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Electronic Appendix A

We have defined the frequencies of UAy, TfTy, and DEy by xj, x2, x3 and the
frequencies of UA[, TfT1, and DE, by yy, y», v3. That is, the respective strategy sets of
the high and the low quality players are given by

X= {xle1 +x,e, +x3e3|x1,x2,x3 20 and x, +x, +x; = 1}
(A.la)
Y= {)’1e1 + €, +y3eg,|y1,y2,y3 20 and y, +y, +y; :1}

where {ej, e3, es} is the standard basis of R’ = (- oo,oo)3, 1e.,
0 0
(A.1b) e, =0f,e,=[1],e;=|0].
0 1

Let us define a population strategy profile by (x,y) € XxY, then the payoff to a high
quality player using strategy a € X is given by

(A.22) vi(a,(x.y))=2" 0Py, (X.y) 0x +a' 0Py (X.y) 0y .
Whereas the payoff to a low quality player using strategy b € Y is given by
(A.2b) v,(b,(x,y))=b' oP_,(x,y) ox+b' 0P, (X,y) Oy .

The idea of evolutionary stability is based on the concept of an invasion barrier. In
the current case, a strategy profile (x*,y*) € XxY is an ESS: if a population in which all
high quality individuals play x* and all low quality individuals play y* cannot be
invaded by mutants or emigrants, of either or both quality types, using any alternative
strategies — provided the numbers of these invaders are sufficiently small relative to the
invaded population.

To qualify the term “sufficiently small” we use the dynamical approach advanced
by Cressman (1992, chapter - 3). Let a strategy profile (x*,y*) € XxY be given. We
construct the dynamical form of the game prescribed by the system (6-9) relative to
(x*,y*) as follows.

Let (x,y) be a arbitrary alternate strategy profile. Let Ni; and N, be the densities of
the x*, and x players respectively. Similarly, let N>; and N,; be the densities of the y*,
and y players (N11 +Ny, =N, :N, +Ny, = Nz). Let b; be the background fitness of



the individuals in the population (independent of the game in question), and let d; be
their death rate. Finally, let us define p =N,,/N,,s=N,,/N,. We can express the

post-invasion population (average) strategies in terms of p and s as

x, = (- p)x*+px=x*+ p(x—x¥)
(A.3a) and .
Yo =(=9)y*+sy =y *+s(y —y%)

In these terms the dynamics of N1, N2, N2, and N, are given by

dgll = Nn[bl +V1(x*,(Xp,ys))_d1]
t

d]c;[tlz = N12 [b1 +V1(X’(Xp’y5))_dl]
(A.3b)

dZC\I]tZI =N, [bz + Vz(y*’(xp’ys))_dZ]

djc\i[l‘zz =N, [bz +V2(y’(xp’y5))_d2]

And, consequently, the dynamics of p and s are given by

p'= i[%] =-p(l —p)Vl(X*— X,(Xp,ys))

dt r0) = p,
(A.3¢) and : and .
., d[N _
s =5[N—2j=—s<1—s)v2(y*—y,(xp,ys)) $0) =5,

We see that an invasion fails if, and only if, (iff) (p(?),s(t)) converges to (0,0).
Thus, we say that a strategy profile (x*,y*) is locally asymptotically stable (las) with
respect to the strategy profile (X,y) iff exist dyy, €xy > 0 such that whenever 0 < pg < 84y
and 0 < s < &yy, (p(#),5(f)) converges to (0,0). Clearly, (x*,y*) € XxY is an ESS iff
(x*,y*) is las with respect to any strategy profile (x,y) # (x*,y*).

To qualify this statement we follow Cressman in expanding Vl(X *— X, (xp,ys)) and

Vz(y *—y, (Xp,ys)) as power series in p and s to obtain



v (%= x,(x,,¥,)) = (0% = %) 0[Py (x,.,¥,) 0%, + Py (x,.,,) 0y,
= (x*= X)" 0[Py (X*,y%) 0x *+ Py (x*,y*) 0y *|+
(Ada)  pl(x*—x)" 0P, (X, y%) o(x — x¥) + (1 — g)S(x, —x2)(x; —x))]
+5](x 20" 0Py (5 y¥) 0y — ¥+ rgS(x, — 20, — 1) =

0LOO ((X*9 y*)a (X’ y)) + pO(’IO ((X*’ y*)7 (Xa y)) + SO(’OI ((X*> y*)7 (Xa y))

and

V(Y 5=, (x,,¥5)) = (v £—y)' 0[P, (%, y9) ox *+ Py, (x5, y¥) oy *|+

Ply £ =y) 0Py (X%, y%) o(x = x*) + (1= 9)S(y, — ), — X))+
(A.4b)

sy *=y)' 0P (x*, ¥ o(y — y¥) + rgS (3, — ) (s - ¥0)] =

BOO ((X*a y*)o (Xa y)) + pBlO ((X*a y*)a (Xa Y)) + SBOI ((X*a y*)a (Xa Y))

