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Theoretical interest in the distributions of species abundances observed in ecological communities has

focused recently on the results of models that assume all species are identical in their interactions with one

another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic

level system with generalized species interactions, including species-specific intraspecific and interspecific

interaction strengths, and density-independent immigration from a regional species pool. Comparisons

between results from numerical integrations and an approximate analytic calculation for random communi-

ties demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary

shape, including bimodality for intermediate immigration rates.
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1. INTRODUCTION
Communities are structured by many different processes

that are important at various ecological scales. For

example, the intermediate disturbance hypothesis relates

species richness of communities to the disturbance fre-

quency experienced locally (Connell 1978). Maximal spe-

cies richness is often observed at intermediate disturbance

frequencies because few species can tolerate high dis-

turbances and another set of relatively few species are pre-

sent in climax states. Species-specific physiological limits

and tolerances also dictate local and regional community

members, yielding latitudinal and altitudinal species

richness gradients (Currie 1991). Character displace-

ment is another process structuring communities in terms

of the traits of its members (e.g. Slatkin 1980). All of these

well-known processes stress the differences between

species in their use of habitat and resources, and the role

natural selection plays in reducing interspecific compe-

tition.

In this paper we expand the Wilson et al. (2003) analysis

for one of the most enduring empirical measures of com-

munities, the relative species abundance distribution (e.g.

Preston 1948), using the Lotka–Volterra (LV) community

theory (Lotka 1925; Volterra 1926; May 1974) that stres-

ses species differences. Here we introduce two critical gen-

eralizations. Most importantly, we derive the mean-field

approach for open systems by allowing species immigration

in the calculation. As expected, immigration has drastic

consequences for the resulting species abundance distribu-

tions, with the ‘skewness’ of the abundance distributions

depending sensitively on the immigration rate. We also

include species-specific intraspecific interaction strengths,

which previously had been considered identical, and

demonstrate that variation in these terms can be neglected.
Presently, there remains disagreement concerning the

general form of the species abundance distribution. For

many years, the empirical pattern was strongly believed to

follow a lognormal distribution of abundances (Preston

1948, 1962a,b), as seen, for example, through an analysis

of Patrick’s diatom data (MacArthur & Wilson 1967).

However, recent evidence indicates a left-skew to the abun-

dance distributions (e.g. Nee et al. 1991). Repeatability of

some patterns seems questionable, considering that mul-

tiple examination of the same dataset can reveal differing

distributions. For example, preliminary data for a British

bird survey analysed by Nee et al. (1991, fig. 4) demon-

strated left-skew, but the improved, published data ana-

lysed by Gregory (1994, fig. 3) demonstrated no significant

skewness. Reanalysis of the final data by Hubbell (2001,

fig. 2.6) once again demonstrated strong left-skewness.

Recent evidence for tropical trees seems quite compelling

that abundance distributions are often not lognormal

(Hubbell 2001). Finally, empirical distributions from long

time-series for single-species populations, an occasional

proxy for across-species abundance distributions, also are

often not lognormal, possessing a left-skew (Halley &

Inchausti 2002).

On the theoretical side, a variety of models have been

developed to understand community processes, with the

result that essentially any pattern of species abundance

distributions can be ‘explained’. These models include the

broken-stick (and related) models (MacArthur 1957;

Sugihara 1980; Harte et al. 1999), stochastic birth–death

models for single species populations (Dennis & Patil

1984; Diserud & Engen 2000), and the neutral theory

models which are essentially multispecies stochastic birth–

death models (Caswell 1976; Bell 2000; Hubbell 2001).

The connection between stochastic single- and multi-spe-

cies models was demonstrated and analysed in detail by

McKane et al. (2000) using a particular mean-field

approximation. They showed that under a random
#2004The Royal Society
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assembly of species, abundance distributions of various

forms, in part dependent on the rate of immigration, could

be derived. Their model did not, however, consider explicit

species interaction. A different mean-field approximation,

introduced by Wilson et al. (2003), of an LV species inter-

action model yielded species abundance distributions and

local biodiversity as a function of species-specific inter-

action parameters.

