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                                                          Electronic Appendix A

Generating synthetic time series from the Age-Structured 
Markov Model (ASMM) 

 
Following the previous work of Coulson et al. (2001), an age-structured Markov model 
(ASMM) was used to generate time series under different climatic regimes. The summer 
population size at time i was predicted from the previous summer population combining the 
processes of survival and fertility for each sex/age-class combination. Survival and fertility 
probabilities were estimated from recaptures and recoveries of marked individuals from 1986 
to 2000. Collection of extra data since the construction of the ASMM published by Coulson et 
al. (2001) led to refine this ASMM. The difference with the model of Coulson et al. 2001) is 
in the way fecundity has been modelled (see below). We also considered a full age structure 
(20 and 10 classes for females and males (Coulson et al. 2001), respectively (see Table 3, 4).  
The North Atlantic Oscillation Index (NAO) was used as the only density-independent 
predictor of survival and fertility considered, which contrasts with Coulson et al. (2001) who 
considered more climatic variables and included February and March rainfall as predictors of 
female yearling and adult survival in the most parsimonious model. Measures of March and 
February rainfall were available from 1956 onwards only and we were not able to use them 
for our purposes. We first simulated 50 time series of 50 years using real consecutive NAO 
values. Each series started from a randomly selected year between 1864 and 1951. Then, in a 
larger-scale simulation study reported in Table 2, we simulated 1,000 time series of 50 years 
with the (centered) NAO drawn from a normal distribution with zero mean and standard 
deviation equal to c times 0.2, the observed standard deviation, where c equals a number of 
chosen values; see Table 2.  Previous summer population size was also used as an external 
covariate to account for density-dependent effect as in Catchpole et al. (2000) and Coulson et 
al. (2001). Covariates were centred as follows: 
 

Population density = (actual population density – 1202.86)/100 
NAO= (actual NAO – 1.73)/10 
 

The population size in the summer i, was the sum of adults of age j present at i-1 and 
estimated to be alive at i, and the total number of lambs produced and alive in summer i. We 
introduced demographic stochasticity by considering the number of lambs produced at i and 
the individuals alive at year i a random number chosen from a binomial distribution with 
parameters (Nj,i-1, θ j,i-1) where N j,i-1,is the number of individuals, or of mothers in the case of 
fertility probabilities, of age j present at i-1 and θ is the parameter of survival or fertility 
during the interval i-1, i. 
 
SURVIVAL PROBABILITY  
Survival probability was estimated by maximum likelihood procedure from the simultaneous 
analysis of recaptures and recoveries of marked animals. This analysis uses data up to 2001; 
full details of the procedure are given in Catchpole et al. (2000). We first grouped those age 
classes that shared similar parameters (Catchpole et al. 2000). For each age group, the 
survival, φ, was modelled as a function of the North Atlantic Oscillation index  (NAO), the 



 

previous summer population size (population size) and their statistical interaction 
(NAO.population size) as:  
 

logit(φ)=β0+β1 (population size)+β2 (NAO)+β3(NAO.population size) 
 

where βx is the linear predictor of the effect considered. Only significant effects were retained 
(Table 3).  
 

Tab.3 Linear predictors of survival probability according to age classes 
 

Age-class Age Intercept NAO POP NAO.POP 
      

Females      

1 1 0.5403 -1.6086 -0.3078 -0.6602 
2 2 2.2797 -2.4922 -0.1924 -0.5816 
3 3-7 2.7725 -1.9750 -0.1702 -0.5041 
4 >7 1.6199 -1.2312 -0.2409 -1.3160 
      

Males      

1 1 -0.2068 -3.5837 -0.3053 -0.4202 
2 2-7 3.4038 -14.7928 -0.5066 1.6893 
3 >7 -0.4812 - - - 
      

  

FERTILITY  
Births generally occurred in April when each female could give birth to up to two lambs. 
Female Soay sheep can give birth at their first birthday but they never produce twins. Fertility, 
i.e. the number of lambs that survive until the summer per female, was modelled as the 
product of three distinct probabilities: a) the probability of giving birth, b) the probability of 
producing a single lamb and c) the neonatal survival (the probability that the lamb surviving 
the first three months of life). Similarly to that described above, for each age group, each 
probability was modelled as a function of three covariates as: 

 
logit(θ)=β0+β1 (population size)+β2 (NAO)+β3(NAO.population size) 

 
where θ is the parameter of interest and βs are the linear predictors. Only significant effects 
were retained (Table 4). The probability of producing a single lamb was considered constant 
through time but varied as function of the age of the mother (Table 5).  