That is, the expansions of VI(X *—x, (xp,ys)) and v, (y -y, (x, ,ys)) as power series

in p and s is analogous to the corresponding expansions for two-type games with
constant payoff matrices. Thus (Cressman, 1992, ch - 3), (x*,y*) € XxY is an ESS of
system (6-9) if for every strategy profile (x,y) # (x*,y*)

(2) Lo (X%, y%),(x,¥)) 2 0 and o, (X%, y%),(x,¥)) = 0 = o, ((x*,y%),(x,¥)) > 0

(b) Boo (x*,¥%),(x,¥)) 2 0 and By, ((x*,y*),(x,¥)) = 0 = B, (x*,y*),(x,y)) > 0

(AS) If G‘OO ((X*’ y*): (X’ y)) = BOO ((X*a y*): (X’ y)) = 0 then
either
(C) G‘OI ((X*, y*)’ (X’ y)) 2 0 or BIO ((X*a y*)9 (X’ y)) 2 0
or

(d) oo (%, 7%, (%,7))Boy (X%, ¥%), (x,3)) > 0o, (X%, ¥%), (%, ¥) B (X%, ¥5), (x,))

Remark. ESS points are not the only evolutionary stable solutions of evolutionary
games (Cressman, 1992; ch - 6). There is also the possibility of a set of solutions
exhibiting neutral stability among themselves, while being ESS-like in comparison with
the strategies not in that set—evolutionarily stable sets (ES sets).



Electronic Appendix B

We find the evolutionary stable solutions of system (6-9) by a two step process.
In step — I we use the fact (cf. Weibull, 1996) that a strategy profile (x*,y*) is an
evolutionary stable solution of system (6-9) only if

(B.0a) Vl(x*—ej,(x*,y*))xj = Vz(y*—ej,(x*,y*))yj =0 for j =12.

In step — 2 we apply the ESS criterion (A.5) to these potential ESS solutions.
In this specific case, system (6-9) has thirteen potential ESS solutions and one potential
ES set solution.

(XD Y1) = (ewes)
now

(B.1a) oo (X, 1)), (X, ¥)) = (S = C)(grx, +x;)
and

Boo (%150, (%, ¥)) = (D = )y, + (1 =), ]
Hence (x1,y1) <> (UAy,DEy) is an ESS whenever

(B.1b) C<S<D.

(x,,y,)=(e,,e;)

now
oo ((X5,¥,),(X,¥)) = gr(C = S)x, + (B~ C +5)(0, — q)x,
(B.2a) and
Boo ((X,,¥,),(x,¥))=rB(g —1+0,)y, +rB(1-p)(g—0,)y,
where
D-S§ r— rB-C+S
p=—p—:0,= P 292:—;93:B
B r(l-p) r(B-C+Y5) r

Since r > (/B (Fishman et al., 2001), (X2,y2) <> (TfTy,DE;) is an ESS whenever.

C<D-B,S<C,and ¢<86,

(B.2b) .
C>D-B,D-B<S<C,p<r,and 0, <g<80,
(X5,y5) =(e;,e) # (e,e;)
but
(B.3) aoo((xa’Y3)a(e1ae3)):C_S
and

BOO((X3’y3)’(e1’e3)): S—D

Thus, since D > C, (x3,y3) is not an ESS.



(X4ay4) = (epez) * (ezse3)
but

(B.4) oo (X4, ¥,),(e5,€5)) = (1= 7 +gr)(C—S)—grB
and

Buo (x4,¥5). (€5.€,)) = grB (1= r +gr)(D =)
Thus, since D > C, (X4,y4) 1s not an ESS.

(X5,y5) = (e35e3)
now

(B.5a) oo (X5, ¥ ), (X,¥)) = (C = S)[x, + (1=7)x, ]
and

Boo (X5, ¥, (x,¥)) = (D =Sy, +(1-r)y,]

Hence (xs,y5) <> (DEy,DE}) is an ESS whenever

(B.5b) S<C.
- _ .. _(I=gr)(D-S5)
(X6,Y¥6) _(e1=ye2 +(1 Y)e3) Y= 7 (B—D+5)
now
0o (X6, ¥ ) (X,¥)) = gr(S —=C)YA=y)x, +[S—C+qrBylx, =0 = x =e¢,
and
R Buo((Xer¥0) (%)) = gr(D = )1~ 1),
thus
BOO((X69y6)9(X9Y)): 0O=y=y, =he,+(1-2)e; for 0<A <]
but

