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Electronic Appendix A
MCMC implementation

Markov chain Monte Carlo (MCMC) methods are used for stochastic simulation
and integration in situations where the distribution of interest cannot be easily
approximated and marginal densities or moment estimates are difficult to obtain.
They rely on the construction of a Markov chain whose stationary distribution 1s
the distribution under consideration, and the use of the transition probabilities of
the chain for determining suitable acceptance probabilities for updating the model
parameters in an iterative scheme. A suitable sample taken from the converged chain
can then be nsed for Monte Carlo inference regarding the distribution of interest.
Here we utilise a single-component Metropolis—Hastings algorithm, in a manner
similar to that deseribed in Streftaris & Gibson (2004). Each model parameter is
updated separately in a single step by first generating a candidate value v from a
proposal distribution g{y|x), where x is the current parameter value. The new value

¥ is then accepted with a probability given as
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where the vector w consists of the remaining parameters at their latest value, and

the data. The acceptance probability involves ratios of the so-called full conditional
distribution p(-) of a parameter given all other parameters and the data, and the
proposal distribution g(-).

Here the distribution of interest is the posterior distribution of the model pa-
rameters, as defined in Section 3. The prior setting is as follows. For the parame-
ters of the Weibull distributions of latent and infectious periods we assume gamma
priors: 7y ~ Galey,dy);dy ~ Galmy,éy )iz ~ Galeg, dz)idz ~ Galmg, ¢o)iv ~
Galcs, dg); A ~ Ga(mg, @5). The gamma prior parameters are determined in a way
such that the resulting distributions reflect existing knowledge about the epidemic

characteristics of FMD in sheep under similar conditions. Thus the prior parame-
ters were set so that the expected values of (7, 4;) resulted in a Weibull distribution
with mean equal to one day, and 97.5th percentile gyors = 3.0 days; the expected



values of (72, d2) gave a latent period from a Weibull distribution with a mean of 3
days, and gpors = 8.0 days; and for the infectious period the Weibull distribution
has mean equal to 2 days and g, g7 = 6.0 days. The transmission parameter J is
assigned a non-informative Gafa, b) distribution with @ = 1,5 = 0.001, while for the
power parameter & we assume a vague exponential prior distribution Expon(#) with
f = 0.001 (1.e. again Ga(l,0.001)). Updating the above priors using the informa-
tion in the data given in the likelihood function (3.2}, we obtain the joint posterior

density (3.4). The full conditional distributions are given by
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In the above, n; and n, denote the number of infected animals in G1 and the number
of exposed animals in G2-G4 respectively, and C'(t) is defined as in (3.3). We note
here that, as the infectious period was not estimated in the posterior analysis, the
observed lengths of the viraemic periods were used (assuming that viraemic and
infectious periods coincide and ignoring the uncertainty in the recordings) to evaluate
the parameters of the relevant Weibull distribution involved in (3.2) by maximum

likelihood estimation (= 4.443, A = 0.006).



When the full conditional distribution of a parameter 15 given in closed form and
is available for sampling, it can serve as the proposal distribution ¢(-) leading to a
Gibbs sampling step with acceptance probability equal to one. This is the case with
the gamma full conditionals in (A.3), (A.5) and (A.7). For the remaining parameters
suitable proposal distributions must be selected. We note here that the construction
of the Markov chain in the MCMC methodology ensures that any proposal distribu-
tion will theoretically lead to convergence to the distribution of interest. However,
the performance of the algorithm, and more specifically its convergence rate and
1its ability to explore the parameter space efficiently, will depend on the proposal
choice. Here, for the shape Weibull parameters ~; and ~; we draw candidate values
from suitably tuned gamma distributions, whose moments are matched to the mo-
ments of the corresponding full conditionals. This leads to an mdependence-type
Metropolis—Hastings scheme, where the close resemblance of the proposal and full
conditional distributions results in high acceptance rates (88% —96%). The method
15 described in more detail in Streftaris & Gibson (2004). For parameter o, in or-
der to avold the computational cost involved in deriving a good approximation to
(A.2), we employ a Metropolis algorithm, in which a uniform candidate distribution
(centred at the current value of the parameter) provides a symmetrical random-walk
step, simplifying (A.1) significantly.

Updating the unobserved vectors of event times (e, s, r) is simpler than in cases
where the epidemic modelling must take into account an unknown number of infec-
tions 1 the outbreak. Here the nature of the experiments implies that the size of
the complete epidemic is known. However, the non-homogeneous and alternating
patterns in the population mixing makes the updating of the hidden events problem-
atic, as the available time windows for these events to give rise to plausible likelihood
values are limited. We use a normal distribution, with mean equal to the current
value, to propose new exposure times for the G2-G4 sheep. This again results in

a symmetrical Metropolis sub-algorithm, with the variance of the normal proposal
tuned [{after an imitial test algorithm run) to provide a balance between acceptance

of new values and mizxing of the chain. The times of onset of the infectious periods



(s), and recovery (r) were updated uniformly within the permissible 24-hour time
windows.

