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Coherence and discontinuity in the scaling of species’
distribution patterns
Stephen Hartley*, William E. Kunin, Jack J. Lennon†
and Michael J. O. Pocock¶
Centre for Biodiversity and Conservation, School of Biology, University of Leeds, Leeds LS2 9JT, UK

The spatial distribution of a species can be characterized at many different spatial scales, from fine-scale
measures of local population density to coarse-scale geographical-range structure. Previous studies have
shown a degree of correlation in species’ distribution patterns across narrow ranges of scales, making it
possible to predict fine-scale properties from coarser-scale distributions. To test the limits of such extrapol-
ation, we have compiled distributional information on 16 species of British plants, at scales ranging across
six orders of magnitude in linear resolution (1 m to 100 km). As expected, the correlation between patterns
at different spatial scales tends to degrade as the scales become more widely separated. There is, however,
an abrupt breakdown in cross-scale correlations across intermediate (ca. 0.5 km) scales, suggesting that
local and regional patterns are influenced by essentially non-overlapping sets of processes. The scaling
discontinuity may also reflect characteristic scales of human land use in Britain, suggesting a novel method
for analysing the ‘footprint’ of humanity on a landscape.
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1. INTRODUCTION

Understanding the abundances and spatial distributions
of species are key goals in ecology (Levin 1992) with
implications for the genesis, maintenance and loss of spec-
ies diversity (Bolker & Pacala 1999; Rosenzweig & Ziv
1999; Hartley & Kunin 2003). However, even to describe
these patterns remains a challenge, as different aspects of a
species’ distribution are manifest at different spatial scales
(Pearman 1997; Menendez & Thomas 2000). Coarse-
resolution maps reveal a species’ geographical range, while
progressively finer resolutions reveal regional ubiquity,
habitat preferences, population structure, and even popu-
lation size or cover. A great deal of national and global
information on species’ distributions is available at rela-
tively coarse scales, but conservation and other manage-
ment decisions often require relatively fine-scale (e.g.
population) information. It would thus be helpful to be
able to translate information from one scale to another.

It is a simple matter to generate a coarse-scale map from
finer-scale information, but the opposite transition (fine
from coarse) has generally been deemed impossible.
Nonetheless, Kunin (1998) and He & Gaston (2000)
demonstrated that, where species display consistent sca-
ling properties across scales, it is possible to predict fine-
scale abundance from information gathered at coarser
scales. This is because the number of grid cells occupied
at a coarse scale is a function of the number of cells occu-
pied at a finer scale and the degree to which those fine-
scale cells are clustered together (the more highly clus-
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tered they are, the fewer coarse-scale cells they will
occupy). Turning the relationship around, we can predict
the number of cells occupied at a fine scale from the num-
ber occupied at a coarse scale, so long as we know the
degree of clustering to expect at the fine scale.

Given only a coarse-scale distribution map (e.g. a
national atlas), the simplest assumption is that the
unknown fine-scale clustering is the same as the observ-
able coarse-scale clustering. Depending upon how clus-
tering is measured, this assumption can be developed as
a fractal model of species’ distributions (Kunin 1998;
Harte et al. 1999) or as a negative binomial model with a
constant cross-scale aggregation parameter (He & Gaston
2000; Kunin et al. 2000). Other statistical models may
also be possible. Alternatively, empirical relationships
between coarse and fine-scale clustering can be determ-
ined and used elsewhere for prediction (Kunin 1998). For
example, even if species’ distributions were in general
twice as aggregated at fine scales as at coarse scales, good
fine-scale predictions could be made so long as the relative
behaviour of species remained constant: the most aggre-
gated species at one scale being the most aggregated at
other scales as well. We may describe such scaling as
‘coherent’. Thus, to make fine-scale predictions, we are
interested not only in the absolute constancy of patterns
across scales, but also in the degree of cross-scale corre-
lation among species’ properties.