The LV community model embraces the previous theo-

retical formulations with the assumption of pairwise

competitive species interactions,

dni

ni dt
¼ Ki � aiini �

X
j 6¼i

aijnj

 !
: ð1:1Þ

Here aij> 0 is the intraspecific ( j ¼ i) and interspecific

( j 6¼ i) per capita interaction strength between species i and

j , Ki is the maximum per capita growth rate for species i ,

and Ki/aii is the overall carrying capacity of species i in the

absence of other species. In what follows below we will

assume that there are P species in the regional pool. Note

that there are no species-specific growth parameters, as

justified in the derivation of the LV community model by

Wilson et al. (2003) from a slightly more mechanistic

model of births and deaths. Under this formulation

K serves as both the maximum per capita growth rate and a

factor in the carrying capacity for species i.

Each of the different species abundance models can be

viewed from the LV model framework. The neutral model

assumes aij ¼ 1 for all interactions and Ki ¼ K for all spe-

cies. Under these assumptions, the zero growth condition

for each species equilibrium density, n�i , yields the identical
expression, specifically a constraint specifying K ¼ Ri n

�
i .

In other words, neutrality assumes that individuals of all

species are competitively identical and can exclusively

occupy one of the K locations in the local habitat. The

deterministic equilibrium of such a system is that the aver-

age species has a density given by K/P; however, when sto-

chasticity is added to a closed system (i.e. no immigration

or speciation) under these conditions, it is inevitable that

one species eventually dominates the system and excludes

all others. Only immigration or speciation can permit the

coexistence of multiple species, precisely equivalent to the

dynamics of alleles in genetics models with drift (Caswell

1976): without mutation one allele is fixed at each locus.

Similarly, the broken-stick model begins with a stick of

length K , the total density of all species according to the

constraint K ¼ Ri n
�
i . Given a pool of P species, P � 1 ran-

dom values are chosen between 0 andK. The lengths of the

P pieces can be interpreted as equilibrium species densities

because all such choices yield a valid community equilib-

rium satisfying the constraint. Indeed, any method for

choosing the random values that determine the breaks

yields a valid equilibrium; however, the connection

between the LV model and underpinnings for biased-

breaking rules is difficult to interpret.

Finally, single-species stochastic birth–death models

make an implicit assumption regarding the equality of

species by replacing a single-species’ temporal density

distribution with a multispecies instantaneous density

distribution. These models often include a carrying

capacity for the single species (e.g. Leslie 1958; Leslie &

Gower 1958). Neutral models represent an extension by
Proc. R. Soc. Lond.B (2004)
linking many species together into a stochastic birth–death

