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Stability in negotiation games and the emergence
of cooperation†

Peter D. Taylor* and Troy Day
Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Consider a two-player game in which each player contributes a costly resource to the common good of
the pair. For such contests, the Nash equilibrium contribution, x∗, is one for which neither player can
increase its pay-off by unilaterally altering its contribution from x∗. We study an elaboration of this game,
which allows the players to exchange x-offers back and forth in a negotiation phase until they converge
to a final pair of contributions, x̂1 and x̂2. A significant feature of such negotiation games, hitherto unrecog-
nized, is the existence of a set of neutrally stable equilibrium points in negotiation phase space. To explore
the long-term evolutionary outcome of such games, we simulate populations containing various mixtures
of negotiation strategies and, contrary to previous results, we often find convergence to a contribution
that is more cooperative than the Nash equilibrium. Mathematical analysis suggests why this might be
happening, and provides a novel and robust explanation for cooperation, that negotiation can facilitate
the evolution of cooperative behaviour.
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1. INTRODUCTION

The development of a theory to explain the evolution of
cooperative behaviour between unrelated individuals has
proved to be a demanding task. What is needed is a mech-
anism through which cooperative individuals can bestow
the benefits of altruism on one another without being
taken advantage of by selfish individuals. One early idea
(Wilson 1975) is that this might occur when the effects of
altruism itself tend to group altruistic individuals together
more often than might occur by chance. Another idea
(Axelrod & Hamilton 1981) hinges on reciprocity: individ-
uals cooperate if there is some chance of meeting again in
the future, to repay the good deeds and punish the bad.
More recent developments have focused on the evolution
of cooperation through indirect reciprocity by mechanisms
such as reputation and image scoring (Nowak & Sigmund
1998; Lotem et al. 1999; Riolo et al. 2001; Milinski et
al. 2002).

One feature common to all the above approaches is an
assumption that an individual’s action during an encoun-
ter is fixed and irreversible once chosen. Cooperative
behaviour is very often observed during relatively pro-
longed and complex interactions, however, and therefore
it is perhaps more reasonable to assume that some form
of ‘negotiation’ between individuals takes place before the
fitness-determining actions of each player are settled
upon. During the negotiation, each individual observes its
opponent and alters its own actions accordingly.

Focusing on the evolution of the negotiation strategy
itself rather than the evolution of the action settled upon
by an individual opens the door to the possibility of a
natural mechanism for the evolution of cooperation. In
this context, any player’s final action will depend on how
its negotiation strategy interacts with that of its opponent.
Perhaps natural selection can drive the evolution of
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negotiation strategies to a point where most individuals
tend to negotiate cooperative outcomes with one another,
but where such strategies nevertheless cannot be taken
advantage of because they negotiate more guarded out-
comes when interacting with individuals attempting to
exploit them.

2. ANALYSIS

Analysing such games requires a fundamental change in
the game-theoretic approach currently used in evolution-
ary biology (McNamara et al. 1999). In particular, an indi-
vidual’s negotiation strategy can be viewed as a reaction
norm for its behaviour as a function of its opponent’s
behaviour (Agrawal 2001). One then focuses on charac-
terizing the evolutionary stability of behavioural reaction
norms rather than the behaviours themselves. The
observed behaviours are then an outcome of the interac-
tion of evolutionarily stable behavioural reaction norms.
Here, we investigate a simple approach for modelling such
negotiation games and use it to provide a novel expla-
nation for the emergence of cooperative behaviour. Our
approach also reveals a fundamental feature of such
games: the existence of a curve of neutral stability.

Suppose that each player contributes a costly resource
to the common good of the pair. If player i contributes xi,
the fitness of player i will be

Fi(x1, x2) = Bi(x1 � x2) � Ki(xi), (2.1)

where the benefits Bi(z) are assumed to depend on the
total contribution z = x1 � x2 and Ki(xi) is the cost to
player i of contributing xi. We assume that benefit
increases with total contribution with diminishing returns,
and that costs increase with contribution in an accelerat-
ing manner. For the game without negotiation (Houston &
Davies 1985), the Nash equilibria are determined by the
two conditions

∂Fi/∂xi = 0 (i = 1, 2). (2.2)
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Figure 1. The negotiation process is illustrated for players
with linear response rules (player 1, x1, has �1 = 2/3 and
�1 = 0.4, and player 2, x2, has �2 = 1/2 and �2 = 0.3 in
equation (2.1)). Note that the x2-response line uses the x1-
axis as the abscissa, and it projects any x1 offer onto the x2-
axis. Similarly, the x1-response line uses the x2-axis as the
abscissa, and projects any x2 offer onto the x1-axis. In the
negotiation illustrated, x1 begins, and its successive offers are
given by successive vertical lines moving from left to right.
The responses by x2 are given by successive horizontal lines
moving from top to bottom. The final contributions are at
the intersection of the response lines, at x̂1 = 0.3 and
x̂2 = 0.15.

