These are electronic appendices to the paper by Holland *et al.* 2004 Evolutionary stability of mutualism: interspecific population regulation as an evolutionarily stable strategy. *Proc. R. Soc. Lond.* B **271**, 1807–1814. (DOI 10.1098/rspb.2004.2789.)

Electronic appendices are refereed with the text. However, no attempt is made to impose a uniform editorial style on the electronic appendices.

ELECTRONIC APPENDIX A.

List of symbols of model variables and parameters, and their definitions.

Symbol	Meaning
М	Pollinator population density
γ_1	Rate of flower pollination by pollinators
γ_2	Rate of flower oviposition by pollinators
δ	Pollinator mortality rate
F_i	Flower production of individual <i>i</i>
P_i	Fraction of flowers pollinated of individual <i>i</i>
D_i	Fraction of flowers parasitized of individual <i>i</i>
$R_{fl,i}$	Resources available for flower production by individual <i>i</i>
$R_{fr,i}$	Resources available for fruit production by individual <i>i</i>
$R_{t,i}$	Total resources available for reproduction by individual <i>i</i>
α	Conversion efficiency of resources into flowers
β	Conversion efficiency of resources into mature fruit
G_i	Potential fruit production by individual <i>i</i> , given available resources
$F_{s,i}$	Fruit set or initiation of individual i, given pollination and resources
$W_{F,i}$	Female fitness (seed or fruit production) of individual <i>i</i>
$W_{M,i}$	Male fitness (pollen dispersal and donation) of individual <i>i</i>
W_{i}	Fitness of plant individual <i>i</i>

ELECTRONIC APPENDIX B

An analytic approximation of (6) for the ratio-dependent case is possible by expanding the exponentials, keeping up to second order terms, as

$$e^{-\gamma_2 M/F} \cong 1 - \gamma_2 M/F + (1/2)(\gamma_2 M/F)^2$$
(A1)

$$e^{-\gamma_1 M/F} \cong 1 - \gamma_1 M/F + (1/2)(\gamma_1 M/F)^2$$
(A2)

From equation (A1), when $\beta R_t R_{fr} > PF$, the right hand side of equation (7) can approximated

and solved to obtain the equilibrium value of M:

$$M = 2F(\gamma_2 - d) / {\gamma_2}^2 = 2\alpha R_{fl} R_t (\gamma_2 - d) / {\gamma_2}^2$$
(A3)

From equation (A2), when $\beta R_t R_{fr} < PF$, the right hand side of equation (8) is approximated and solved for equilibrium to obtain;

$$M = \beta R_t R_{fr} (\gamma_2 / \gamma_1) / d = \beta R_t (1 - R_{fl}) (\gamma_2 / \gamma_1) / d$$
(A4)

(In this case only the first order terms of the expansion are used.) Now it can be seen that as R_{fl} is increased from zero to larger values, as long as $\beta R_t R_{fr} > PF$, *M* increases linearly with R_{fl} . However, when the inequality is reversed, so that $\beta R_t R_{fr} < PF$, *M* decreases as a function of R_{fl}

. Thus, *M* is a unimodal function of R_{fl} . This is a reasonable quantitative approximation of the 'exact' equations. The above approximations for *M* can be used in equations (4) and (5). When $\beta R_t R_{fr} > PF$ the female fitness function is $W_F = \alpha R_t R_{fl} (e^{-2(\gamma_2 - d)/\gamma_2} - e^{-2\gamma_1(\gamma_2 - d)/\gamma_2^2})$. When $\beta R_t R_{fr} < PF$, the female fitness function is

$$W_F = \beta R_t (1 - R_{fl}) (e^{-\beta (1 - R_{fl})[\gamma^2 2/(d\gamma_1 \alpha R_{fl})]} - e^{-\beta (1 - R_{fl})[\gamma_2/(d\alpha R_{fl})]}) / (1 - e^{-\beta (1 - R_{fl})[\gamma_2/(d\alpha R_{fl})]}).$$

ELECTRONIC APPENDIX C

Values of flower production strategies, R_{fl} , for plant fitness for the ecological model and for evolutionarily stable strategies for a wide range of parameter values of α , β , δ , γ_l , and γ_2 ., for standard male fitness. Results are for ratio-dependent functional responses.

					Flower Production Strategy (<i>R_{fl}</i>)	
α	β	δ	Y 1	Y 2	Ecological R _{fl}	ESS R_{fl}
1.0	1.0	0.5	6.0	3.0	0.83	0.73
2.0	1.0	0.5	6.0	3.0	0.72	0.66
3.0	1.0	0.5	6.0	3.0	0.64	0.62
4.0	1.0	0.5	6.0	3.0	0.60	0.59
8.0	1.0	0.5	6.0	3.0	0.46	0.55
1.0	2.0	0.5	6.0	3.0	0.90	0.79
1.0	4.0	0.5	6.0	3.0	0.94	0.84
2.0	1.0	1.0	6.0	3.0	0.59	0.60
2.0	1.0	0.5	5.0	3.0	0.72	0.66
2.0	1.0	0.5	4.0	3.0	0.72	0.66
2.0	1.0	0.5	3.0	2.0	0.64	0.62
2.0	1.0	0.5	3.0	1.0	0.54	0.57