framework (Caswell 1976; Bell 2000; Hubbell 2001), and

one could consider the space unoccupied by other species

as the incorporation of a dynamic, single-species carrying

capacity (e.g. McKane et al. 2000). In most neutral models

there is an explicit equality of species through the one-for-

one replacement of individuals independent of their species

identity, but this equivalence is not necessary; species-

specific interaction strengths can be incorporated into the

stochastic birth–death model framework (Leslie & Gower

1958). Finally, note that immigration (or speciation) is

necessary for species coexistence in the neutral model, but

is not necessary in the LV formulation, as long as intraspe-

cific interactions exceed interspecific ones.
2. SPECIES DISTRIBUTIONS FORCLOSED

SYSTEMS
The term that presents the most mathematical difficulties

(as well as most of the ecological realism) involves the inter-

actions between species densities, and represents the term

that we will focus upon. Before making any approxima-

tions, we can first rewrite a species’ summed interspecific

interactions as, Rj 6¼i aijnj ¼ wi �nnðtÞ þCovðaix, nxÞ, where wi

¼ Rj 6¼i aij is a species’ overall susceptibility to hetero-

specifics, �nnðtÞ is the average species density at time t, and

Cov(aix, nx) is the covariance between heterospecific den-

sity and the focal species’ interaction strengths (x repre-

sents the summed-over index). In this expression we have

ignored the difference between the average species density

and the average heterospecific density (excluding the focal

species). This difference is of order P�1 and is therefore

presumably negligible for large species pools. The mean

field approximation takes the covariance term to be negli-

gible (Wilson et al. 2003), or in other words, if a com-

munity contains many mutually interacting species, then

the mean field assumption is that any particular interaction

between two species has little influence on the density of

either. Under this approximation, the mean-field LV

community model, equation (1.1), becomes

dni

ni dt
¼ Ki � aiini � wi �nn, ð2:1Þ

which is dependent only on species-specific parameters and

the average species density. Thus, we have replaced the

complicated interactions with an approximate mean-field

interaction between each species and the average species

density. Clearly, approximate results are not exact ones,

but mean-field results often provide a qualitatively useful

insight (e.g. Huang 1987; Wilson 2000). Several more-

refined approximations are available to test the accuracy of

our mean-field results, but which approach is most appro-

priate is unclear: hence, we will compare our mean-field

results to ‘exact’ results from numerical integrations. The

mean field approach is useful because of its tractability,

yielding solutions for community properties that depend

on the means and variances of the model parameters (see

also Jansen &Kokkoris 2003).

According to equation (2.1), the per capita growth rate

of a particular species is a decreasing function of its own

density, with zero growth at the value ½Ki � wi �nn�=aii. We
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call these values the ‘target densities’,

~nni ¼
Ki � wi

�~nn~nn

aii
, ð2:2Þ

where the average target density can be defined,

�~nn~nn ¼
�KK

�aaI þ ðP � 1Þ�aaH
: ð2:3Þ

In the above expressions, �KK , �aaI, and �aaH are the averages for

the carrying capacity and intraspecific and interspecific

interaction parameters, respectively. The average target

density is the value consistent with allowing all species to

take on their zero growth target densities. Our approxi-

mation assumes that all parameters are independently dis-

tributed. Under these definitions, some target densities

take on negative values, clearly meaning they are unattain-

able as equilibrium densities.

There are several ‘equilibria’ discussed here that should

be clarified as much as possible. Wilson et al. (2003) revis-

ited how the LV equations arise from a more general model

of births and deaths by Taylor series expansion about some

set of species densities, which may or may not be an equi-

librium of this general model. Given these LV equations

with linearized per capita rates, there is one or more equili-

bria with densities n�i >0, that may or may not differ from

one or more of the equilibria of the general model. Only if

the Taylor series is performed about one of the general

model’s equilibria will two of these equilibria, one from the

general model and one from the LVmodel, be identical. By

contrast, the target densities simultaneously satisfy the con-

dition that all species’ per capita growth rates, dni=ni dt, are
zero. The set of target densities for the full community does

not represent the LV equilibrium because it contains

negative values. Hence, there are three sets of densities: the

equilibrium of a general nonlinear community model, the

equilibrium densities (n�i >0) of the LV model, and

the target densities from the LV model (which can take on

positive and negative values).
3. TARGETDISTRIBUTIONS
Our primary goal is to derive the most fundamental

measure of community structure: the relative species

abundance distribution. According to equation (2.2), each

species’ target density depends on the species-specific para-

meters that determine its carrying capacity, its intraspecific

interactions, and its susceptibility to heterospecifics. In

turn, the susceptibility is composed of interaction strengths

between each of the heterospecific species. It is not

unreasonable to assume that each of these values are

specific instances of values chosen from a probability distri-

bution unique to each set of parameters. With no a priori

expectation of the distribution from which these values are

chosen, we assume standard deviations rK, raI , andraH,
respectively, for the carrying capacity and intraspecific and

interspecific interaction parameters. Using simple error

propagation under the assumption of independent, nor-

mally distributed uncertainties, we obtain the distribution

of target densities

qð~nnÞ ¼ 1ffiffiffiffiffiffi
2p

p
r~nn

exp � ~nn� �~nn~nnð Þ2

2r2~nn

" #
, ð3:1Þ
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where

�~nn~nn ¼
�KK

�aaI þ ðP � 1Þ�aaH
, ð3:2aÞ

r2~nn ¼ @�~nn~nn

@K

� �2
r2K þ @�~nn~nn

@aI

� �2
r2aI þ

@�~nn~nn

@w

� �2
r2w

¼ 1

�aa2I
r2K þ �~nn~nn

2r2aI þ ðP � 1Þ�~nn~nn2r2aH
� �

: ð3:2bÞ

It was shown previously that the distribution of target den-

sities for closed systems well represents the distribution of

equilibrium densities that result from the numerical inte-

grations of LV communities (Wilson et al. 2003). This

more general expression—including variation in intra-

specific interactions—establishes the relationship between

the distributions of a andK and the abundance distribution

of all species.