The algorithm was run for 10° iterations, after an initial number of 20 000 ‘burn-
in' samples were discarded to ensure that the chain had reached stationarity. The
resulting chain was thinned (recording every 250th iteration) in order to reduce the
autocorrelation within the simulated sequences. The vector of exposure times (e)
was updated more frequently than the model parameters to allow the algorithm to
explore the likelihood support more efficiently. The convergence of the algorithm
was assessed by examining various criteria used in the software Bayesion Cutput

Analysis Program (BOA, version 1.0.0, http://www public-health.uiowa.edu).

Simulated epidemics

In order to assess and validate the power of the presented methodology to address
the questions of the relation between viraemia and infectivity and the decrease of
viraemia over the chain of virus transmission, we simulated data from epidemic out-
breaks resembling those in the studied experiments. More specifically, following the
design of the experiments, we considered populations of 32 animals, divided into four
groups, with the G1 animals already exposed to the disease at the start of the simm-
lation process. Under the non-homogeneous population mixing in the experiments,
described in Section 1, times of exposure to the virus for the remaining animals
(G2-G4), and times of onset and end of viraemic period for all susceptible animals
were generated using stochastic simulation involving the probability distributions
assumed in the model (Section 3). Peak viraemic levels were also simulated from
appropriate models, as described later. Values of the various model parameters were
chosen in a way such that they represent epidemic determinants in three scenarios
corresponding to the following interactions between viraemic level, infectivity and
length of infection chain: (1) no association between viraemia and infective challenge

(¢ = 0), levels of viraemia unaffected by number of infectious contacts; (i) viraemia



related to individual infectionsness, viraemic levels unaffected by number of infec-
tious contacts; and (i11) viraemia related to infectiousness, viraemic levels follow a
decreasing trend as the length of chain of infection increases. The parameter values
emploved mn the simulation process were the corresponding estimates using the data
in experiment 1, with the appropriate model adjustments for & = 0 for scenario (1),
and o = 1 for scenarios (1i) and (ii1). To represent lack of relation between the length
of the infection chain and the viral blood load of infected animals (scenarios (1) and
(ii) ), viraemic levels were generated as random values from a log-normal distribution
htted to the peak viraemic values in experiment 1. For scenario (111) a regression
model of viraemic level on length of infection chain (as estimated in both experi-
ments) was employed to generate the appropriate decreasing values. The generated
times of events associated with nine outbreaks, three outbreaks corresponding to
each epidemic scenario described above, are shown in Figure 1.

The analysis of the simulated data verifies the capacity of the suggested method-
ology to identify the complex interactions involved in the epidemic process and dis-
tinguish between the different infection process dynamics in the three cases. When
the histograms of the posterior distribution of parameter & in Figure 2 are com-
pared, a clear shift of the distribution towards zero is revealed in the case where no
relation between viraemia and infective challenge is assumed (scenario (1)). We also
note here that a discrete model for o resulted in a very similar posterior distribution
(Figure 3).

Finally, the effect of the length of the infection chain on the viraemic levels of 1n-
fected animals, is shown by the posterior distributions of the p-values corresponding
to ANOVA tests (based on partitions of the population derived using information
from the entire epidemic process under the assumed Bayesian framework), as de-
scribed in Section 3. Again, as shown in Figure 4, there is an apparent distinction
between the two involved scenarios. In cases (1) and (i) the histograms (large p-
values) suggest unaffected levels of viraemia as the length of infection chain increases,
while in case (1i1) the model correctly identifies significant differences in the viraemic

level of groups of animals categorised according to length of infection chain.
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Figure 1: Latent periods (dotted lines) and infectious periods (solid lines) in sim-

ulated epidemic outbreaks. The circles show the onset of the infectious (viraemic)

period. The different line colours correspond to the four groups of animals. The sim-

ulation process followed the design of the studied experiments. Each row of graphs

corresponds to one of the three assumed epidemic scenarios: (1) @ = 0, no change

in viraemic levels; (i1) @ = 1, no change in viraemic levels; (111) « = 1, decreasing

viraemic levels,
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Figure 2: Posterior distribution of parameter o under the three asswmed epidemic
scenarios: (i) o = 0, no change in viraemic levels; (ii) &« = 1, no change in viraemic
levels; (iil) o = 1, decreasing viraemic levels. A contimious model was employed for

o, assuming an Exp(0.001) prior distribution.
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Figure 3: Posterior distribution of parameter o employing a discrete model, with
o taking the values (0.00,0.25,0.50,0.75,1.00, 1.25, 1.50,1.75, 2.00, 2.25, 2.50) with
equal probahilities. The graphs correspond to the two first simulated epidemiecs in

Figure 2, under scenario (1): @ =0, no change in viraemic levels.
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Figure 4: Posterior distributions of predictive p-values for testing the hypothesis of

no differences among average peak viraemic levels of groups of sheep categorised

according to length of infection chain.

Each row of graphs corresponds to one of

the three assumed epidemic scenarios: (1) o = [, no change in viraemic levels; (1)

o = 1, no change in viraemic levels; (iil) @ = 1, decreasing viraemic levels.



