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We examine the dynamics of antigenically diverse infectious agents using a mathematical model describing

the transmission dynamics of arbitrary numbers of pathogen strains, interacting via cross-immunity, and in

the presence of mutations generating new strains and stochastic extinctions of existing ones. Equilibrium

dynamics fall into three classes depending on cross-immunity, transmissibility and host population size: sys-

tems where global extinction is likely, stable single-strain persistence, and multiple-strain persistence with

stable diversity. Where multi-strain dynamics are stable, a diversity threshold region separates a low-preva-

lence, low-diversity region of parameter space from a high-diversity, high-prevalence region. The location of

the threshold region is determined by the reproduction number of the pathogen and the intensity of cross-

immunity, with the sharpness of the transition being determined by the manner in which immunity accrues

with repeated infections. Host population size and cross-immunity are found to be the most decisive factors

in determining pathogen diversity. While the model framework developed is simplified, we show that it can

capture essential aspects of the complex evolutionary dynamics of pathogens such as influenza.
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1. INTRODUCTION
One of the key current research priorities for infectious dis-

ease epidemiology is understanding the dynamics of anti-

genically variable pathogens such as influenza, malaria,

dengue, and meningitis (Cooper 2001; Grenfell & Gog

2001; Gupta & Maiden 2001; Grenfell et al. 2004). These

diseases continue to cause millions of deaths each year and

thus represent major public health challenges. Annual

influenza epidemics cause upwards of 20 000 deaths in the

USA alone (Simonsen et al. 1998), while malaria remains

the single biggest killer of children under 5 years old

(WHO/UNICEF 2003). Quantitative understanding of the

epidemiology of such diseases—and thus of the likely

impact of potential control measures—requires their multi-

strain population structure to be taken into account (Gupta

et al. 1994).

The critical feature of most multi-strain pathogens is that

infection by one strain induces partial immunity to future

infections by other strains. Ecologically, such cross-

immunity acts as a competitive interaction between strains,

which when coupled with the nonlinearity of underlying

transmission dynamics leads to intense frequency-depen-

dent selection within pathogen populations (Gupta et al.

1998).

However, until now, most theoretical studies of multi-

strain systems have assumed a certain possible maximal

number of strains, and examined how cross-immunity

affects transmission dynamics or reduces diversity relative to

the assumed maximal possible level, rather than examining

the dynamics of systems with potentially arbitrary numbers

of strains.
By contrast, here we analyse how cross-immunity,

mutation and demographic stochasticity (caused by the

finite size of host populations) constrain the observed

diversity of pathogens with conceivably unlimited maximal

diversity. Directly modelling the stochastic dynamics of

host–pathogen systems with arbitrary pathogen diversity

remains computationally impractical except in special

cases. We therefore develop a new approach to examining

the stochastic persistence of multi-strain systems based on

gaining an analytical understanding of the equilibria of the

symmetric deterministic multi-strain system, and a novel

application of previous analyses of stochastic epidemic

models (Nasell 1999).

A range of past work (Gupta et al. 1996, 1998; Andrea-

sen et al. 1997; Lin et al. 1999; Gomes & Medley 2002;

Ferguson et al. 2003) has examined the dynamics of multi-

strain systems with cross-immunity using deterministic

models. However, most of these analyses have focused on

systems with relatively few strains because of the math-

ematical intractability of models of systems with many

strains. This intractability arises from the need to track all

possible infection histories to calculate the expected cross-

immunity experienced by an individual exposed to a new

strain, giving exponential growth in the number of state

variables as a function of the number of strains modelled.

The mechanisms and action of cross-immunity are still

not well understood for many host–pathogen systems, and

may vary between pathogens. This uncertainty has led to a

variety of modelling approaches being adopted (Ackerman

et al. 1990). In some cases, cross-immunity has been

assumed to reduce the infectiousness of future infections

(Gog & Grenfell 2002; Gupta et al. 1996, 1998), while in

others it reduces the susceptibility to future infections

(Castillo-Chavez et al. 1989; Andreasen et al. 1996;
#2004The Royal Society
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Lin et al. 1999). The subtle difference between the two is

that for the former, individuals exposed to a strain always

gain homologous immunity to it, while for the latter, no

additional immunity is induced if exposure fails to result in

infection. However, it appears that system dynamics

are insensitive to which of the two formulations is used

(Dawes & Gog 2002; Ferguson & Andreasen 2002; Gomes

&Medley 2002).

