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Electronic appendix A 

Sensitivity to population size 

We tested the sensitivity of key model results to both absolute and relative changes in pool sizes.  
Figure S1 shows results obtained when both pools are reduced ten-fold in size (i.e. for a HCW 
pool of 300 individuals, and community pool of 10,000).  Comparing these figures to those in the 
main text, we see that changes in system scale do not qualitatively alter our findings.  This is not 
surprising, since we treat contact rates as density-independent and restrict our attention to the 
invasion phase when overall prevalence is less than 1%. 
 
It is less clear whether our results will be sensitive to changes in the relative size of the two 
pools, since this will alter the weighting of different transmission pathways. In Figure S2 we 
present the same analyses when the HCW pool contains 1000 individuals (compared to 3000 
throughout the main text), and community pool is still 100,000 individuals.  Results pertaining to 
the reproductive number (Figs S2A-B) are not significantly changed, again due to our 
assumption of density-independent contact rates.  When the evolving epidemic is simulated, 
though, slight differences emerge.  A smaller HCW pool seems to slightly extend the window of 
time within which the combined control strategy contributes to outbreak containment (Fig. S2C), 
perhaps due to slower initial spread. This effect is subtle but persists in all our simulations.  The 
possibility that smaller hospital size reduces the risk of outbreaks is intriguing and has 
implications for health policy, and merits further investigation.  In Figure S2D we see some 
changes in proportional routes of transmission, but the essential result remains that reducing 
HCW-community contacts can prevent leakage of the infection from the hospital. 
 

Robustness of transmission-reduction results 

A major finding of this study is that hospital-oriented contact precautions, such as wearing masks 
and gowns at all times and respiratory isolation of identified patients, are the most potent 
measures for combating an incipient SARS outbreak.  Figures S1B and S2B show that this 
conclusion is robust to absolute and relative changes in pool sizes.  We now explore the 
sensitivity of this result to different case management scenarios and R0 values, by plotting 
analogues of Figure 2F to show the effect of each transmission-reduction parameter on R. 
 
We first consider a scenario with no quarantining (Fig. S3A), which leads to a greater proportion 
of symptomatic individuals spending their initial days of symptoms mixing freely with the 
community.  This reduces the contribution of hospital-based transmission to R, and accordingly 
we see a smaller relative contribution of η and κ to determining the effective reproductive 

 



 

number.  Reinforcing this point, a scenario with less efficient case isolation and no quarantining 
(Fig. S3B) exhibits still weaker dependence of R on the values of η and κ, and thus greater 
relative sensitivity to ρ.  The three measures are almost equivalent as the parameters approach 
zero—we see that stopping HCW-community transmission (ρ→0) has a roughly equal effect to 
perfect case isolation (κ→0) and almost as great an effect as eliminating within-hospital 
transmission entirely (η→0).  Strikingly, though, note that the cost of poor hospital-wide contact 
precautions (η→1) is much greater now that the rate of isolating symptomatic HCWs is low.  
Indeed, the adverse effect of η→1 is always higher than any other failure of transmission-control 
measures.  Some degree of hospital-wide contact precautions is thus essential to combating a 
SARS outbreak.  
  
Finally, considerating the original case management strategy but raising R0 to 5 (Fig. S3C) shows 
that the overall transmissibility acts only to scale the lines from Figure 2F, but does not alter their 
relation to one another.  
 

