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Electronic Appendix A. Derivations 

Derivation of SI pair density, *
SIP  

Here we present a general derivation of the steady-state SI pair density , including the results 
shown in sections 2 and 4.  We begin with the standard one-sex formulation of a pair-
formation/epidemic model, extended such that pair-entry rates k

*
SIP

y and break-up rates lyz (where 
y,z=S or I) can vary as a function of infection status (c.f. Dietz & Hadeler 1988):  
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Parameters and variables are defined in the caption to figure 1.  The factors of ½ reflect that it 
takes two individuals to make a partnership (i.e. one unit of Pyz is equivalent to two units of XS or 
XI), and the factors of 2 in µ and σ terms reflect events that arise from transitions undergone by 
either member of a pair.  Note that mixed partnerships (PSI) are formed both by XS individuals 
“choosing” XI individuals and vice versa; the two separate terms are essential to maintaining 
constant population size.  We assume that population density has reached equilibrium, and set 
λ=µN.   
 
This derivation pertains to populations where pair formation and dissolution occur on faster 
timescales than disease and demographic processes (i.e. pairing rate parameters ky and lyz are 
significantly greater than epidemic rates βpair, σ and µ).  We therefore approximate that disease 
states are constant on the timescale of pairing processes, and separate the fast pairing dynamics 
from the slow epidemic dynamics as described in the main text and shown in figure 1.  The 
pairing dynamics are then described by: 
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We consider the slower dynamics of disease transmission and demographic processes at the 
whole-population scale.  First we collect the total densities (in and out of partnerships) of 
susceptible and infectious individuals into variables S and I: 
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The epidemic can now be represented with a standard SEIR-type compartmental model; as an 
example we treat an SIS epidemic with constant recruitment rate λ.  The total incidence rate is 
βpair

*
SIP  (equation 2.1), the mortality rate µ is independent of disease status, and the recovery rate 

is σ.  Thus: 
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As described in section 2, our goal is to find an expression for the steady-state density of mixed 
SI partnerships, , in terms of the population densities S and I.  The first step is to specify the 
mixing matrix for pair formation.  The matrix element m

*
SIP

yz is the proportion of partnerships 
formed by y-type individuals which will be with individuals of type z.  In this study we assume 
proportionate mixing, hence the myz are simply the fractional contributions of each group to the 
total pair formation rate: 
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Note that kS mSI XS=kI mIS XI under this assumption. 
 
Substituting equations (A3) and (A5) into system (A2) , we get: 
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We let the pairing dynamics go to steady-state by setting the right-hand sides of (A6) equal to 
zero.  This leads to a system of three quadratic equations in the three unknowns   , 
which we wish to solve for .  This system was simplified using Mathematica (Wolfram 
Research, Champaign IL), yielding the following quadratic equation in : 

*
SSP , *

SIP , *
IIP

*
SIP

*
SIP
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and 
SIS

S
S lk

k
+

=π  and 
SII

I
I lk

k
+

=π .   

We consider four cases, in which infection status has varying influence on pairing behaviour (i.e. 
different sets of the pair formation and dissolution rates kS, kI, lSS, lSI and lII have distinct values).  
When pair dissolution rates are equal (lSS=lSI=lII=l), a=0 in equation (A7) and bcP −=*

SI .  
Otherwise the quadratic formula was used to find .  For a<0 there is only one positive *

SIP



solution, ( )acbbP a 42
2
1*

SI −−−= .  When 0<a< b2/4c both solutions are real and positive, but 

only ( )acbba 42
2
1 −−−=

*
SIP

P*
SI  remains bounded on the (0,N/2) interval (for all numerical tests 

we have conducted).  By reorganising terms in b2−4ac into a difference-of-terms squared plus 
some positive terms, it can be shown that b2−4ac>0 always (for kS,kI,lSS,lSI,lII>0) so solutions are 
always real.  Exact solutions for  in all four cases lead to incidence rates as shown in equation 
(4.1), with full expressions shown in table 1.  All solutions have been checked numerically to 
ensure their validity. 
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Calculation of R0 and i∞ 

The basic reproductive number, R0, is the expected number of secondary cases caused by a 
typical infectious individual in a wholly susceptible population.  As such, it can be calculated as 
the product of the total rate of transmission per I individual times the expected duration of 
infectiousness, in the limit S→N (Anderson & May 1991).  From equation (A4), with 

P*
SI  as in equation (4.1), we find for our model: 
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From the expressions φκ(s,i) in table 1, it is readily shown that [ ]
SII

I
I),(lim
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→
πφκ  for all 

cases.  Therefore R0 takes the same form for all four levels of infection-induced behavioural 
shifts, as shown in equation (4.2). 
 

We can also calculate the equilibrium density of infectives, I∞, by finding the non-zero solution 

to  .  From this we can calculate the steady-state endemic prevalence, 
 N

I∞
∞ =i .  

Results are shown in table 1. 
 

Calculation of steady-state density of partnerships 

When disease does not influence pair-formation dynamics, we can simply model the density of 
unpartnered individuals, X, and of partnerships, P:  
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Since the total population density (N) is constant, one of these equations is redundant.  The 
steady-state is found by setting the right-hand side equal to zero and substituting X=N−2P.  We 
can then solve for the steady-state density of partnerships: 

2
* N

lk
kP 








+
=  (A10)

  


	Electronic Appendix A. Derivations
	Derivation of SI pair density,
	Calculation of R0 and i(
	Calculation of steady-state density of partnerships