Model simplification is possible (Gog & Grenfell 2002;

Gog & Swinton 2002) if one assumes that cross-immunity

acts on infectiousness, and in addition that cross-immunity

is polarized, such that a proportion of the exposed popu-

lation gain total immunity against heterologous infection,

with the rest gaining none, rather than all the exposed

population getting partial immunity. However, the extent

of homology in system dynamics between models using the

more realistic (though less tractable) assumption of partial

cross-immunity and those using polarized immunity

remain unclear; hence here we use the former and later

comment on the comparison with the polarized immunity

formulations.
2. CHARACTERIZING THESYMMETRIC
EQUILIBRIUMOFMULTI-STRAIN SYSTEMS
We use the n-strain susceptible–infected–recovered (SIR)

model formulation derived by Andreasen et al. (1997). The

model structure is complex, as we must allow for compart-

ments that are recovered and immune from previous infec-

tions but simultaneously still susceptible to infections by

other strains, where the level of susceptibility is determined

by the cross-immunity profile. The model assumes that

cross-immunity depends on the set of strains seen in prior

infections but not on the order of such infections. Further-

more, we exclude the possibility of co-infection or super-

infection (May & Nowak 1994, 1995; Nowak & May

1994).

Let the setH ¼ f1,2,3,:::,ng label the n-strains present in
the system. The 2n subsets ofH span all possible unordered

histories of strain exposure. We define SJ as the proportion

of the population that are currently uninfected and have

prior infection history J � H, and IiJ as the proportion cur-

rently infected by strain i 2 H and with infection history J,

where i 62 J. This formulation requires 2n þ n2n�1 state

variables to describe a system with n strains. System

dynamics are defined by the following differential equa-

tions:

_SS1 ¼ lN � lS1 �
X
i2H

KiS1,

_SSJ ¼ m
X
j2J

I
j
Jn j � lSJ �

X
i 62J

riJK
iSJ ,

_II iJ ¼ riJK
iSJ � aIiJ , (2:1)

where N is the equilibrium population size, l is the per

capita death and birth rate, a is the rate of loss of infectious-
ness (sum of death and recovery rates), riJ is the reduction

in susceptibility to strain i induced by infection history J,

and bi is the infectiousness of strain i. The force of infection

for strain i is given by Ki ¼ bi
P

M�H=iI
i
M, whereHni stands

for all elements in H with the exception of strain i. Note

that r ¼ 0 corresponds to total cross-immunity while r ¼ 1

corresponds to no cross-immunity.
Proc. R. Soc. Lond.B (2004)
Solution of the general form of this model at an arbitrary

number of strains appears intractable. We therefore

simplify the problem to examine only the symmetric multi-

strain system where all strains share the same epidemiologi-

cal properties. At the equilibrium of such a symmetric

system, IkL ¼ I iJ � Im and SL ¼ SJ � Sm for any strains k

and i and L or J � H provided the number of elements (m)

in L and J are the same. For such a system, bi ¼ b, and riJ
¼ rm where the subscript m is the number of previous infec-

tions experienced. Moreover, Ki ¼ K ¼ byT=n, where yT is

the total proportion of infected population (prevalence) in

the system.

Using standard algebraic techniques, we can express

the equilibrium equations as a recursion relation bmIm �
amIm�1 ¼ 0 subject to the constraint

yT ¼
Xn�1

m¼0

n!

(n�m� 1)!m!
Im,

where am and bm are simple functions of yT. The system can

be formally solved using standard difference equations

techniques to obtain a master equation

yT ¼ e
Xn�1

m¼0

1� eð Þm
Ym
i¼0

1� 1= 1þ R0riyT 1� i=nð Þ=e½ �ð Þ,

(2:2)

where e ¼ l=a and the basic reproduction number for any

strain (Anderson & May 1991) R0 ¼ b=a. This is a poly-

nomial of degree n, but one can prove that there is a single

positive definite, and thus biologically meaningful, sol-

ution.

One can exactly solve the equilibrium for some special

cases. When cross-immunity is total (i.e. ri ¼ 0Þ then

yT ¼ e 1� 1=R0ð Þ: the result obtained for the one-strain

system, but with these infections being evenly distributed

across all n strains. As n ! 1 and for rm ¼ r for all m

(constant cross-immunity profile), it can be shown that

yT(n ! 1)

¼
r R0 � eð Þ � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r R0 � eð Þ � 1ð Þ2þ4er R0 � 1ð Þ

q
2rR0

,

(2:3)

which in the limit of no cross-immunity (ri ¼ 1) has the

simple form yT ¼ 1� 1=R0.