Model equations 

For ease of presentation, the following equations show a deterministic analogue of our model.  
All terms shown here as products of a probability and a state variable are generated in our 
simulations by drawing binomial random variables.  The community pool is described as 
follows, where all variables and parameters are as described in Figure 1 of the main text: 
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Daily probabilities of quarantine (qi) or hospitalization (hc,i) are subscripted by i because they can 
vary between subcompartments (in the analysis presented here they vary only between 0 and a 
fixed value, to describe delays in contact tracing or case identification).  The final term in the 
Rc(t+1) equation is marked with an asterisk because only those individuals in Im,5 who were 
originally from the community pool (i.e. community members who have been hospitalized) 
move to the Rc pool upon their recovery.  Individuals in Im,5 who began in the HCW pool 
progress to Rh upon recovery (indicated below with another asterisk).  The equations for the 
HCW pool are: 
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As described in the caption of Figure 1 (main text), the total hazard rates are 
λc=[β(Ic+εEc)+ ρβ(Ih+εEh)+γβεEm]/Nc and λh=ρλc+ηβ(Ih+εEh+κIm)/Nh, where Ej and Ij represent 
sums over all sub-compartments in the incubating and symptomatic classes for pool j.  The 
effective number of individuals in the hospital mixing pool is Nh=Sh+Eh+Ih+Rh+Im, and in the 
community mixing pool is Nc=Sc+Ec+Ic+Rc+ ρ(Sh+Eh+Ih+Rh).  In simulations, the number of 
infection events in each timestep is determined by random draws from binomial(Sj, 1−exp(−λj)) 
distributions (j=c,h).  
 
Finally, the equations describing the case-managed pool (quarantined and case-isolated 
individuals) are as follows: 
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Calculation of the reproductive number 

The progression of each infected individual through incubating and symptomatic stages of the 
disease, and possibly through case management stages, can be described by a stochastic 
transition matrix.  When the removed state is included, the infectious lifetime of each individual 
can be represented as an absorbing Markov chain (where “absorption” corresponds to the end of 
the infectious period).  For a given set of transition probabilities (i.e. disease progression 
parameters and probabilities of entering case management from each disease stage), the expected 
residence time in each pre-absorption stage can be calculated from the fundamental matrix of the 
Markov chain (Caswell 2000). 
 

 



 

Since case management probabilities may vary between the community and hospital pools, we 
define dj (for j=c or h) as a vector of expected residence times in the states (Ej,Ij,Em,Im), i.e. the 
length of time a “typical” individual infected in pool j will spend in each of those disease classes.  
We the define bjk as vectors of transmission rates from pool j to pool k for each disease state.  In 
particular, from the above description we have  
 
bcc=(εβ/Nc,β/Nc,γεβ/Nc,0),  
bch=(ρεβ/Nc,ρβ/Nc,ργεβ/Nc,κηβ/Nh),  
bhc=(ρεβ/Nc,ρβ/Nc,γεβ/Nc,0), and  
bhh=(ρ2εβ/Nc+ηεβ/Nh,ρ2β/Nc+ηβ/Nh,ργεβ/Nc,κηβ/Nh).   
 
The two terms in the first two elements of bhh represent community and workplace exposure 
risks for healthcare workers, respectively.  The factors of ρ2 reflect that community transmission 
between HCWs depends on the community-contact precautions of both HCWs. 
 
For a susceptible individual in pool k, the total hazard of infection due to the index case is thus 
λjk=dj⋅bjk, so the probability of exposure is 1−exp(−λjk).  If there are Sk susceptibles in pool k, 
then the expected number of secondary infections in pool k due to an index case who is infected 
in pool j is Rjk=[1−exp(−λjk)]Sk.  We then define the next-generation matrix: 
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where the individual elements Rij give insight into the potential for disease spread within and 
between the two pools.  If R is primitive, then its dominant eigenvalue is the reproductive 
number for the entire system (Diekmann & Heesterbeek 2000).  When the population is entirely 
susceptible and no control measures are in place this is the basic reproductive number, R0; 
otherwise it is the effective reproductive number R.  Figure 2A of the main text shows the 
probability of epidemic containment as a function of the reproductive number, which displays 
the qualitative behaviour expected for a stochastic epidemic: the probability is nearly one for 
R<1, then diminishes as R increases (but remains significantly greater than zero up to R~5). 
 