Figure 1a compares results from the analytic target dis-

tributions with results from numerical integrations for the

base parameters used by Wilson et al. (2003) with and

without variation in intraspecific interaction strengths.

Minimal differences are observed, implying that the effect

of intraspecific interaction strengths can be taken into

account by appropriately rescaling the expected value for

the carrying capacity and interspecific interaction

strengths. Thus, for the remainder of this paper we will not

consider variation in intraspecific interactions.

Accuracy of the target densities as predictors of the equi-

librium distribution is displayed in figure 1b,c. Figure 1b

compares target densities against equilibrium densities for

a single, randomly selected set of carrying capacities and

interaction strengths. Target densities are spread over a

large range of positive and negative values, and these values

are compared against species densities at T ¼ 2000,

determined from a numerical integration beginning with

random initial densities. The dashed line compares the

average target density with the average equilibrium species

density (including the extinct species). We observe that all

species with negative target densities become extinct in the

numerical integration, but many species with positive den-

sities are also eliminated. It was previously demonstrated

that the average target density is preserved during the tem-

poral evolution of the LV community (Wilson et al. 2003),

and having these species with positive target densities

eliminated helps preserve that average value. The concur-

rent elimination of these positive target density species is

demonstrated in figure 1c, where we illustrate a pruning

process that successively removes species with negative tar-

get densities. Pruning takes place as follows. For the run

shown in figure 1b, all species with negative target densities

are removed from the system, and we then recalculate the

average carrying capacity, susceptibilities, and average tar-

get density of the remaining species. This recalculation

yields the target densities showing for the second iteration,

after which we repeat the pruning process. By the fourth

iteration in this case, all species have positive target den-

sities, which are then compared with the final densities

from the numerical integration. Except for one species in

this set, this iterative process accurately removes all of the

species with positive target densities that are doomed to

extinction in the numerical integration of this randomly

selected community. Repeating this pruning process for
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1000 random communities yields the species abundance

distribution shown in figure 1a, which, when compared

with the numerical integration results, underpredicts the

frequency of low species abundances. One feature that is

recovered, however, is an increase in the width of the
Proc. R. Soc. Lond.B (2004)
resultant distribution from that of the initial target distri-

bution, as observed in the numerical integration results.

The discrepancy is probably due to both long-term tran-

sients in the numerical iterations and inaccuracies in the

approximations leading to the target distribution, however,

the details will only be determined from a more exact

analysis.
4. EFFECTSOFSPECIES IMMIGRATION
Any immigration from a regional pool ensures that a spe-

cies will have a presence in the local pool, independent

of whether the species has a positive or negative target

density. To calculate the distribution of the target densities

for an open system, we again concentrate on a focal species

iwhich alone has immigration I,

dni

dt
¼ I þ niðKi � aiini � �nnwiÞ, ð4:1Þ

and calculate its altered target density, ~nn0i, from the zero

growth condition,

0 ¼ I � aii ~nn
0
ið~nn0i � ~nniÞ, ð4:2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqr !
~nn0i ¼
1

2
~nni þ ~nn2i þ 4I=aii : ð4:2bÞ

This calculation assumes that the average target density is

unchanged by this focal species immigration. When the

immigration rate is extremely small, the altered target den-

sity is approximately equal to I=aii|ñi| for species with

negative target densities, demonstrating that any amount of

immigration produces a positive target density, as expected

for an open system.