There are also an important set of approximate solutions

that may be derived. The most useful of these is based on

the idea that the dynamics of a single strain in the presence

of n� 1 other strains can be mapped onto those of a single

strain on its own through a parameter transformation. In

deriving this mapping we want to reproduce the two key

epidemiological quantities of the exact system: total infec-

tion prevalence and incidence. We model the effect of

cross-immunity generated by other strains on the trans-

mission of one strain as an increased rate at which indivi-

duals leave the susceptible class of that strain; i.e. an

increased death rate, leff ¼ /l, where / > 1. However, by

changing the death rate, we also change the net rate at

which individuals enter the susceptible population, lN. As

this is unaffected by cross-immunity, we therefore also

need to transform the equilibrium population size

N ! Neff ¼ N=/. Thus the one-strain system with

dynamics equivalent to the multi-strain system has a
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smaller total population size. The rate of loss of infectious-

ness, a, is unchanged by the effect of cross-immunity.

However, for infection incidence to be identical in both the

full and single-strain systems, we require beff I=Neff ¼
bI=N (given that the number of infected individuals, I, in

both systems is identical), implying beff ¼ b=/, or equiva-
lently, R0eff ¼ R0=/. We are then left with determining the

value of /, which ensures that I is identical for both sys-

tems. This requires the following equation to be solved for

/:

yT ¼ ne 1� 1

R0=/

� �
: (2:4)

With knowledge of the exact solution to equation (2.2), this

expression is useful on its own when examining the sto-

chastic dynamics of the multi-strain system (see below).

However, in the case of constant cross-immunity we can

directly write down an approximate expression forR0eff :

1=/ ¼ S0 þ r 1� S0 � (n� 1)yT=nð Þ, (2:5)

where S0 is the proportion of individuals susceptible to all

strains in the n� 1 strain system, approximately given by

S0 ¼ 1= 1þ R0(n� 1)yT=ne½ �: (2:6)

Combining equations (2.4)–(2.6) gives a cubic, but owing

to the complexity of the relevant root we omit the closed

form here for simplicity, though it can be shown that this

approximation is excellent when cross-immunity is intense

(r51=R0).

Conversely, for large r (more precisely, for r�1=R0) it is

possible to demonstrate that a good approximation is

yT(n;r) ¼ 1� (1� e)nð Þ 1� 1

rR0

� �
, (2:7)

which reduces to approximately ne 1� 1=rR0ð Þ for small e

and n (i.e./ � 1=r).
In general, however, the equilibrium equation is analyti-

cally intractable, but is numerically soluble by successive

approximations using Banach’s fixed point theorem, with

the solution being the fixed point of the sequence generated

by the right-hand side of the master equation. The numeri-

cal solution converges swiftly to the exact solution with the

computational time increasing linearly as a function n.

Figure 1 displays the total fraction of infected population

yT as a function of the number of strains and the cross-

immunity profile rm for a constant cross-immunity profile

rm ¼ r and for a geometric profile rm ¼ rm. For the geo-

metric profile, r has a simple interpretation as the factor by

which individual susceptibility decreases after each

additional infection.

For the constant cross-immunity profile (figure 1a), yT
matches the large-r analytical approximation given above

to a high degree of accuracy when r� 1=R0, saturation

being reached by n�104 with yT ¼ 1� 1=rR0. For r clo-

ser to 1=R0, the approximation is less adequate and very

different behaviour is seen for r < 1=R0, with no region of

linear increase with n and a much lower saturation level of

yT (discussed further below). In this regime the small-r
approximation given above is accurate.

For the geometric cross-immunity profile (figure 1b), the

initially linear increase in yT leading to saturation is also

observed for r� 1=R0, but yT saturates at a much reduced

level. This reflects the fact that this cross-immunity much
Proc. R. Soc. Lond.B (2004)
more effectively prevents hosts from getting infected by

more than few strains over their lifetime.

We find that the behaviour versus R0 is qualitatively

similar to the behaviour versus r, indicating a degree of

dynamical equivalence between these two parameters.