Incubation and symptomatic periods 

The incubation period is modeled with ten subcompartments as shown in Figure 1B of the main 
text.  Each sub-compartment represents one day, and an individual in their ith day since infection 
has a probability pi of progressing to the symptomatic phase of the disease.  The number of sub-
compartments and values of pi were chosen to be consistent with clinical data from 42 patients in 
Toronto with a single known contact with a SARS case.  For these cases, the mean incubation 
period was 5 days, with a median of 4 days and a range from 2 to 10 days (Health Canada 2003); 
similar numbers are reported for 21 point-exposure cases in Singapore (Leo et al. 2003).  We 
selected the most parsimonious model which was consistent with these data: 10 
subcompartments with pi interpolated linearly from p1=0 to p10=1.  Figure S4A shows the 
distribution of incubation periods obtained from this model, which has a mean period of 4.5 
days, a median period of 4 days, and a range from 2 to 10 days.  Other researchers have 

 



 

presented a distribution of incubation periods which includes longer durations (Donnelly et al. 
2003), but experts assembled by the World Health Organization continue to assert a maximum 
incubation period of 10 days (World Health Organization 2003b).  
 

The symptomatic period is modeled with two disease-age subcompartments and three disease-
stage subcompartments.  After each day individuals automatically progress through the age sub-
compartments, and progress through the stage subcompartments with probability r.  We include 
the initial disease-age subcompartments to allow assessment of the importance of beginning case 
isolation following day 1, 2 or 3 of symptoms.  We assume that individuals are symptomatic for 
at least 5 days.  From clinical reports of 23 patient histories we estimated that the distribution of 
symptomatic period has a mean of 16.2 days (with standard deviation of  7.9 days) and a median 
16 days (Poutanen et al. 2003, Tsang et al. 2003).  Figure S4B shows the distribution of 
symptomatic periods obtained from our model (with r=0.21), which has a mean period of 16.3 
days, a median period of 15 days, and a standard deviation of 7.3 days.   
 
While our modelled distribution is roughly consistent with data, we note that estimation of the 
symptomatic period poses a difficult challenge.  We are seeking to capture the period of high 
infectiousness (which we call the symptomatic period to distinguish it from the incubation 
period, during which we assume individuals may be slightly infectious), but this is difficult to 
gauge because infectiousness is not readily observable.  Our estimated symptomatic period—or 
highly infectious period—falls between those used in the two first modelling analyses of SARS 
outbreaks.  Riley et al (2003) use hospitalization periods as a surrogate, and present a range of 
mean symptomatic periods from 27 to 41 days.  (These include a symptomatic, not-yet-
hospitalized period with mean duration of 3.67-4.84 days, and a symptomatic, hospitalized 
period with mean duration of 23.5 or 35.9 days depending on clinical outcome.  Transmission by 
hospitalized individuals is reduced by a factor of 0.2, analogous to our κ.)  Lipsitch et al (2003) 
do not model the symptomatic period directly but instead assume an “average duration of 
infectiousness” of 5 days (range: 1-5 days).  This is markedly shorter than the symptomatic 
periods used in our model (and that of Riley et al), but the difference results from their 
assumption that case isolation is absolutely effective, so an individual’s “infectious period” lasts 
only until he or she is hospitalized.  In contrast, our approach is to keep the biological 
phenomenon of infectiousness separate from the control-mediated phenomenon of transmission, 
leading to a longer total symptomatic period with transmission weighted by control parameters 
depending on case management practices.   
 
