal substep, a fixed fraction νp/νh of predators over
prey at each patch move to one of the four immediately
neighbouring patches; thus

predators

pt+1/2
i, j = (1 � �p)pti, j + �p

pti+1, j + pti�1, j + pti, j+1 + pti, j�1

4
(B 1a)

prey

ht+1/2
i, j = (1 � �h)hti, j + �h

hti+1, j + hti�1, j + hti, j+1 + hti, j�1

4
. (B 1b)

Here (i, j) denotes patch location within our grid of
patches, and the integer t denotes the time-step. The para-
meters νh and νp give a measure of population dispersal:
a value of 0.05 would correspond to a relatively low move-
ment rate, while 0.2 or more would indicate a rapidly dis-
persing population (Sherratt et al. 2000).

In the population kinetics substep, the populations in
each patch change independently. The kinetics thus have
the form of coupled difference equations for predator and
prey densities, which apply at each patch. There are many
such models in the literature (see May (1981) or Murray
(1989) for reviews) and we use the model initially pro-
posed by Beddington et al. (1975). By suitably rescaling
the population densities, this model can be written as

predators pt+1
i, j = ht+1/2

i, j [1 � exp(�bpt+1/2
i, j )] (B 2a)

prey ht+1
i, j = ht+1/2

i, j exp[a(1 � ht + 1/2
i, j ) � bpi, jt + 1/2]. (B 2b)

These equations imply a unique coexistence steady state
if b � 1, which is unstable provided a and b are not too
small. For a range of parameter values, the kinetics then
have the form of periodic or quasi-periodic cycles in the
two populations and we have solved the model only in this
region of parameter space. When a is large with b close to
1, very different and much more irregular kinetics occur,
but such cases are not relevant to our study, that is con-
cerned specifically with cyclic populations.
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