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Noisy clues to the origin of life
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The origin of stable self-replicating molecules represents a fundamental obstacle to the origin of life. The
low fidelity of primordial replicators places restrictions on the quantity of information encoded in a primi-
tive nucleic acid alphabet. Further difficulties for the origin of life are the role of drift in small primordial
populations, reducing the rate of fixation of superior replicators, and the hostile conditions increasing
developmental noise. Thus, mutation, noise and drift are three different stochastic effects that are assumed
to make the evolution of life improbable. Here we show, to the contrary, how noise present in hostile
early environments can increase the probability of faithful replication, by amplifying selection in finite
populations. Noise has negative consequences in infinite populations, whereas in finite populations, we
observe a synergistic interaction among noise sources. Hence, two factors formerly considered inimical
to the origin of life—developmental noise and drift in small populations—can in combination give rise to
conditions favourable to robust replication.
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1. TWO PERSPECTIVES ON THE ORIGIN OF LIFE

The origin of life on Earth remains a fascinating problem
for evolutionary theory, as it has required a combination
of geophysical, chemical and biological insights. The geo-
physical insights have helped to explain the emergence of
a reducing atmosphere, considered to be essential for the
production of simple hydrocarbon molecules and the pro-
cesses by which these hydrocarbons come into existence
(Woese 1979; Scherer 1985; Oro et al. 1990; Orgel 1998).
Chemists have provided scenarios for the production of
amino acids and nucleic acids from the simple molecules
and gases likely to be present in the early atmosphere
(Haldane 1929; Oparin 1957; Miller 1953; de Duve
1993). Biological theories take these constituents and
explore their application in the origins of replication and
metabolism (Eigen 1971a; Dyson 1982; Eigen & Schus-
ter 1982).

Replication-oriented theories for the origin of life sug-
gest that simple RNA-like polymers arose first, followed
by cells and proteins (Eigen 1971a; Orgel 1994; Laz-
cano & Miller 1996). Metabolism-oriented theories
(Oparin 1957; Cairns-Smith 1966; King 1977; Kauffman
1986) suggest that cells and proteins came first, followed
much later by nucleic acid replication. It is important to
stress that some form of metabolism is a prerequisite for
replication and hence these two approaches reflect only
differences in emphasis. The primary data in support of
metabolic/protein first theories are the relative ease of pro-
duction of amino acids under primordial conditions (Fox
1984) in contrast to the difficulty of producing nucleic
acids (de Duve 1995), and the high levels of noise that
can be tolerated by autocatalytic networks (Dyson 1982).
In support of replication theories are the facts that all con-
temporary proteins are first encoded as nucleic acids, that
RNA molecules possess basic catalytic properties (Cech
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1989; Orgel 1968; Pace & Marsh 1985; Benner et al.
1987), and that modern cells have the appearance of com-
partmented catalytic hypercycles (Eigen & Schuster
1977, 1982).

2. THE VARIETIES OF BIOLOGICAL NOISE

In both replication-oriented theories and metabolism-
oriented theories, different sources of noise play a very
significant role. Noise comes in at least three variations:
(i) high levels of heritable noise or mutation; (ii) sampling
noise or drift; and (iii) developmental noise or thermal flux
in the phenotype. In replication-oriented theories, errors
that arise through mutation during replication are thought
to give rise to an error threshold (Eigen 1971b, 2000),
limiting the absolute size of a polymer. Whereas in existing
organisms the magnitude of these mutations is relatively
small, for early replicators, they are likely to have been
very high. During the sampling of future generations in
finite populations, the fittest genotypes can be lost by
chance, compounding the effects of mutation (Kimura
1983). Drift in effect reduces selective differences among
competing replicators and thereby reduces heritability.
The effects of non-heritable flux, or developmental noise,
have been neglected in replication-oriented theories. In
metabolism-oriented theories, flux limits the specificity of
catalysis, whereas random-sampling drift plays a construc-
tive role. This is because drift can lead to the selection of
ordered catalytic networks, from disordered networks, by
surmounting free energy barriers (Dyson 1982).