To date, such ideas have been examined across only a
relatively narrow range of scales. Kunin’s (1998) analysis,
for example, used 50 km and 10 km linear-resolution data
to predict 2 km scale information. But the potential value
of such extrapolations (e.g. for conservation decision
making) would depend on their utility over much wider
ranges of scales. Here, we extend the investigations of
Kunin (1998) to see just how far such projections can
meaningfully be performed. Specifically we ask: do
species’ distributions display the same level of clustering at
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Table 1. National grid-cell occupancy of the 16 study species observed at two different grid resolutions.
(Fractal dimensions (national and local) are calculated over a 10-fold range of scales, see § 2c for details. The two fractal dimen-
sions are uncorrelated (Pearson’s r = –0.14, d.f. = 14, p � 0.5).)

national grid-cell occupancy fractal dimensions

(national) (local)
family species 100 × 100 km 10 × 10 km D10–100 D0.001–0.01

(Pteridophyte)a Dryopteris submontana 2 13 0.83 0.58
Thelypteris palustris 20 57 0.44 1.53

Brassicaceae Iberis amara 4 18 0.68 1.32
Arabis glabra 7 17 0.42 0.66

Campanulaceae Phyteuma orbiculare 4 27 0.81 1.42
Lobelia urens 4 6 0.15 1.19

Caryophyllaceae Silene otites 1 5 0.77 1.13
Dianthus armeria 12 20 0.20 0.61

Fabaceae Genista pilosa 4 11 0.43 1.31
Lathyrus palustris 9 14 0.17 1.53

Lamiaceae Clinopodium calamintha 7 37 0.72 0.94
Mentha pulegium 7 14 0.26 1.01

Orchidaceae Orchis purpurea 3 15 0.65 0.94
Himantoglossum hircinum 7 16 0.39 0.63

Orobanchaceae Orobanche reticulata 1 7 0.83 0.42
Orobanche purpurea 8 13 0.23 0.81

a Order: Pteridophyte; families: Dryopteraceae and Thelypteraceae, respectively.

all scales, or are there gradual shifts in scaling properties?
Furthermore, if scaling properties alter, do they change in
predictable (coherent) ways, or do species shift relative to
one another? Finally, if species do shift in relative scaling
properties, do they do so gradually, or are there particular
scales of abrupt transition?

To answer these questions we require detailed distri-
butional information for a range of contrasting species
across a wide range of spatial scales. In this study we
present the results of the first (to our knowledge) multi-
species investigation to collect data over a sufficiently wide
range of ecologically relevant scales, i.e. from the scale of
individuals to the scale of national range maps.

2. METHODS

(a) National atlas data
The distribution patterns of 16 British plant species (table 1)

were assessed at 16 spatial resolutions spanning six orders of
magnitude, from 1 m to 100 km linear resolution. The species
chosen are all ‘rare’ or ‘scarce’ in Britain (defined as species
occupying 15 or fewer, or 100 or fewer cells of a national 10 km
resolution grid, respectively), as these have the best documented
distributions (Stewart et al. 1994; Wigginton 1999; Preston et al.
2002). The species consist of eight taxonomically linked pairs,
representing a variety of life-history strategies and habitat
requirements, with one species of each pair having a tightly
clumped national distribution and the other having a nationally
scattered distribution (as observed at a 10–100 km resolution).
This design allows a phylogenetically controlled test of whether
national-scale patterns are correlated with local-scale patterns.

National distributions were determined at 1 km resolution
using data supplied by the Biological Records Centre (BRC) at
Monks Wood, UK. These data were then ‘blocked-up’ to create
distribution maps at 2, 5, 10, 20, 50 and 100 km linear
resolutions. In a few cases (16% of records), no 1 km resolution
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information had been recorded for some occupied 2 km cells
(‘tetrads’). In such cases the total number of 1 km cells was esti-
mated by assuming that the tetrads lacking 1 km occupancy data
were similar to the tetrads of known occupancy. Thus for a spec-
ies with, for example, nine sites recorded to 1 km precision
within six tetrads and an additional occupied tetrad lacked 1 km
precision data, the additional tetrad was assumed to contain 1.5
(nine out of six) occupied 1 km sub-cells. The same logic was
applied to 10 km cells with missing 5 km precision records (as
not all tetrad records can be mapped precisely into a 5 km cell).