To incorporate negotiation, we employ response rules
(McNamara et al. 1999). In our context, player i’s
response rule ri(x) specifies its resource ‘offer’, given that
its opponent has offered resource level x (i.e. ri(x) is its
behavioural reaction norm). The negotiation phase
involves an iteration of back-and-forth responses between
the two players (each using their fixed response rule) and
the equilibrium values of x are obtained for both players
where the two response rules intersect (figure 1). Instead
of seeking the Nash equilibrium level of resources offered
(i.e. x), we now seek the Nash equilibrium response rules,
ri(x) (i.e. the Nash equilibrium behavioural reaction
norms). Using a local analysis at a fixed equilibrium,
McNamara et al. (1999) argue that no player can do better
than to use a linear response rule of the form

ri(x) = �i � �ix, (2.3)

where the responsiveness �i measures the degree to which
an individual responds to a change in x from its partner.
In this version, a player’s strategy is determined by the
pair (�, �). If player i plays (�i, �i), its fitness is

Wi(�1, �1, �2, �2) = Fi(x̂1, x̂2), (2.4)

where x̂1 and x̂2 are the solutions to the equations

x1 = �1 � �1x2,

x2 = �2 � �2x1, (2.5)

and this gives us

x̂1 =
�1 � �2�1

1 � �1�2
and x̂2 =

�2 � �1�2

1 � �1�2
, (2.6)
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Figure 2. The (�, �) equilibrium curve for the functions
B(z) = z/z � 1 and K(x) = x2. This curve has general
equation F1 � �F2 = 0 which in this case becomes
(1 � �)(1 � �)3 = 2�(2� � 1��)2. The neutral line is drawn
for the point �∗ = 0.5, �∗ = 0.223. Note that the Nash
equilibrium for the game without negotiation (Houston &
Davies 1985) is the value of x∗ at which the F-level curve
crosses the diagonal with slope zero, and therefore it
corresponds to the � = 0 point of the equilibrium curve
(where it crosses the �-axis). This value of x is signalled by a
horizontal line in figure 3.

provided |�i| � 1 for i = 1, 2 (an assumption we now
make).

In (�, �) phase space, the Nash conditions for player
i are

∂Wi

∂�i
=

1
1 � �1�2

�∂Fi

∂xi
� � j

∂Fi

∂x j
� = 0,

∂Wi

∂�i
=

�x̂ j

1 � �1�2
�∂Fi

∂xi
� � j

∂Fi

∂x j
� = 0, (2.7)

where j�i and the partial derivatives of the Fi are evaluated
at (x̂1, x̂2). We see that these two conditions both yield the
same equation:

∂Fi

∂xi
� � j∗

∂Fi

∂x j |
x = x̂∗

= 0 (i = 1, 2, j � i), (2.8)

and thus the equilibrium conditions for both players give
us two equations in (�1, �1, �2, �2) and this specifies a two-
dimensional equilibrium surface in four-space. To sim-
plify matters here we will ignore any differences between
the two players in features such as their inherent quality
(see, for example, McNamara et al. 1999) and restrict
attention to a symmetric version of the game. In this case
we have only one function F(x1, x2) = B(x1 � x2) �
K(x1), and we let W(�̃, �̃, �, �) = F(x̂1, x̂2) be the fitness
of a (�̃, �̃) mutant in a (�, �) population. The Nash con-
ditions (equation (2.8)) give us one equation in (�, �) and
this specifies an equilibrium curve in the (�, �) plane. An
example of such a curve is shown in figure 2. One can
show (Appendix A) that the curve is neutrally stable in
the sense that in a resident population at a point on the
curve, no mutant strategy has greater than resident fitness,
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Figure 3. Change over time from simulation studies of the negotiation game under the joint forces of selection and mutation,
starting with a uniform distribution in a rectangular region of (�, �) strategy space. The population distribution of
contributions x is plotted against log time (generations). (a) With the benefit and cost functions used for the graphs of this
paper (figure 2 caption). (b) As in (a) except with linear benefit B(z) = 2z. The Nash equilibrium contribution for the game
without negotiation (equation (2.2)) is shown as a horizontal line. We see convergence to a more cooperative contribution, the
effect being more striking in (b). (c) The population of (a) recorded in (�, �) space under the joint forces of selection and
mutation. The region �1 � � � 1, 0 � � � 0.6 is partitioned as a 30 × 40 grid. The population size is 45 000 individuals. Each
generation, each individual has one random encounter and mutates with probability 0.005. The mutation range is �� = 0.01,
�� = 0.025.