We provide an explicit treatment of all three sources of
noise: mutation, drift and developmental noise. We
decompose developmental noise into two independent
processes or submodels: knockout noise and mutation
amplification. We show that non-heritable flux in selection
coefficients (developmental noise), when coupled with
drift in finite populations, increases the tolerance of rep-
licators to high rates of heritable mutation. Developmental
noise in small populations allows more information to be
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preserved in larger polymers under higher rates of
mutation.

3. INFINITE POPULATIONS: DRIFT-FREE
DYNAMICS

For expositional reasons we first describe an infinite
population model and subsequently present simulation
results and a diffusion approximation for a finite popu-
lation rendition. Consider a short ribonucleotide polymer
of length L. We denote the frequency of a polymer
sequence containing i wild-type and L � i mutant nucleo-
tides by pi. The sequence in which the number of mutant
sites i = 0 is defined as the wild-type. The fitness of an
individual carrying i healthy nucleotides is denoted by
Wi, and is assumed to be a monotonic non-decreasing
function of i (W0 � W1 � … � WL = 1). Thus, all tem-
plates in the ith Hamming class have equal fitness. The
mutation rate creating a new defective template is denoted
by � per site. We ignore back mutations restoring the
wild-type sequence.

The genotype frequency dynamics for a continuous
time-change, after the transformation from Wi in the dis-
crete generation model to the Malthusian parameter
wi = lnWi in continuous time, is

ṗi = (wi � w̄)pi � i�pi
� (i � 1)�pi�1, (i = 0,1,…,L), (3.1)

where w̄ � ΣL
i = 0 wipi is the population mean fitness

(Malthusian parameter) and pL�1 � 0. By definition,
ΣL
i = 0 pi = 1.
There are L � 1 different equilibria of the system (3.1),

corresponding to solutions differing in the maximum
number n of healthy sites found in the population. Let
w̄(n) be the mean fitness at equilibrium, defined as

w̄(n) = wn � n�, (3.2)

which is derived from ṗn = 0. It can be proven that the
equilibrium is locally stable if and only if n, the largest
number of healthy sites in the distribution of { p̂i}, maxim-
izes w̄(n) = wn � n�. In other words, w̄(n) = wn � n� is
maximized through evolution acting on the number of
wild-type sites in the template. This result can be regarded
as a variation of the Haldane–Muller principle: ‘the
mutation load, the reduction in mean fitness from its
maximum, equals the total mutation rate’. However, the
maximum fitness (Malthusian parameter) in this case
refers not to the possible maximum, wL = lnWL = 0, but
the maximum among genotypes maintained in the popu-
lation, wn = max{wi|p̂i � 0}. The final equilibrium distri-
bution for the number of functional sites depends on the
fitness landscape {wi}. Here, we focus on the linear fitness
landscape in continuous time and the corresponding
multiplicative landscape in the discrete time, finite popu-
lation simulations.

Developmental noise can have two possible effects on a
replicator. It can either: (i) appear to introduce new non-
heritable errors into a sequence (knockout noise); or (ii)
amplify the deleterious effects of existing heritable
mutations (mutation amplification). The first model
assumes that environmental noise and mutation operate
in essentially the same fashion on a sequence. Both lead
to the effective replacement of a nucleotide. In the case of
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noise, this replacement is not propagated. This mech-
anism can be thought of as intervening in the genotype-
to-phenotype map so as to give the impression of a greater
number of mutations. For example, in advanced two-step
replicators, in which RNA is first transcribed into DNA
or DNA into RNA, noise can lead to misincorporation
errors without changing the primary replicator. The
second mechanism amplifies the deleterious effects of
existing mutations, either by reducing the ability of a rep-
licator to fold into a desired conformation or by increasing
the structural instability of the mutant phenotype. Thus,
those replicators with no mutations are left unaffected by
noise, whereas those with many mutations suffer a dispro-
portionately large amount of change to their phenotypes.

