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Electronic Appendix A 
 
We have defined the frequencies of UAH, TfTH, and DEH by x1, x2, x3 and the 
frequencies of UAL, TfTL, and DEL by y1, y2, y3. That is, the respective strategy sets of 
the high and the low quality players are given by 
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where {e1, e3, e3} is the standard basis of R 3 = (− ∞,∞)3, i.e.,  
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Let us define a population strategy profile by (x,y) ∈ X×Y, then the payoff to a high 
quality player using strategy a ∈ X is given by 
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Whereas the payoff to a low quality player using strategy b ∈ Y is given by 
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The idea of evolutionary stability is based on the concept of an invasion barrier. In 

the current case, a strategy profile (x*,y*) ∈ X×Y is an ESS: if a population in which all 
high quality individuals play x* and all low quality individuals play y* cannot be 
invaded by mutants or emigrants, of either or both quality types, using any alternative 
strategies  provided the numbers of these invaders are sufficiently small relative to the 
invaded population. 
 

To qualify the term “sufficiently small” we use the dynamical approach advanced 
by Cressman (1992, chapter - 3). Let a strategy profile (x*,y*) ∈ X×Y be given. We 
construct the dynamical form of the game prescribed by the system (6-9) relative to 
(x*,y*) as follows. 

Let (x,y) be a arbitrary alternate strategy profile. Let N11 and N12 be the densities of 
the x*, and x players respectively. Similarly, let N21 and N22 be the densities of the y*, 
and y players ( )2222111211 : NNNNNN =+=+ . Let bi be the background fitness of 



the individuals in the population (independent of the game in question), and let di be 
their death rate. Finally, let us define 222112 /,/ NNsNNp == . We can express the 
post-invasion population (average) strategies in terms of p and s as 
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In these terms the dynamics of N11, N12, N21, and N22 are given by 
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And, consequently, the dynamics of p and s are given by 
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We see that an invasion fails if, and only if, (iff) (p(t),s(t)) converges to (0,0). 

Thus, we say that a strategy profile (x*,y*) is locally asymptotically stable (las) with 
respect to the strategy profile (x,y) iff exist δxy, εxy > 0 such that whenever 0 < p0 < δxy 
and 0 < s0 < εxy, (p(t),s(t)) converges to (0,0). Clearly, (x*,y*) ∈ X×Y is an ESS iff 
(x*,y*) is las with respect to any strategy profile (x,y) ≠ (x*,y*). 
 

To qualify this statement we follow Cressman in expanding ( )),(,* sp1 yxxx −  and 
( )),(,*v sp2 yxyy −  as power series in p and s to obtain 
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and 
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That is, the expansions of ( )),(,*v sp1 yxxx −  and ( )),(,*v sp2 yxyy −  as power series 
in p and s is analogous to the corresponding expansions for two-type games with 
constant payoff matrices. Thus (Cressman, 1992, ch - 3), (x*,y*) ∈ X×Y is an ESS of 
system (6-9) if for every strategy profile (x,y) ≠ (x*,y*) 
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Remark. ESS points are not the only evolutionary stable solutions of evolutionary 
games (Cressman, 1992; ch - 6). There is also the possibility of a set of solutions 
exhibiting neutral stability among themselves, while being ESS-like in comparison with 
the strategies not in that setevolutionarily stable sets (ES sets).  
 



Electronic Appendix B 
 
We find the evolutionary stable solutions of system (6-9) by a two step process. 
In step – I we use the fact (cf. Weibull, 1996) that a strategy profile (x*,y*) is an 
evolutionary stable solution of system (6-9) only if  
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In step – 2 we apply the ESS criterion (A.5) to these potential ESS solutions. 
In this specific case, system (6-9) has thirteen potential ESS solutions and one potential 
ES set solution. 
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Hence (x1,y1) ↔ (UAH,DEL) is an ESS whenever 
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Since r > C/B (Fishman et al., 2001), (x2,y2) ↔ (TfTH,DEL) is an ESS whenever. 
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Thus, since D > C, (x3,y3) is not an ESS. 
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Thus, since D > C, (x4,y4) is not an ESS. 
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Hence (x5,y5) ↔ (DEH,DEL) is an ESS whenever 
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Hence (x6,y6) ↔ (UAH,TfTL⊕DEL) is an ESS whenever 
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Hence (x7,y7) ↔ (TfTH, TfTL⊕DEL) is an ESS whenever 
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Thus, (x8,y8) is not an ESS. 
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Thus, (x9,y9) is not an ESS. 
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Thus, (x10,y10) is not an ESS. 
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Hence (x11,y11) ↔ (TfTH⊕DEH,DEL) is an ESS whenever 
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Thus, (x12,y12) is not an ESS. 
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Thus, (x13,y13) is not an ESS. 
 

(B.14a)           

( ){ }

( ) { }

( ) { } 300

300

2121

)1(1[),(),,(
and

)1(1[),(),,(
now

]1,0[,)1(,)1(),(

yqqrBDS

xqqrBCS

µ−λ−−+−=β

µ−λ−−+−=α

∈µλµ−+µλ−+λ=Λ∈

µλ

µλ

µλ

yxyx

yxyx

eeeeyx

. 

 
Hence Λ is an ES set whenever 
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