 

 
Tab.4 Linear predictors of giving birth and neonatal survival probability from the retained models 

 
Age-class Age Intercept NAO POP POP.NAO 

      
Giving birth probability      

1 1 -0.915 -2.069 -0.376 - 
2 2 0.815 -2.085 -0.1017 - 
3 3_7 1.3869 - -0.0797 - 
4 8_10 1.106 -2.052 -1.09 -0.812 
5 >10 -1.099 - - - 
      

Neonatal survival      

1 1 -0.654 -2.313 -0.3436 - 
2 2 1.293 -3.55 -0.2318 - 
3 3_10 2.084 -1.433 -0.0614 -0.562 
4 >10 0.887 - - - 
      

 
Tab.5 Probability of producing single lambs 

 
Age of the 

mother 
Probability of 

producing a single 
lamb 

  
1 1 
2 1 
3 0.94 
4 0.89 
5 0.83 
6 0.77 
7 0.74 
8 0.73 
9 0.75 

10 0.80 
11 0.86 
12 1 

  
 
 

Using R2 and AIC for model comparison 
 
The adjusted R2 and the AIC are two popular model selection criteria, but they involve 
different sets of assumptions and measure different aspects of a model under consideration. 
The adjusted R2 is defined as 1-(n-1)RSS/[(n-p)SSE] where n is the sample size, p is the 
number of independently adjusted parameters; RSS is the residual sum of squared errors and 
SSE is the sum of squared deviations of the data from the mean. Under very general 
assumptions including homogeneous noise variance, the adjusted R2 is a consistent estimator 
of the percent of variance due to the (true) 1-step predictor of the model whereas the AIC is 
an asymptotically unbiased estimator of the entropy (a dissimilarity measure) of the true 
distribution of the data relative to that according to the model. In general, the derivation of the 
AIC requires a number of strong assumptions such as asymptotic normality of the maximum 
likelihood estimator (Tong 1990). While the AIC properly accounts for heteroscedastic noise 
variance, it must be interpreted cautiously when the number of data in any regime is small in 



 

which case the normality assumption of the estimator may not obtain. In contrast, the adjusted 
R2 is a global measure of the prediction accuracy of the model that ordinarily requires less 
restrictive assumptions, see Eubank (1999) for a related discussion of linear predictors. 
Nevertheless, the AIC enjoys an interesting “consistency” property. Suppose that the true 
model has an infinite number of parameters [e.g., if the true B function is a (natural cubic) 
spline function with infinite d.f. (knots)], and suppose that we select the best model out of all 
models with B as a spline function that has d.f. ranging from 1 to nα , where n is the sample 
size and α<1 describes the rate of complexity of model that is entertained with increasing 
amount of data. Then, by analogy of a “simpler” situation (c.f. section 2.3 of Eubank 1999), it 
is expected that the d.f. selected by the AIC converges to the optimal d.f. minimizing the 
expected square prediction errors; furthermore, the convergence rate is of the order n(α−1)/2. 
This “consistency” property of AIC is particularly relevant as the form of the B function is 
generally unknown. On the other hand, in the idealistic case that the true B function is a spline 
with finite number of d.f., the AIC is known to overfit the model with a finite probability; 
when the class of models include the true model and the number of redundant parameters is 
large, the probability of overfitting approaches 0.29 for large sample size. Thus, if the true B 
function is of d.f. = 1 (i.e., the NAO does not affect the process), the AIC will have 
probability close to 0.29 of selecting d.f. greater than 1 if a large range of d.f. is entertained in 
the model selection and if sample size is large. The use of AIC in detecting the NAO effect 
may therefore be criticized owing to this high false positive rate. However, this criticism is 
only valid if we are testing the NAO effect against a scientific gold standard in the form of the 
model with d.f. = 1. In the case that such a gold standard is absent and when the true model is 
unlikely to be within the class of models under study, the consistency property of the AIC 
seems appealing enough to warrant its use in exploring possible effect of the NAO on an 
underlying system; furthermore, the AIC (Burnham et al. 1995) tends to select models with 
small biases and variance in the parameter estimates, as well as good balance between errors 
of under- and over-fitting.  As with all time-series analysis, our statistical approach is only 
able to establish an association between the NAO and the process suggestively through the B 
function, but experiments and other means are necessary to more rigorously establish the 
mechanistic link. 