Consider the first kind of noise, described as knockout
noise. The probability that a non-heritable loss of function
takes place at each site is denoted by q. In the genotype
with i healthy gene copies, the probability that j genes
remain functional after noise is

� i
j
�(1 � q)jqi�j, (j = 0,1,…,i). (3.3)

As before, we denote the fitness (Malthusian parameter)
of an individual having j functional sites by wj. The average
fitness of the genotype with i healthy sites in the genome
is then given by

�i = �i
j = 0

wj� i
j
�(1 � q)jqi�j. (3.4)

In respect of the second kind of noise, we envisage an
amplification parameter, �, which determines the magni-
tude of thermal fluctuations. These fluctuations are
thought of as small deviations in fitness drawn from a uni-
form probability distribution �, hence

�i = �wi � 	wi ���, (3.5)

where, 	wi = wL � wi is the fitness reduction of genotype
i from the wild-type, and this effect of defective sites is to
be amplified with the magnitude ��. Note that because of
the monotonicity in {wi}, �i 
 wi holds for all i with
both models.

To include the effects of noise, the genotypic frequency
dynamics remains the same as (3.1), except that wi is now
replaced by the appropriate �i:

ṗi = (�i � �̄)pi � i�pi
� (i � 1)�pi�1, (i = 0,1,…,L), (3.6)

where �̄ = ΣL
i = 0 �i pi is the mean fitness and pL � 1 � 0 as

before. Therefore, the mean fitness of the population �̄ at
the stable equilibrium satisfies

�̄ = �n � n� = max
0 � i � L

{�i � i�}, (3.7)

and the stable frequency distribution is as before with
wi’s replaced by �i’s.

In figure 1 we plot fitness for both submodels of noise
against the number of mutations to the wild-type
assuming a linear fitness landscape in continuous time.
For knockout noise with the maximum number of del-
eterious mutations (figure 1b), there is no difference
between the zero noise model (wi) and the noisy process
(�i). This is because there can be no additional sites dam-
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Figure 1. Genotypic fitness modulation assuming (a) the
noise amplification model and (b) the knockout noise model.
Fitness of a replicator is multiplicative Wi = (1 � s)L�i, and
decreases with the number of healthy sites i (the solid curve
in (a) and (b): s = 0.2 and the total number of sites L = 20).
With amplifying noise (a), the deleterious effect of each
defective site is increased by 	s = 0.1, leading to a steeper
decline in fitness as the number of defective sites (L � i )
increases (dashed curve). With knockout noise, in contrast,
each healthy site is lost with a probability q, giving rise to a
flatter landscape (dashed curve: q = 0.5). The relative
difference between the fitnesses with and without noise is
greatest at i = 0 in the noise–amplification model (a), and at
i = L in the knockout noise model.

aged through noise. As the number of wild-type sites
increases, the difference between wi and �i increases. For
mutation amplification noise, the opposite is true. When
there are no mutations to the wild type, wi and �i are
identical. As the number of heritable mutations increases,
so does the difference between wi and �i. With amplifi-
cation, the greatest difference in fitness between the noisy
and noise-free dynamics is produced when the mutational
load is at its maximum. Significantly, knockout noise
reduces the fitness differences between mutants in differ-
ent Hamming classes, whereas amplification noise
increases these differences. Thus, knockout noise in a lin-
ear landscape does not provide any advantage over zero
noise. Amplification noise, as we shall see, can provide
an advantage.

4. NOTES ON INFINITE POPULATIONS

The expected k̄ and w̄ in the limit of N → � are easily
calculated. If the effective selection coefficient �S�� is
greater than the threshold (�S�� � �), the stationary distri-
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bution for the number of healthy sites under the linear
fitness landscape is binomial:

p̂i = �L
i
�(1 � �/s)i(�/s)n�i,

with s = �S��. Whereas, if the selection is weaker than the
threshold (�S�� 
 �), the population is monomorphic with
all-defective replicators. The mean number of healthy sites
(k̄ = L(1 � �/s)) increases with s = �S�� in the region
�S�� � �. The population mean fitness, on the other hand,
is constant; w̄ = �L� in the region �S�� � � (the Haldane–
Muller principle). In order to compare results of a non-
overlapping generation, discrete time Monte Carlo simul-
ation, with continuous time results, we have to scale our
parameters appropriately. If we assume a selection coef-
ficient SD in a multiplicative fitness scheme (wi = (1 �
SD)(L�i)) where i is the number of healthy sites in the non-
overlapping generation, then we need a selection coef-
ficient SC in the linear fitness scheme ri = �SC(L � i) in
continuous time. The selection coefficients are related
through the function SC = �log(1 � SD).