though there are mutant strategies that have resident fit-
ness (see below).

McNamara et al. (1999) did not formulate the Nash
conditions (equation (2.7)) in (�, �) space and they there-
fore overlooked this key observation. As a result, their con-
clusion, that there exists a single evolutionarily stable
strategy (ESS) at which the level of care is lower than that
of non-negotiated outcomes, is incorrect. Rather, there is
a continuum of outcomes that are all ESSs, spanning a
range of levels of care that goes both lower and higher
than the level found in the non-negotiated outcome. The
above results illustrate that the existence of an equilibrium
surface (or curve in the case that the game is symmetric)
might be quite a general property of negotiation games.

It is useful to note that in a pure (�, �) population the
common contribution x̂ = �/(1 � �) is the slope of the line
(figure 2) drawn from (–1, 0) to the point (�, �). It follows
from this interpretation of x̂ that points on the left side of
the equilibrium curve are more cooperative than points on
the right. Interestingly, although the above results demon-
strate that all points on the equilibrium curve are weakly
evolutionarily stable, the dynamics of evolutionary change
actually tend to produce a relatively cooperative outcome,
as we detail next.
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3. THE EMERGENCE OF COOPERATION

We ran simulations of this game with individual vari-
ation in the response rule, and with an individual’s repro-
ductive success (and thus the representation of its
response rule in the next generation) given by equation
(2.1). Using two different benefit functions, our results
reveal the evolution of negotiation rules that yield cooper-
ative behaviour (figure 3).

A mathematical analysis of the negotiation game helps
to expose the mechanism through which this occurs
(Appendix A). In a resident population playing any one
of the Nash equilibrium rules, there is a line of ‘mutant’
response rules that, when played against the resident or
against one another, yield the same negotiated outcome as
the residents, and therefore have resident fitness (figures 2
and 4). Thus, none of the Nash equilibrium response rules
is evolutionarily stable in the strict sense (Hofbauer & Sig-
mund 1998). Crucially, however, the neutral mutant reac-
tion norms will produce a different negotiated outcome
than the resident reaction norm when played against
something other than the resident. To see this, take figure
5 and move the blue resident line and observe the change
in its intersection with the dashed red mutant line. This
exemplifies a key feature of the model; it provides a



672 P. D. Taylor and T. Day Stability in negotiation games

0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

maxx
x1

x2

(a)

0.1 0.2 0.3 0.40

0.1

0.2

0.3

0.4

x1

(b)
x2

Figure 4. (a) Some level curves of W. At points on the
diagonal x1 = x2 = x between x = 0 and x = xmax these curves
have slope between –1 and 1. (b) The (x1, x2) configuration
at the equilibrium point �∗ = 0.5, �∗ = 0.223 depicted in
figure 2. The response lines for players 1 (red) and 2 (blue)
both intersect the diagonal at x̂∗ = 0.1486 and the level curve
for the fitness F(x1, x2) is drawn through that point. The
response line for player 2 is tangent to that curve, indicating
that player 1 cannot increase its fitness by moving its
response line (red) to another location. The negotiated
contributions are determined at the intersections of the red
and blue lines.

natural mechanism through which an individual can
‘recognize’ different types of opponent and the negotiated
outcome can differ depending upon the type of
opponent encountered.

