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Electronic Appendix A: ESS analysis of the model 
 
The overall payoff to the host from eggs laid in its own nest is RH , where  

RH = .       (A1) ( ) HCPHHf −+

Thus, since f(x) is a decreasing function, the payoff to the host is aversely affected by 

an increase in the number of parasite eggs. If parasitism was impossible, then the 

payoff to the host simplifies to  

RH = .        (A2) ( ) HCHHf −

Equilibrium occurs when this is maximized with respect to H. Thus if parasitism is 

impossible for some reason, then H = H1 where  
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Supposing that parasitism is possible, RH  is again maximized with respect to H  at the 

ESS. Setting H = H2, P = P2, we obtain 
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Every parasitic egg gains its layer a net reward RP, where 

( ) CPHfRP −+= 22γ                               (A5) 

As the number of (host or parasite) eggs laid in a nest increases, competition effects 

mean that the value of a parasitic egg (Rp) decreases. Hence, for any fixed number of 

host eggs H2, we expect that parasites will continue laying whilst Rp is still positive. 

However at some point competition will mean that Rp falls below zero. We would not 

expect a parasite to lay such an egg, hence parasitism will stop just before Rp falls 



below zero. For analytic convenience, we approximate the number of parasitic eggs 

laid by a continuous function. In this limit, the critical point occurs at the value when 

further parasitism would not be profitable , at exactly RP =0, and so  
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This simplification allows us to avoid the complications brought about by having to 

deal with whole numbers of eggs, but does not fundamentally change the nature of the 

model representation.   

Combining (A4) & (A6) gives 
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Note that parasitism may be possible, but the optimal worth of P2 may be zero, this 

occurs if (A4) and (A6) cannot be solved simultaneously, so that  and 12 HH =

( )
γ
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Now, equations (A3) and (A4) imply that 
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However, since (/f x ) , 0<
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Together these mean that  
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Using condition (23), (A11) implies that 
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This is the first important result of our analysis: parasitism never leads to a reduction 

in the total number of eggs in a nest, and can increase this total number. To explore 

the relative sizes of H1 and H2, we need to select a specific functional form for f. If we 

assume that f(x) is described by a simple geometric decline: 

( ) ,α−= Axxf          (A13) 

where 0 < α < 1, then this fulfils conditions (2.1)-(2.3). Increasing α causes the value 

of an egg to decrease more rapidly with increasing final clutch size. It is easy to show 

that 

( ) ( ) ( ).1 xfAxAxx
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Making this substitution in equation (A3) gives 
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In the case where parasitism is possible, we focus on the interesting situation where 

P2 > 0. From (A6) we obtain 
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and (A7) becomes  
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This gives 
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and  
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This is positive providing 

11 >+⇒−> γαγα         (A20) 

Thus if condition (A20) is satisfied, we expect non-zero levels of parasitism. It is no 

surprise that increasing γ makes parasitism more attractive, since γ is the probability 

that a parasitically laid egg will be accepted by the nest-owner. Increasing α increases 

the effect of increasing clutch size on the value of an egg. This benefits parasitism, 

since in the limiting case where α = 0, the value of an egg is unaffected by final clutch 

size and so (providing γ < 1), the ESS strategy is to lay all your eggs in your own nest. 

Notice that neither A (which scales the value of eggs) or C (their cost) has any 

influence on whether parasitism occurs. This is due to the fact that the rewards to both 

hosts and parasites are affected by these parameters in exactly the same way (A is a 

common factor in all rewards, C in all costs). Parasitism occurs if a parasite is willing 

to lay in a situation when a host is not, and whether this occurs or not does not depend 

upon A or C. Note that the number of parasitic eggs laid, if parasitism does occur, 

does depends upon these parameters through the ratio A/C.  

In the situation where (A20) is satisfied, we can work out the ratio 
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This ratio is greater than unity, thus parasitism causes increased laying in a bird’s own 

nest, provided that 

( ) ( αα γγαα −<− 11 )         (A22) 

Returning to the general form for the function f(x), we investigate the robustness of 

our predictions to changing functional form. No parasitism occurs if (A3) and (A8) 

hold simultaneously. Since the solution of (A3) is independent of γ, there is no 



parasitism for sufficiently small γ. Similarly, since ( )xf / <0, there is parasitism when 

γ is sufficiently close to 1, with H1 > H2   (H2=0 when γ=1). We now examine what 

happens at the point where γ becomes sufficiently large for parasitism to occur. 

Dividing  (12) through by  122 HPH −+  and rearranging gives 
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Consider a value of γ just larger than C/ ( =C/γ+δ); thus 

= -δ and as δ converges to 0, 
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Which in turn means that >0 just after the point when parasitism starts if and 

only if 
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This may or may not occur for a particular value of C, but for any plausible function it 

must occur for some values of C. This is due to the fact that over the whole range of 

possible values of C, all positive values of  are a solution of (A3), due to 

inequalities (2.2) & (2.3), so for this not to occur for any C would require  
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for all positive values of, which can only occur if ( )xf  becomes negative for some x, 

which is not possible. 
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