Our model can still be consistent with the serial interval data presented by Lipsitch et al.  (The 
serial interval is the time from onset of symptoms in an index case to onset of symptoms in a 
subsequent case infected by the index case.  If the transmission rate is constant and the 
population is well-mixed, this equals the sum of the mean incubation period and the mean 
infectious period.  The serial interval for SARS in Singapore before full-scale control policies 
were implemented was 10 days—subtracting the mean incubation period of 5 days yields the 
estimated 5-day infectious period.)  Most simply, an exponentially-distributed period of uniform 
infectiousness with a mean duration of 5 days (as modelled by Lipsitch et al) could be 
approximated in our model by setting hc=0.2 and κ=0, though in our model the tail of the 
distribution would be truncated by disease recovery.  A more likely depiction of events in 

 



 

Singapore would be a higher hospitalization rate and non-zero κ, such that the weighted mean of 
all infectious periods (before and after case isolation) was 5 days.  By separating the biological 
and control-mediated aspects of transmission, our model naturally portrays this or any other 
control scenario. 
 
We therefore wish to characterize the natural history of the disease accurately.  The duration of 
hospitalization is a plausible surrogate for the symptomatic period, but for a disease as 
pathogenic as SARS it is likely to be an overestimate, since patients must recover from severe 
lung damage and are not discharged from hospital until several days after all symptoms are 
resolved (Lee et al 2003).  The most direct measurement of SARS infectious periods are the viral 
load measurements of Peiris et al (2003), which show that mean viremia (for 75 patients) peaks 
roughly 10 days after onset of symptoms, and after 15 days has dropped below its level after 5 
days of symptoms. This is attributed to onset of IgG seroconversion, which begins as early as 10 
days after onset of symptoms (with mean of 20 days).   
 
These results indicate that symptomatic periods in our model, as shown in Figure S4B, probably 
characterize the period of high infectiousness quite adequately.  Should there be any 
inaccuracies, our strategy of considering scenarios with different values of R0 would largely 
buffer the impact on our results, since reproductive numbers estimated for particular outbreaks 
can be compared to model epidemics with the same net growth rate.  This would entail a slight 
skew in parameter values: for instance, if we had underestimated the duration of infectiousness, 
for each R0 scenario we would overestimate the baseline transmission rate, β.  Simulations would 
show slightly faster epidemic growth than is justified, and hence slightly greater reductions in 
efficacy due to delaying control measures.  A change in β has no effect on the relative 
importance of different routes of transmission, however, or on the impacts of control measures 
focused on contact precautions versus case management.  The major findings of this study 
therefore should be robust to misestimation of the distribution of symptomatic periods. 
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Figure captions – Supplementary Information 

Figure 5 

Testing sensitivity to the absolute size of the system.  Selected results are presented for both 
HCW and community pools ten-fold smaller than in the main text (HCW pool has 300 
individuals and community pool has 10,000 individuals).  For each figure, all parameter values 
other than population sizes are as described in the main text.  (A) Analogue of Fig. 2D.  (B) 
Analogue of Fig. 2F.  (C) Analogue of Fig. 3B.  (D) Analogues of pie-charts from Figs. 4A-B. 
 
Figure 6 

Testing sensitivity to the relative size of the HCW pool.  Results are presented for a HCW pool 
of 1000 individuals (compared to 3000 throughout the main text), and community pool of 
100,000 individuals.  Again, all other parameters are as given in the main text. (A) Analogue of 
Fig. 2D.  (B) Analogue of Fig. 2F.  (C) Analogue of Fig. 3B.  (D) Analogues of pie-charts from 
Figs. 4A-B. 
 
Figure 7 

Robustness of conclusions regarding sensitivity of R to transmission-reduction parameters.  All 
details are as given in Fig. 2F except as noted. (A) No quarantine: q=0. (B) No quarantine, and 
limited case isolation: hc=0.1, hh=0.1, q=0.  (C) Case management as in Fig. 2F, but R0=5.  Also 
note Figs. S1B and S2B, which show the insensitivity of these results to absolute and relative 
size of the two pools. 
 
Figure 8 

Distribution of (A) incubation periods and (B) symptomatic periods used in the model, each 
generated from 10,000 Monte Carlo simulations using the stage progression rules outlined in the 
text. 
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Figure 6 
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Figure 7 
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Figure 8 
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