5. FINITE POPULATIONS: ALLOWING FOR DRIFT

Early replicators will have emerged in small popu-
lations. We are therefore required to consider the effects
of drift in finite populations (Kimura 1983). We have per-
formed extensive Monte Carlo simulations in discrete
time, assuming multiplicative fitness landscapes, corre-
sponding to a linear landscape in continuous time, for
which we have developed a diffusion approximation. In
figure 2 we plot the population mean fitness and number
of wild-type sites at a quasi-stationary state against the
effective selection coefficient to include the influence of
noise. We observe that for highly mutable templates in
large populations, increasing noise has no effect on the
population mean fitness. This is a consequence of the Hal-
dane–Muller principle. At very small levels of noise, corre-
sponding to small selection coefficients (s � 1), or large
mutation rates (�L), heritability is lost and all sites experi-
ence mutation. For very large selection coefficients or
small mutation rates, almost all sites are kept free from
mutation and the wild-type template dominates. In large
(infinite) populations, therefore, the number of wild-type
sites increases with an increase in the magnitude of noise,
without an increase in fitness. One explanation is that
increasing noise selects for increasing levels of genetic
redundancy (Nowak et al. 1997; Krakauer & Plotkin
2002).

In small-sized populations the Haldane–Muller prin-
ciple is no longer as strong, and changing the magnitude
of noise has an influence on the population mean fitness.
For very low levels of noise, once again, all wild-type sites
are lost through a combination of mutation and drift.
Increasing the magnitude of noise in the region of these
low values reduces the mean population fitness. As the
noise level increases still further, variation in mutation rate
becomes detectable by selection, thereby leading to an
increase in mean fitness. This is because noise enhances
the phenotypic expression of mutations in contaminated
genomes, leading to their removal from the population.
This can be thought of as a negative ‘Baldwin effect’, in
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Figure 2. The effect of non-heritable amplifying noise on the mean number of healthy sites maintained in a finite population,
and on the population mean fitness. (a(i)–c(i)) Illustrations of how the mean number of healthy sites, k̄ = ΣL

i = 0ip̂i, averaged over
the quasi-stationary distribution p̂i at generation T = 30 000, changes with the effective selection coefficient �S�� = s0 � ���� with
different magnitudes � of noise �. (a(ii)–c(ii) Illustrations of the noise dependency of the corresponding population mean fitness
W̄ = ΣL

i = 0Wip̂i. The initial population is assumed to consist exclusively of wild-type replicators (with all sites healthy). The
population size is N = 20 in (a), N = 50 in (b) and N = 200 in (c). The open circles in each panel show the results of Monte
Carlo simulations assuming a multiplicative fitness scheme: Wi = (1 � S�)L�i, where i is the number of healthy sites in a
template of L sites. The solid and dashed lines show the expected values obtained from the diffusion approximation, and the
infinite population results. Both assume a continuous, time-linear fitness landscape: wi = �S �

�(L � i) corresponding to the
multiplicative landscape in the non-overlapping generation of Monte Carlo simulations (with Wi = exp(wi) and S �

� = �log(1 �
S�)). In all graphs, the effective selection coefficients (horizontal axes) are varied by changing the magnitude of noise �. The
total number of sites L = 19 and the per-site mutation rate � = 0.005 are fixed in all graphs. A variation in these parameters to
include longer templates with suitable scaling does not alter the results.