Figure 2a shows the construction for determining

altered target densities by setting the altered target density

~nn0i ¼ ~nni þ a, where a is to be determined. The construction

arises from substituting into equation (4.2a), giving

I 0=a ¼ ~nni þ a, ð4:3Þ
where I 0 ¼ I=aii is a relativized immigration rate. Immi-

gration thus maps species with target densities between ñ
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Figure 1. Comparisons of analytic and numerical abundance
distributions. (a) Analytic distributions are determined by the
target densities normalized by the species number with
positive target densities. Numerical distributions arise from
Runge–Kutta numerical integration of randomLV
communities. In both cases we compare situations with and
without variation in intraspecific strengths, and find that
results are insensitive to this variation. Squares, intraspecific
fixed; circles, intraspecific variation; dashed line, targets with
variation; solid line, target distribution; dotted line, iterated
target distribution. (b) A comparison between the predicted
target densities and of the final equilibrium abundances for a
single run indicates that all negative target density species go
extinct, but many species with positive target densities also
perish. (c) Successive pruning of species with negative target
densities and recalculation of the remaining target densities
quite accurately predicts most species that go extinct in the
numerical integration, but does not quite capture the
remaining distribution, as observed from the pruned
distribution in (a) calculated over 1000 randomly chosen LV
communities.
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and ~nnþ d~nn to altered target densities between ~nn0 and

~nn0 þ d~nn0. From this mapping to equation (3.1), we can cal-

culate the distribution of target densities with immigration

from the expression,

qð~nnÞd~nn ¼ qð~nn0Þd~nn0 ) qð~nn0Þ ¼ qð~nnÞ d~nn
d~nn0

, ð4:4Þ

where the change of variable can be determined from

equation (4.2a),

ð2~nn0i � ~nniÞd~nn0i ¼ ~nn0i d~nn
0
i )

d~nni
d~nn0i

¼ 2~nn0i � ~nni
~nn0i

: ð4:5Þ

Below, we will assume that this construction holds for all

species having simultaneous immigration. This connection

is demonstrated in figure 2b, where we compare the pre-

immigration target densities against the target densities

with immigration and the equilibrium densities resulting
Proc. R. Soc. Lond.B (2004)
from the numerical integration. Extinct species are clearly

‘rescued’ by immigration.

Figure 2a also characterizes the influence of a veil line, v,

above which species abundances, ~nn0i > v are observed. In

the absence of immigration, the minimum observed target

density is just the veil line. Immigration reveals species with

target densities between (v2 � I)=v and v because their

densities are pushed above the observable limit. Thus, one

expression for the size of the community is the integral

from (v2�I )=v up through all positive target densities,

S

P
¼
Z 1

v�1=v

qð~nnÞ d~nn ¼
Z 1

v

qð~nn0Þd~nn0: ð4:6Þ

When all species can immigrate into the local community

from the regional pool and the veil line is set to zero density,

then all species in the regional pool are also members of the

observed local community.
5. OPENSYSTEMABUNDANCEDISTRIBUTIONS
We now consider how immigration alters the expected

distributions of species abundances. Figure 3 shows the

results for the species abundances distributions for a variety

of immigration rates. All distributions are unnormalized,

which is equivalent to being normalized to the fraction S/P.

Figure 3a shows the results for numerical integrations of

randomly assembled LV communities. Figure 3b shows the

results for the calculations of the target density distribu-

tions using the standard deviations implemented in the

numerical integrations. Agreement is good for low immi-

gration rates, but for the highest rate of immigration the

target density distribution’s peak height is much too low

compared with the results observed in the numerical simu-

lations. In figure 3c we plot the results of the target density

distributions using standard deviations that are twice that

used in the numerical integrations, an increase motivated

by the observation of a wider distribution resulting from the

pruning of target densities (figure 1c). Agreement between

the target density results and the numerical integrations is

improved with the wider distributions.