(b) Field survey
To determine patterns of distribution at scales finer than

1 km, four occupied 1 km cells were selected for each species in
a stratified random manner. The stratification was achieved by
dividing the set of occupied 1 km cells into a ‘core’ half and a
‘marginal’ half according to the number of other occupied cells
in their neighbourhood. The radius of their neighbourhoods was
different for each species, and was chosen to be the radius that
gave the maximum amount of information for creating a ranking
(information being measured by the Shannon index,
�� piln( pi), where pi is the proportion of sites with 0, 1, 2, 3…
other sites within the specified neighbourhood radius). Two
‘core’ and two ‘marginal’ cells were selected at random for each
species. Each square kilometre was surveyed in the field on a
hectare by hectare basis (i.e. presence and absence was recorded
on a 100 m resolution grid) for a period of four person days.
When an occupied hectare was discovered, a subjective estimate
of population size within the grid cell was made, which allowed
the set of occupied hectares to be ranked by approximate species
abundance. Two occupied hectares within each surveyed kilo-
metre were then randomly selected as a stratified sub-sample,
one each from the high- and the low-density halves of the list,
and surveyed at 10 m resolution. Finally, two occupied 10 m
grid cells from each of the surveyed hectares were sub-sampled
(again in a stratified manner based on estimated populations)
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Figure 1. Distribution of the marsh pea, Lathyrus palustris (one of the 16 species surveyed), viewed at six different resolutions.
The national distribution was constructed from all records held by the BRC, made between 1987 and 1999. This was
supplemented by a field survey of four sample 1 km × 1 km squares mapped at 100 m resolution (one of which is illustrated
above), eight hectares (100 m × 100 m) mapped at 10 m resolution (two of which are illustrated) and 15 10 m × 10 m quadrats
mapped at 1 m resolution (four of which are illustrated).
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Figure 2. Scale–area plot for the British distribution of
Lathyrus palustris.

and mapped at 1 m resolution or higher (figure 1). Of course,
in cases where only one hectare or one 10 m square was occu-
pied within the larger 10 × 10 grid, only this one square could
be sub-sampled at a finer resolution.

(c) Single-species scaling relationships
The field survey data were also blocked-up to intermediate

resolutions (e.g. 2 m, 5 m) and combined with the BRC data to
estimate the total number of grid cells occupied nationally at
each of 16 different scales ranging from 1 m to 100 km linear
resolution (i.e. using square grid cells from 1 m2 to 10 000 km2

in area). Multiplying the number of grid cells occupied at each
scale by the size of the cell produces an estimate for the ‘area
of occupancy’ (range size) observable at each scale (Gaston
1991). For each species, we then plotted area of occupancy as
a function of linear resolution (scale) to produce a so-called
scale–area curve (e.g. figure 2, see also Kunin (1998)). (When
resolution is measured in units of area, the term ‘range–area
relationship’ (Green et al. 2003; Ostling et al. 2003) may be pref-
erable, because it emphasizes the fundamental connection with
the species–area relationship (SAR).)

Proc. R. Soc. Lond. B (2004)

From the changing slopes of each scale–area plot we com-
puted 15 scale-specific box-counting fractal dimensions (Dij) for
each species’ distribution (Kunin 1998). This local fractal
dimension characterizes the spatial distribution of a species
between scales i and j (the fine and coarse scales, respectively).
A maximum value of Dij = 2 occurs when the occupied fine-scale
cells are clustered together so as to fill each of the occupied
coarse-scale cells completely, while a minimum value of
Dij = 0 indicates that each fine-scale cell falls in a separate
coarse-scale cell. For some analyses we calculated a more gen-
eralized fractal dimension applicable to a 10-fold range of scales
(e.g. 1–10 km) by linear regression of log(occupancy) versus
log(scale). In either case, Dij = 2 � bij, where bij is the regression
coefficient or slope of the regression between scales i and j
inclusive.