Boi (X6, ¥6)u(e1,¥,)) = gr(D = B+S)(~7)*
Hence (x6,y6) <> (UAL, TfTL®DE,) is an ESS whenever

C<D-B<S<D,p<r,and 0, <gq
(B.6b) or
D-B<C<S<D,p<r,and 0, <gq



(x;,y,) = (ezsuez +(1—M)e3) u=(g-0,)/q
now
aOO((X7’y7)’(X’y)): r(C=58)0,x, +(1-r9,)(D-C)x,
thus
0‘0()(("7=y7)=(X,y))=0<::>X:e2

(B.7a) and

Boo (X,,¥,),(x,y))=r(D - 5)0, 3,
thus

Boo((X1,¥,)(x,¥)) =0y =y, =he, +(1-1)e, for 0<A<I
but
Boi((X,,¥,).(e,.,)) = grB(1—p)(h—p)*

Hence (x7,y7) <> (TfTy, TFT.®DE) is an ESS whenever

(B.7b) D-B<C,D-B<S<C,r>pand g>0,.
(I-r)(D-=S)
X, =(e,,ye, +(1—y)e = 2 77
(Xg,¥5) (3X2 ( X)3) X gr(S + B—D)
that is
O<y<eD-B<S<D
now
(B.8) (Xg,¥5) = (€,,Y5)
but
O(‘OO((XS’Y8)’(e2’y8)):_quD_SX
and

Bij((xg’y8)’(e2ay8)): 0 for l,] = 031
Thus, (xg,yg) is not an ESS.

L« (=r+gr)(C-S5)
N (=q(B=C+S)

(X9’y9):(81e2 +(1—51)e3,e1)
that is
0<6, &S<C<D
now
(X99Y9)¢(X99e2)
but
aij((ngyg),(xg,ez))zo for i, =0,
and

Boo (X0,¥5)s(Xq,€,)) == 7r(1=g)(D = S)(1-8))

(B.9)

Thus, (X9,y9) 1s not an ESS.



(X0,¥10) = (6292 +(1 _62)e3ae2)

_(A=r)(C=8)—qr(B-C+1S5)

where J, =
(1-g)r(B-C+Y59)
now
(B.10) (X105¥10) # (X9-€3)
but
aij((X109y10)9(X109e3)): 0 for i,/ =0,
and
B(D-C)
5 5 ,€ =—((-r)—=
BOO((XIO Yio)s (X0 3)) ( r)B—C+S
Thus, (X10,y10) is not an ESS.
(1-r)(C-S5)
, = +(1- , =
(X,1,¥11) (7T62 (1-me, e3) n (=) (B—C+5)
now
Ao (%1, Y1) (X,¥)) = H(C = S)[1 = (1 - g)mlx, = gx,
1.e.,
%o (X1, Y1), (X,Y)), =0 = x=x, =he, +(1-L)e, for 0<A <1
(B.11a) and (D-C)
B(D -
, ,(x,y))=(D-C+ +(1-r)——=
Boo((xn Y1), (x Y)) ( gy +( r)B—C+Sy2
thus
BOO((Xll’yII)’(Xay)): 0cy=e;
but

o (11,51 (x;.€,)) = r(L = g)(S = B+ O)(A —m)°
Hence (x11,y11) <> (TfTy®DEy,DE) ) is an ESS whenever
(B.11b) B/2<C,B-C<S<C,and ¢<80,.
(Xpp»¥10) = (N, +(1=m))ey, k.8, + (1= )e; )

_(C=8)S+B-D)-(1-nB(D-F) _C-S

1 (1-q)B(D-5) R

here

K, >08<C<D
(B.12) o

(X5,¥,) #(€,,¥1,)
but

cC-SD-C
aOO((Xlz’ym)a(ez,yu))=_( D)ES )<0

and

Bij((XIZ’ylz)’(ezaylz))= 0 for l,] = 0,1



Thus, (X;2,y12) 1s not an ESS.

(Xp3,¥53) = (Yzez +(I-v,)e;,x,e, + (1—K2)63)

_ D-§ = (D-85)B-C+S8)+(1-r)B(C-2S)
2= (1-¢B’ - qrB(C-9)
now
(B.13) (X13,¥13) #(€,¥3)
but
aoo((xlsaY13)a(e1aY13)):_(D_C)
and

Bij((xna)’n)a(epyl;)): 0 for i,j=0.1
Thus, (x13,y13) is not an ESS.

(x,.¥,) € A =1{(he, +(1-N)e,, e, +(1-pe, )| A,pe[0,1]}
now

(B.14a) oo (X, ¥, ). (%)) = {8 = C + rBIL— (1 - )1 — quila,
and

Boo (%,,¥,)-(x,¥)) = {S = D+ Bl - (1 - )\ — g}y,
Hence A is an ES set whenever

(B.14b) S>D.
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