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Electronic Appendix A. Derivations

Derivation of SI pair density, PS*l

Here we present a general derivation of the steady-state SI pair density P, including the results

shown in sections 2 and 4. We begin with the standard one-sex formulation of a pair-
formation/epidemic model, extended such that pair-entry rates &, and break-up rates /,. (where
v,z=S or ) can vary as a function of infection status (c.f. Dietz & Hadeler 1988):
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Parameters and variables are defined in the caption to figure 1. The factors of ' reflect that it
takes two individuals to make a partnership (i.e. one unit of P, is equivalent to two units of Xs or
X1), and the factors of 2 in 1 and o terms reflect events that arise from transitions undergone by
either member of a pair. Note that mixed partnerships (Ps;) are formed both by Xs individuals
“choosing” X; individuals and vice versa; the two separate terms are essential to maintaining
constant population size. We assume that population density has reached equilibrium, and set
A=uN.

This derivation pertains to populations where pair formation and dissolution occur on faster
timescales than disease and demographic processes (i.e. pairing rate parameters k, and /,. are
significantly greater than epidemic rates [ir, o and ). We therefore approximate that disease
states are constant on the timescale of pairing processes, and separate the fast pairing dynamics
from the slow epidemic dynamics as described in the main text and shown in figure 1. The
pairing dynamics are then described by:
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We consider the slower dynamics of disease transmission and demographic processes at the
whole-population scale. First we collect the total densities (in and out of partnerships) of
susceptible and infectious individuals into variables S and I

S=X{+2P4+ Py

A
I=X +2P, +F (A3)

The epidemic can now be represented with a standard SEIR-type compartmental model; as an
example we treat an SIS epidemic with constant recruitment rate 4. The total incidence rate is
Boair P, (equation 2.1), the mortality rate u is independent of disease status, and the recovery rate

1s o. Thus:
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As described in section 2, our goal is to find an expression for the steady-state density of mixed
SI partnerships, P, in terms of the population densities S and /. The first step is to specify the
mixing matrix for pair formation. The matrix element m,. is the proportion of partnerships

formed by y-type individuals which will be with individuals of type z. In this study we assume
proportionate mixing, hence the m,. are simply the fractional contributions of each group to the

total pair formation rate:
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Note that ks mgs; Xs=ki mis X1 under this assumption.
Substituting equations (A3) and (AS5) into system (A2) , we get:
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We let the pairing dynamics go to steady-state by setting the right-hand sides of (A6) equal to
zero. This leads to a system of three quadratic equations in the three unknowns PS*S, P; , P; ,

which we wish to solve for ;. This system was simplified using Mathematica (Wolfram

Research, Champaign IL), yielding the following quadratic equation in P, :
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We consider four cases, in which infection status has varying influence on pairing behaviour (i.e.
different sets of the pair formation and dissolution rates ks, ki, Iss, Is1 and /i have distinct values).

When pair dissolution rates are equal (lss=Isi=h=l), a=0 in equation (A7) and P, =—c/b.

Otherwise the quadratic formula was used to find P;. For a<0 there is only one positive



solution, PS*I = L(— b—+b* - 4ac). When 0<a< b*/4c both solutions are real and positive, but

2a

only Py = > (— b—b* - 4ac) remains bounded on the (0,N/2) interval (for all numerical tests

we have conducted). By reorganising terms in b°~4ac into a difference-of-terms squared plus
some positive terms, it can be shown that b*~4ac>0 always (for ks,k1,/ss,ls1,li>0) so solutions are
always real. Exact solutions for P, in all four cases lead to incidence rates as shown in equation

(4.1), with full expressions shown in table 1. All solutions have been checked numerically to
ensure their validity.

Calculation of Ry and i,

The basic reproductive number, Ry, is the expected number of secondary cases caused by a
typical infectious individual in a wholly susceptible population. As such, it can be calculated as
the product of the total rate of transmission per I individual times the expected duration of
infectiousness, in the limit S—>N (Anderson & May 1991). From equation (A4), with

P = ¢, (s,i)% as in equation (4.1), we find for our model:
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From the expressions ¢(s,7) in table 1, it is readily shown that ;mﬁlz [¢K (s, i)] =7, = il for all

1 SI
cases. Therefore R, takes the same form for all four levels of infection-induced behavioural
shifts, as shown in equation (4.2).

We can also calculate the equilibrium density of infectives, /., by finding the non-zero solution
dt N
Results are shown in table 1.

dl . . :
to (—j =0. From this we can calculate the steady-state endemic prevalence, i, =
I*#0

Calculation of steady-state density of partnerships

When disease does not influence pair-formation dynamics, we can simply model the density of
unpartnered individuals, X, and of partnerships, P:
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Since the total population density (/) is constant, one of these equations is redundant. The
steady-state is found by setting the right-hand side equal to zero and substituting X=N-2P. We
can then solve for the steady-state density of partnerships:
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