(d) Correlation and predictability
The matrix of 15 scale-specific fractal dimensions (rows) by

16 species (columns) was analysed using cluster analysis with
the Pearson correlation coefficient as the measure of similarity
between rows (Everitt 1993). Consistent groupings of correlated
scales were identified by comparing the dendrograms generated
by (i) average linkage, (ii) median and (iii) centroid-clustering
algorithms (SPSS Inc. 1999).

To test the limits of predictability explicitly we applied a frac-
tal model of species’ distributions (which assumes a constant Dij

for all scales) by performing a linear extrapolation of
log(occupancy) versus log(scale) using ordinary least-squares
regression (Kunin 1998; Kunin et al. 2000). The slope and
intercept of the regression were parameterized using data from
a 10-fold range of scales (as described in § 2c) to predict occu-
pancy at all finer scales for which test data were available. In
comparing ‘observed’ and ‘predicted’ log(occupancy), the 16
species were treated as independent replicates for each possible
pairing of the predictor and predicted scales.
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Figure 3. Scale-specific box-counting fractal dimensions (Dij) of the 16 species’ distributions, paired by family. (a) Open
circles, Dryopteris submontana; closed circles, Thelypteris palustris. (b) Open circles, Iberis amara; closed circles, Arabis glabra.
(c) Open circles, Phyteuma orbiculare; closed circles, Lobelia urens. (d ) Open circles, Silene otites; closed circles, Dianthus
armeria. (e) Open circles, Genista pilosa; closed circles, Lathyrus palustris. ( f ) Open circles, Clinopodium calamintha; closed
circles, Mentha pulegium. (g) Open circles, Orchis purpurea; closed circles, Himantoglossum hircinum. (h) Open circles, Orobanche
reticulata; closed circles, Orobanche purpurea.

3. RESULTS

(a) Absolute values of D ij across scales
Observed D-values were not constant across the full

range of scales, as predicted for truly fractal distributions,
but rather showed consistent trends (figure 3). In general,
the lowest D-values (that is, the most diffuse distributions)
were found at intermediate resolutions, especially ca. 1–
2 km scales (figure 3; table 2c).

Overall, fine-scale (1–100 m) species’ distributions
showed consistently higher D-values (more clustered and
space-filling distributions) than those found at coarse
scales (2–100 km). This may be a general phenomenon,
or may simply reflect the fact that our sample was drawn
from rare and scarce species, which by virtue of their low
occupancy at the 10 km scale will tend to have relatively
low national-scale D-values (for related discussion see
Haskell et al. (2002)).

(b) Correlations between scales
The results of our correlation analysis indicate both pre-

dictable and unpredictable cross-scale behaviour. Within
two broad scaling domains (1–500 m and 1–50 km), the
fractal dimensions of species’ distributions, though not
necessarily constant, vary in a coherent manner, as shown
by the large number of significant cross-scale correlations
(table 2a) and the two large groupings revealed by a clus-
ter analysis of the correlation matrix (table 2b). (Out of
the 105 correlations presented in table 2a, 26 are signifi-
cant at p � 0.05, 16 at p � 0.01 and nine at p � 0.001.)
However, between these two domains there is an abrupt
discontinuity in scaling behaviour, with near-zero or even
negative correlations. In other words, the pattern of a spe-
cies’ distribution (i.e. whether it is aggregated or diffuse
at a particular scale relative to other species) remains fairly
consistent within each of the two scaling domains, but the
rank order of species’ patterns changes considerably as
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one crosses from one domain to the other. Hence, the
spatial pattern of a population at a 1 km or coarser resol-
ution has little bearing on the species’ relative distri-
butional properties at 0.2 km or finer scales. A
phylogenetically controlled analysis of contrasts between
species pairs reveals the same qualitative correlation struc-
ture (see electronic Appendix A, available on The Royal
Society’s Publications Web site).

The breakdown in cross-scale correlations creates a
similar split in predictive power (figure 4). Coarse-scale
(e.g. 10–100 km) information can be used to predict occu-
pancy at other fairly coarse scales (e.g. 1 km resolution)
with reasonable accuracy, but the quality of the prediction
degrades rapidly when multi-kilometre data are used to
predict sub-kilometre occupancy. However, starting at
scales finer than 200 m, long-range extrapolations to yet
finer scales regain their predictive power. Qualitatively
similar results (available upon request) were obtained by
extrapolating a negative binomial model of species’ distri-
butions (for details of method see He & Gaston (2000)
and Kunin et al. (2000)).