The AIC (Table 1) indicates that B(NAOt) may be a linear function of the NAO; the 
corresponding constrained TAR model has AIC = -125.5. On the other hand, the criterion of 
the adjusted R2 suggests that B may be a non-linear function approximated by a natural spline 
function with 4 d.f.; indeed, the adjusted R2 equals 13.2% and 12.0% when the d.f. of the 
spline function fit for B is increased to 5 and 6 (unreported), respectively. (The corresponding 
AIC are -122.5 and -120.9.) However, the shape of the fitted B-function (unreported) is 
almost identical when the d.f. is between 4 and 6. The divergence of the conclusions from the 
two criteria partly owes to the fact that the adjusted R2 measures the global prediction 
accuracy whereas the AIC takes into account that the noise variances differ in the two regimes 
(i.e., whether or not the population size in the preceding year exceeds the threshold k). The 
constrained FCTAR model with b being a constant has AIC = -124.7, R2 = 10.3% and 
adjusted R2 = 6.0%, whereas the unconstrained SETAR model of Grenfell et al. (1998) has 
AIC = -125.0, R2 = 17.5% and adjusted R2 = 11.5%, with both models fitted over the period of 
1955-2000. It may properly be argued (p. 248 in Tong 1990 and see below) that we should 
count the threshold parameter of a discontinuous SETAR model as 2 parameters rather than 
simply counting it as one parameter as it is done in the above computation of AIC and R2. Our 
argument is based on a likelihood analysis of a related testing problem where the general 
model is xt = a0 + a1I(xt-1≤ k) + εt where the noise term ε is normally distributed; I(•) equals 1 if 
the enclosed expression is true and 0 otherwise. The null hypothesis specifies that a1 = 0. If k 
is unknown, the tail of the distribution of the likelihood ratio test is approximated by that of χ2 



 

with 3 d.f. under the null hypothesis of constant regression function, for large sample size, 
whereas if k is known, the likelihood ratio test is approximately χ2 with 1d.f. This suggests 
that the threshold parameter k is worth 2 parameters. 
  With the threshold parameter counted as two parameters, the SETAR model of 
Grenfell et al. (1998) has AIC = -123.0 and adjusted R2 = 9.2%. If we use the adjusted R2 as 
the model selection criterion, our constrained FCTAR model with b = B(NAO) modelled by 
natural splines with 4 or 5 d.f. outperforms the unconstrained SETAR model of Grenfell et al. 
1998. Although in terms of either model selection criterion, the unconstrained SETAR model 
of Grenfell et al. (1998) is highly competitive, constraining the TAR model as suggested 
above (a1 = 1) and incorporating b = B(NAO), our constrained FCTAR model is indeed the 
better one; obviously the critical point here is the inclusion of b = B(NAO) – the core of this 
paper. Finally, notice that the mechanistic model developed by Coulson et al. (2001) has over 
90% R2; however, due to the high parameter-per-data ratio, the high R2 may be somewhat 
biased; unfortunately an unbiased estimate of the predictive performance of this mechanistic 
model will only be available after more – and future – data are collected. 
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