Although the mathematical analysis demonstrates an
infinite number of Nash equilibrium negotiation stra-
tegies, our simulations demonstrate some form of direc-
tionality to evolutionary change towards a band of
strategies on the left side of the equilibrium curve that
result in cooperative behaviour. This can be investigated
analytically by using standard techniques for modelling
the evolutionary dynamics of �∗ and �∗ (Appendix B). For
tractability, these techniques typically assume that there is
very little genetic variation in the population at any given
time. The results of Appendix B show that points on the
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Figure 5. Any response line for player 1 (dashed) that
intersects the diagonal at x̂∗ will have resident fitness. These
are the response lines that correspond to the neutral line in
figure 2.
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Figure 6. Curves of constant mutant fitness in a population
with resident strategy �∗ = 0.5, �∗ = 0.223 at frequency
p = 0.8 and mutant strategy (�, �) at frequency p = 0.2. The
level curve 	W = 0 (red) consists of the neutral line and a
curve that starts at (–1, 0) on the left, rises above the
equilibrium curve, and then crosses it twice, the second time
at the equilibrium point (�∗, �∗). The region between this
curve and the neutral line is the region of positive 	W and
consists of the two regions marked A and B. The blue
contours 	W = 0.005 (outer) and 	W = 0.01 (inner) are also
included.

equilibrium curve are neutrally (and thus not strictly)
convergence stable (Eshel 1983; Christiansen 1991).
However, this analysis fails to reveal any source of direc-
tionality to the evolutionary dynamics.
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The above game-theoretic analyses follow standard
techniques by examining a two-strategy population with
an equilibrium resident strategy (�∗, �∗) of frequency 1–p
and a mutant strategy (�, �) of frequency p and random
interactions. One then calculates the fitness difference:
	W = W(mutant) � W(resident) in the limit where
p = 0. The fact that this approach reveals a line of neutral
(	W = 0) mutant negotiation strategies, with all other
mutant strategies having 	W � 0, suggests an examin-
ation of the case where p is positive. In this case it can be
shown that there is always a region adjacent to the neutral
mutant line in which 	W 
 0 (figure 6) for which the
mutant can invade.

This finding provides the key to understanding the evol-
ution of negotiation strategies that result in cooperative
behaviour. In the presence of variation, there are mutants
that tend to produce cooperative outcomes (and thus have
higher fitness) when played against themselves (or similar
negotiation strategies) but that produce an outcome, and
thus fitness, roughly equivalent to that of the resident
when played against the resident. Therefore, in the pres-
ence of variation, these mutants gain the benefits of
cooperation without paying much of a cost when inter-
acting with less cooperative negotiation strategies (figure
6, region A).

Interestingly, there are also mutants that can invade at
a positive frequency that produces more selfish outcomes
when played against themselves (or similar negotiation
strategies; figure 6, region B). Analysis (P. D. Taylor and
T. Day, unpublished results) reveals that these invade
through a fundamentally different mechanism than the
mutants mentioned above. Instead of gaining benefits
when interacting among themselves and having approxi-
mately resident fitness when interacting with a resident (as
above), these ‘selfish’ negotiation strategies have reduced
fitness when interacting with themselves (because they are
less cooperative) but they cause the resident negotiation
strategy to have even lower fitness when the two interact.
These mutants thereby gain their evolutionary advantage
through a form of spite, by hurting themselves but hurting
the resident type even more.

Overall, those negotiation strategies yielding a more
cooperative outcome tend to prevail over the strategies
yielding a more selfish outcome (figure 2). This is presum-
ably because the rare cooperative negotiators gain their
evolutionary advantage by helping themselves relative to
the residents, whereas the rare selfish negotiators gain
their evolutionary advantage by hurting the resident rela-
tive to themselves. Thus, the rare cooperative negotiators
have little effect on the selfish negotiators’ fitness, but the
selfish negotiators inadvertently further enhance the fit-
ness advantage of the cooperative negotiators by depress-
ing resident fitness.

In a sense these results bring us full circle, back to the
ideas of reciprocity, but at a different and potentially more
powerful level for explaining the emergence of cooperative
behaviour. Previous results on the evolution of
cooperation through reciprocity have revealed that stra-
tegies such as tit-for-tat are evolutionarily successful
because they are nice (by cooperating on first encounters),
they are retaliatory (by being selfish if they re-encounter
an opponent who was selfish in the past) and they are
forgiving (by returning to cooperative behaviour if

Proc. R. Soc. Lond. B (2004)

previously selfish opponents become cooperative; Wilson
1975). In these previous results, these strategies play out
over several successive meetings of opponents, where each
meeting produces a fitness outcome. In negotiation
games, a similar process occurs. The evolutionarily stable
behavioural reaction norm for such games is somewhat
analogous to the tit-for-tat strategy from previous theory
in that it produces a cooperative outcome when inter-
acting with similar individuals, but it becomes less cooper-
ative if its opponent does so. All of this happens within
the context of a single meeting, however, and therefore it
potentially provides a robust explanation for cooperative
behaviour that requires few assumptions. Under this
hypothesis for the evolution of cooperation, we expect a
positive relation between the level of cooperative behav-
iour observed between individuals and the scope that
exists for negotiation between them before their fitness
outcomes are realized.