The sudden drop in mid-range predictability is unlikely
to be caused by the differences in data-collection methods
between local and regional scales, because correlations
across species will be unaffected by any systematic scale-
dependent biases in the observed D. Moreover, the lowest
correlation in the leading diagonal of table 2a, which
occurs between D0.2–0.5 and D0.5–1, uses data that were all
collected by the same method (the 100 m resolution
field survey).

4. DISCUSSION

The box-counting fractal dimension ignores infor-
mation concerning the density of points (number of
records) within a grid cell; hence, as a metric of spatial
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Figure 4. Predictive value of extrapolations (assuming a
constant Dij) using data from four coarser scales to predict
occupancy at a range of finer scales. The quality of each
prediction is represented by the r 2 value of a linear
regression between log(predicted) and log(observed) cells
occupied at each scale. Predictive accuracy invariably
degrades as the range of the prediction increases (further left
along each line). Extrapolations from multi-kilometre data
(open symbols) produce fairly accurate predictions for the
first few jumps in scale, but have little predictive value when
applied to sub-500 m scales. However, predictions made
using data from 200 m and below (solid symbols) retain high
predictive value over wide ranges of finer scales. Range of
predictor scales: open circles, 10–100 km; open upright
triangles, 5–50 km; open squares, 2–20 km; open diamonds,
1–10 km; open side triangles, 0.5–5 km; crosses, 0.2–2 km;
closed circles, 0.1–1 km; closed upright triangles, 0.05–
0.5 km; closed squares, 0.02–0.2 km; closed diamonds, 0.01–
0.1 km; closed side triangles, 0.005–0.05 km.

pattern it is most appropriate for the analysis of presence–
absence data. Had we been analysing surfaces (e.g. density
or abundance) then multifractal or spectral analysis would
generally have been more suitable (Keitt 2000; Borda-de-
Água et al. 2002). Application of our method did not
require that species’ distributions were true mathematical
fractals (statistically self-similar across infinite scales)
because we fitted only a localized straight line across two,
or at the most four, adjacent scales. Indeed, over the full
range of scales examined, most species’ distributions
required at least two straight lines or a polynomial to
describe their scale–area relationship adequately.

Most species displayed very diffuse distributions (low
fractal dimensions) around the 1–2 km scale, which is also
the scale at which Crawley & Harral (2001) found the
steepest SAR in their analysis of British plant distri-
butions. As the SAR is essentially the sum of each species’
scale-specific incidence probabilities (Harte et al. 2001;
Lennon et al. 2002; Green et al. 2003), their results sug-
gest that the patterns documented here may apply to a
much wider set of species. An important caveat, however,
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is that both Crawley & Harral’s (2001) and our own data
are liable to an increased risk of false negatives at the 1 km
scale. If these false negatives are randomly distributed then
they will depress the fractal dimension (or raise the z-value
of an SAR) at that particular scale (Lennon et al. 2002;
W. R. Turner, unpublished data).

If systematic biases cast doubt on the absolute D-values
recorded, we may nonetheless be able to learn from overall
patterns of relative values exhibited by this diverse set of
plant species across a wide range of scales. One should
always be cautious when trying to infer process from pat-
tern (Molofsky et al. 2002); nonetheless, if a single process
(e.g. dispersal) governed pattern across all scales, one
would expect certain species (e.g. the poorest dispersers)
to be consistently the most clumped at all scales. If, as is
likely, the set of important processes were to shift gradu-
ally across scales, one should expect the gradual dimin-
ution in cross-scale correlations that we observed within
the two scaling domains. An abrupt discontinuity, though,
suggests a rapid change in the dominant process across
that scale for all (or most) of the species studied (Turner
et al. 1989; Wiens 1989).