which noise explores deleterious fitness space, rather than
the usual beneficial fitness space (Ancel 1999). At the
highest noise levels, there is a significant increase in mean
fitness, corresponding to the incremental increase in the
number of healthy sites preserved in the quasi-stationary
state. Thus, fitness is maximized at high and low levels of
noise and minimized at intermediate noise levels. Genetic
information, in contrast, is present only at the highest
noise levels. This bistability in fitness and heritability is
often ignored in evolutionary theory, as very large selec-
tion coefficients and/or rates of mutation are deemed
unrealistic. However, this criticism is less appropriate
when considering the several sources of noise in primor-
dial environments. In this scenario, as our noise models
illustrate, high rates of mutation and large increases in the
effective selection coefficient are quite probable. The most
striking difference between the finite population descrip-
tion and the infinite population model is, therefore, the
way in which increasing the number of healthy sites
through an increase in noise leads to a graduated increase
in mean population fitness (figure 2). Not only does noise
effectively purge mutations from the genome, it increases
population mean fitness.

An alternative way of visualizing this process is by plot-
ting the mean population fitness and mean number of
wild-type sites against the mutation rate (�L) (see figure
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3). In infinite populations, increasing the mutation rate
leads to a gradual decrease in fitness, and the number of
wild-type sites. At a sufficiently large rate, all genetic infor-
mation will be lost. In finite populations, the drop in fit-
ness occurs far more rapidly with an abrupt loss of wild-
type sites and a corresponding rapid drop in fitness. As
the magnitude of noise is increased, higher mutation rates
can be tolerated, preserving a larger number of wild-type
sites. Moreover, the loss of sites and of fitness becomes
gradual, more closely approximating the infinite popu-
lation case.

6. NOTES ON THE DIFFUSION APPROXIMATION

In a finite population, neglecting back mutations, the
number of healthy sites irreversibly decreases (Muller’s
ratchet; Muller 1950). Here, we calculate the mean time
until the loss of the most healthy genotype in the popu-
lation (i.e. we ask, when starting from a population in
which the maximum number of healthy sites is n, what is
the expected time, n, until the most healthy class is lost
by random drift). This problem represents an n-dimen-
sional diffusion process, but we can reduce the dimensions
to one, by concentrating on the frequency change in the
most healthy class (i.e. pn). This assumes that the fre-
quencies of the other genotypes are kept close to those
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Figure 3. (a(i)–d(i)) The mean number of healthy sites maintained in a finite population, and (a(ii)–d(ii)) the population mean
fitness plotted against the total mutation rate L�. The population has a fixed size N = 50, and the effective selection
coefficients are varied from left to right as (a) �S�� = 0.2, (b) �S�� = 0.3, (c) �S�� = 0.4, (d) �S�� = 0.5. As in figure 2, open circles
indicate the results of Monte Carlo simulations; solid curves represent the expectations from a one-dimensional diffusion
approximation for the waiting times; dashed curves present infinite population results. Short dashed segments in (b(ii)–d(ii))
indicate the mean fitness under the infinite population model when the maximum numbers of healthy sites L are 18, 17 and
16 (from top to bottom), rather than L = 19 assumed initially.

values observed in the stable distribution of the determin-
istic subsystem (with pn�1 = pn�2 = %pL � 0). Once we
obtain n (n = L, L � 1,…, 2), the mean number of
healthy sites at generation T is k̄ = n∗

(T)(1 � u/s) where
n∗

(T ) = max(n � L � L�1 � % � n � T), and the mean
fitness is exp(w̄) where w̄ = w∗

n(T ) � n∗
(T )�.

7. SUMMARY AND CONCLUSIONS

We have considered noise in a hierarchically structured
model. In this way, we have been able to disentangle dif-
ferent sources of noise. We find that developmental noise
in finite populations can increase the robustness of rep-
licators to mutation, and has an effect comparable with
increasing the effective population size. In other words,
one source of individual-based noise—developmental
mutation amplification—has the effect of mitigating a
second source of population-based noise—drift. We
observe that far from making the evolution of life less
probable, stochastic effects, by acting in concert, can make
the evolution of robust replicators more likely. By includ-
ing more levels of selection in the model, thereby partially
decoupling the fate of cells from those of individuals, we
expect more diverse forms of noise to enter, construc-
tively, into the evolutionary process.
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