This project was supported by the Natural Sciences and Engin-
eering Research Council of Canada. Technical work, the art-
work and the execution of the simulations, were performed by
Daniel Nagy. Ido Pen provided several valuable comments and
verified the simulations.

APPENDIX A: ANALYSIS OF THE GAME

Consider the family of level curves of F which have a
slope between –1 and 1 where they cross the diagonal at
(x∗, x∗) (figure 4a). Take any one of these and let the
tangent at (x∗, x∗) have slope –�∗ and x2-intercept �∗

(figure 4b). Because the level curve of F is concave-up
(this follows from the assumptions that B� 
 0, B� � 0,
K � 
 0, K � 
 0) no rare mutant strategy in a (�∗, �∗)
population can have greater than normal fitness. This pro-
vides an infinite curve of negotiation strategies that are
Nash equilibria: this is a type of population-wide neu-
trality. In figure 2, this curve is displayed in (�, �) space.
In the original game of Houston & Davies (1985) without
negotiation the ESS contribution x∗ corresponds to the
point at which the level curve of F crosses the diagonal
horizontally (figure 4a). This corresponds to the point at
which the equilibrium curve of figure 2 crosses the verti-
cal axis.

There is also a type of mutant neutrality that occurs at
any of the above-mentioned Nash equilibrium negotiation
strategies. Specifically, at any such strategy there are
mutant strategies having fitness identical to the resident
fitness. These have a response rule passing through (x∗,
x∗) (figure 5). In figure 2, this set of strategies appears as
a line in (�, �) space. Indeed, all points on this line have
the same value of �/(1 � �) and if any two such points are
put into the x̂-equation (2.6) they yield
x̂1 = x̂2 = x∗ = �∗/(1 � �∗).

APPENDIX B

If the strategy mix in the population is closely concen-
trated about its mean value (�̄, �̄), then the fitness of a
(�, �) individual can be reasonably approximated by
W(�, �, �̄, �̄) and the direction and speed of evolutionary
change of the population mean is modelled with the stan-
dard evolutionary dynamic (Abrams et al. 1993;
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Figure 7. The vector field of the dynamic equations
measures the direction and speed of evolutionary change at
any (�, �). The vectors are always perpendicular to the line
drawn from the point (–1, 0) and point up when below the
equilibrium curve and otherwise down. At points on the
equilibrium curve, the field is zero.

Dieckmann & Law 1996; Geritz et al. 1998; Hofbauer &
Sigmund 1998):

dλ̄
dt

= k
∂W
∂� |� = �̄

� = �̄

= �k
�̄

1 � �̄

F1 � �̄F2

1 � �̄2 ,

d�̄

dt
= k

∂W
∂� |� = �̄

� = �̄

= k
F1 � �̄F2

1 � �̄2 ,

where Fi is the partial derivative of F with respect to xi

evaluated at x1 = x2 = �̄/1 � �̄.
This dynamic has a simple geometric interpretation

(figure 7). Because the line through (–1, 0) and (�̄, �̄) has
slope �̄/1 � �̄, the vector field of the dynamic is orthogonal
to this line at any (�̄, �̄) and is directed up when below
the equilibrium curve (F1 
 �̄F2), down when above the
equilibrium curve (F1 � �̄F2) and is zero on the equilib-
rium curve (F1 = �̄F2). In particular, the equilibrium curve
is exactly the set of equilibrium points of the dynamic.
Not surprisingly, the system is neutrally stable at each
such point. [An equilibrium point of the dynamical system
is stable if the matrix

Proc. R. Soc. Lond. B (2004)

A = ��̇� �̇�

�̇� �̇�

�� = �̄

� = �̄

is a stability matrix, where the dot denotes the time deriva-
tive and the subscripts denote partial differentiation. This
will be the case if trace(A) � 0 and det(A) 
 0. A straight-
forward calculation shows that the first holds but that
det(A) = 0.]

It is clear from figure 7 that the dynamic points in
opposite directions on either side of the equilibrium curve,
and thus it is not clear in which direction the combined
effects of local mutation and selection might cause the
strategy mix to move.
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