Figure 4a plots the numerical integration results accord-

ing to logarithmic bins. Here we clearly observe left-skewed

species abundance distributions which appear much like

the empirical distributions presented by Hubbell (2001)

and by Nee et al. (1991). Increasing the immigration rate

brings many of the extinct species into the positive density

realm, yielding a significant peak at low densities. Again,

figure 4b shows the results for the target densities with the

given standard deviation, and figure 4c shows the results for

the target densities using standard deviations that are twice

that used in the numerical integrations. With this larger

variability we can see more significantly the bimodality that

occurs with increasing immigration rate and is clearly

present in the numerical simulations. Bell (2000) also

observed bimodality when making a distinction between

persistent and occasional species.
6. DISCUSSIONANDCONCLUSIONS
We have demonstrated several new and interesting aspects

of predicting species abundance distributions using the

target density distributions that arise from the mean-field

approximation to the LV community model (Wilson et al.

2003). First, the inclusion of species-specific intraspecific
–0.4
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Figure 2. (a) A caricature of the construction for determining
the effects of immigration on target densities as calculated
from equation (4.3).With immigration, all species have a
positive target density, although with the inclusion of a veil
line, some species densities are unobserved. (b) For the same
run shown in figure 1b, we compare the pre-immigration
target densities with the target densities, given immigration
and the final equilibrium densities resulting from the
numerical integration.
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interactions strengths appears to have no important con-

sequences on the resultant abundance distributions from

either the perspective of target densities or numerical inte-

grations. This conclusion, however, must be limited to the

case in which intraspecific interaction strengths exceed

interspecific interaction strengths. If a species’ intraspecific

interaction strength is chosen such that its interspecific

interactions are greater, then that species’ population den-

sity may grow to dominate the community (results not

shown). Second, previous results indicated that the target

distribution provides a good approximation of the equilib-

rium community when properly normalized. This approxi-

mation relied upon the removal of species having negative

target densities, but keeping all others in the community.

Here we have shown that an iterative process that succes-

sively removes species with negative target densities par-

tially accounts for differences between the initial target

density and numerical integration results. This pruning

process also accounts for the preservation of the average

target density as a measure of the overall equilibrium den-

sity in the equilibrium community. It also predicts a

widened distribution of species abundances, observed in

the numerical results; however, an in-depth mathematical

analysis will be necessary to understand this prediction

fully. These aspects represent competing influences on the

temporal evolution of the community. On the one hand,

Wilson et al. (2003) demonstrated that the community

tends to develop while preserving the target distribution,

but on the other hand, as species with negative target den-

sities are removed from the system, the target distribution

changes because of the selective removal of species with

specific properties for their parameters.

In summary, we examined communities subject to immi-

gration from a global species pool and demonstrated that

target density distributions of mean-field LV communities

capture the general form of equilibrium density distribu-

tions. Immigration strongly affects these important com-

munity patterns. On a linear abundance scale, weak

immigration crowds the species with negative target den-

sities (under zero immigration) very close to zero density,

resulting in a peak in the species distribution. On a logarith-

mic scale the distributions show a strong left-skew, even for

cases without immigration. We have thus shown that the

LV theory of biodiversity serves as a theoretically parsi-

monious and operational template for most, if not all, com-

munity properties. Instead of being regarded as a historical

pedagogue inferior to biocomplex models, it should be

expanded and extended, with its full potential carefully
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Figure 3. (a) Results from numerical integrations with varying
degrees of immigration. Species having negative target
densities bunch up at the very low equilibrium densities. Open
circles, I ¼ 0; filled squares, I ¼ 0:0001; filled circles,
I ¼ 0:001; plus symbols, I ¼ 0:005. (b) Target densities
calculated from equation (4.4), that includes the influence of
immigration, with themean and standard deviations
calculated from the zero-immigration case. Solid line, I ¼ 0;
dotted line, I ¼ 0:0001; long dashes, I ¼ 0:001; short dashes,
I ¼ 0:005. (c) An increased standard deviation provides better
agreement with the numerical results, indicating that
correlations developed between species densities is an
important influence. Solid line, I ¼ 0; dotted line, I ¼ 0:0001;
long dashes, I ¼ 0:001; short dashes, I ¼ 0:005.
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studied, and considered as a viable alternative to more

sophisticated models of community structure and

assembly. Future work will concentrate on extending the

LV community model to multiple trophic levels.

Initial support for this project was through sabbatical fellow-
ships by the National Center for Ecological Analysis and
Synthesis, a Center funded by NSF (DEB-00729008), the
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