Following the above logic, the two broad domains of
coherent scaling documented here imply that there are
coherent sets of processes influencing species’ distri-
butions across wide ranges of spatial scales, but the dis-
continuity at intermediate scales suggests that local and
national-scale distribution patterns are dominated by dif-
ferent and essentially non-overlapping sets of processes.
Within domains, models of pattern and process based on
continuous scaling functions may prove useful (Kunin
1998; He & Gaston 2000), but to move between domains,
a two-tier hierarchical model may be more appropriate (cf.
Milne 1988; Kolasa 1989; O’Neill et al. 1989; Collins &
Glenn 1990, 1991; Whittaker et al. 2001).

Recently, there has been considerable debate as to
whether the SAR is best described by a single function
(usually a power law) or as a set of three distinct phases,
each of a different slope and each dominated by different
processes (Rosenzweig & Ziv 1999; Lomolino 2000). At
fine scales sampling effects and competition for limited
space are presumed to be the dominant processes shaping
the relationship (at least for plants); at intermediate scales
habitat turnover is the proximate explanation, while at
continental scales processes of speciation and extinction
dominate (Crawley & Harral 2001). It is likely that our
analysis of British plant distributions spanned only the first
two domains.

It is interesting to note that the sudden drop in predict-
able scaling occurs at scales (0.2–1 km) that roughly corre-
spond to the typical ‘grain’ of human land use in Britain.
(The median linear dimension of an arable field in
England is ca. 0.16 km (interquartile range of 0.10–
0.23 km) and the median size of an entire farm holding
is 0.49 km (interquartile range of 0.25–0.87 km)
(Department for Environment, Farming and Rural
Affairs, unpublished data).) This probably represents the
range of scales at which the footprint of humanity is
strongest, disrupting whatever processes and patterns
might once have naturally occurred. Human land use is
not yet complete enough to remove pattern at coarser
scales, as small fragments of natural habitat generally
remain within most multi-kilometre cells; whereas at finer
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scales, within the remaining habitat fragments, species are
free to exhibit their inherent spacing patterns. Hence, the
disruption of natural scaling may provide a novel method
of quantifying the human impact on natural landscapes.

Further work is necessary to discover whether different
taxa, or different landscapes, reveal markedly different
scaling of species’ distribution patterns. One potential
comparison is with the work of Storch et al. (2002), who
examined the power spectra of avian community compo-
sition and environmental heterogeneity along a 50 km
transect in Bohemia. After factoring out the effect of habi-
tat heterogeneity, they observed a peak in the power spec-
trum of community composition at around the 2–7 km
scale, which they suggested may be related to the typical
distance of breeding-related dispersal in birds.

As an example of how land use may have influenced
distribution patterns in our study, consider the two Lami-
aceae. Much of the Clinopodium calamintha we surveyed
was found growing in stretches of anthropogenic habitat,
such as roadside verges and field boundaries, while Men-
tha pulegium was often found growing along the sides of
seasonal streams and the margins of water bodies; these
types of habitat are essentially linear over short distances,
and both species exhibited fine-scale fractal dimensions
close to one (table 1, figure 3). By way of contrast,
Thelypteris palustris and Lathyrus palustris are both restric-
ted to nationally sparse marshland habitat (often nature
reserves surrounded by drained land) yet within this habi-
tat their fine-scale distributions are typically space filling,
with a fractal dimension close to 1.5 (table 1, figure 3). It
would be relatively easy to go through all of the species in
our study and provide post hoc explanations for the fractal
dimensions observed at different scales; however, to be
rigorous such an analysis would require a larger sample
set coupled with systematic life-history-trait data. We are
currently working on such an analysis of British plant
species for the scales 1–100 km.

Whatever their origin, empirical scaling functions are a
potentially valuable tool for conservation biologists, as
they allow useful predictions of species distributions to be
made for scales at which it would be impractical or too
costly to survey in the field (Kunin 1998). However, the
diminution of correlations with increasing lag and the
presence of a scaling discontinuity warn that there will be
limitations to this form of predictive spatial ecology. Ulti-
mately, a more process-orientated understanding of the
factors that determine species’ distributions may be
required to extrapolate across the full range of scales.
Identifying the relevant processes and their importance at
different scales remain important challenges for the future.
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