More insight into this aspect of the dynamics can be seen in

the sharp transition occurring at R0r � 11 evident in figure

1a. The transition precisely occurs at R0 � eð Þr ¼ 1, but

since R0 � e in typical multistrain systems, R0r � 1 is a

highly accurate approximation. In the case of almost total

cross-immunity (r�0), very intense inter-strain compe-

tition leads to small yT irrespective of the number of strains,

and all strains share approximately the same force of infec-

tion as in the one-strain system. With increasing r, the

behaviour of the constant cross-immunity profile system

(figure 1a) diverges from that of the geometric profile (fig-

ure 1b). In the former case, a bifurcation occurs at

r � 1=R0, above which yT grows rapidly, only eventually

saturating because, of susceptible depletion. This transition

arises because, for r < 1=R0, the effective reproduction

number for any strain spreading in the proportion of the

population with prior infection, R0r, is below 1,

preventing self-sustaining transmission occurring in that

sub-population. The same abrupt transition is not observed

for a geometric cross-immunity profile, where yT grows

slowly with increasing r until r ¼ 1. In the case of constant

cross-immunity, once R0r � 1 is crossed every partly sus-

ceptible sub-population (Sm) in the system can support

self-sustaining transmission. In the case of geometric

immunity, crossing the R0r � 1 threshold only allows the

S1 populations to support self-sustaining infection with S2

and higher populations still having an effective repro-

duction number R0rm below 1. Hence for constant cross-

immunity, the abrupt transition seen reflects a major sys-

tem restructuring where all state variables become appreci-

able at the same time, while for geometric cross-immunity

the Sm state variables become appreciable only as the effec-

tive reproduction number R0rm exceeds 1 for the respective

sub-population Sm.
3. AVERAGENUMBEROF STRAINS IN THE
PRESENCEOFMUTATIONSANDEXTINCTIONS
Section 2 considers the equilibrium properties of multi-

strain pathogen systems with a fixed number of strains. In

reality, the number of strains in any multi-strain system is

susceptible to fluctuations arising from the generation of

new strains through mutation, and stochastic extinction of

strains driven by competition and finite host population

size. However, direct analysis (or even simulation) of the

fully stochastic multi-strain SIR model for an arbitrary

number of strains is intractable, so here we use the

approximation given above to map the dynamics of a

single strain co-circulating with n�1 other strains onto the

simple (single-strain) stochastic SIR model.

Assuming that each strain generated via mutation is as

antigenically distant from pre-existing strains as pre-

existing strains are from each other, and that the total

mutation rate is proportional to the number of hosts infec-

ted, then the rate at which new strains are generated and

reach equilibrium levels can be approximated by

e 1� 1=R0effð ÞNyT. Here e is the mutation rate per infected

individual and 1� 1=R0eff is the probability that a mutation
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causing a single infection with a new strain will generate a

substantial epidemic (Bailey 1975), where R0eff is the effec-

tive reproduction number of a new strain in the presence of

n�1 other strains (as given by equation (2.4)). The total

size of the infected population in the system isNyT.
Proc. R. Soc. Lond.B (2004)
Stochastic extinction is incorporated into the model

using the approximate analytical result on the mean time to

extinction of a single strain derived by Nasell (1999), and

the mapping of the multi-strain SIR system onto the simple

SIR model discussed above. We modify the expression for
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the time to extinction, TE, in the single-strain SIR model to

account for the fact that the death rate, host population

size, and reproduction number in the single-strain system

are transformed in the n-strain environment as a result of

strain competition:

TE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pl2eff (R0eff � 1)Neff

�
a2

q
leffR0eff

exp
l2eff (R0eff � 1)Neff

2a2

� �
:

(3:1)

We thereby arrive at a rate of change for the number of

strains in a host population of sizeN of

dn

dt
¼ e 1� 1=R0effð ÞNyT � n

TE(leff ,Neff ,R0eff )
: (3:2)

The average number of strains a population of size N can

support is given by the equilibrium value of n (dn=dt ¼ 0).

Figures 2 and 3 show dependence of the average number

of strains in the system (navg) on cross-immunity and each of

the parameters R0, e and N. For constant cross-immunity a

clear diversity threshold for navg is seen, driven by the deter-

ministic R0r � 1 phase transition discussed previously.

However, while for large host population sizes the transition

is at R0r � 1, for smaller populations it moves above R0r �
1 because in a finite-sized system a secondary condition also
Proc. R. Soc. Lond.B (2004)
needs to be satisfied: that the host population exceeds the

critical community size for single- or multiple-strain persist-

ence. When R0r�1, strain diversity increases rapidly with

increasing R0, e, r, N and e. In this regime, the dynamics

are largely determined by the prohibition of co-infection

implicit in the model, which lowers per-strain infection

prevalence for high n and hence increases strain extinction

rates.

The R0r < 1 low-prevalence regime can support much

more limited diversity, though this can be maximized by

high R0, large N, a long infectious period (e) or a high

mutation rate (e). Diversity increases fastest with increasing

N, because increases in N increase both the strain gener-

ation rate and lower the extinction rate. Increases in other

parameters have a less dramatic impact on diversity,

because in the asymptotic limit they affect only the strain

generation rate (e) or extinction rate (e and R0). However,

it can be shown that the rate of growth in diversity as a

function of e (TE � e exp(e2)) is much faster than that with

R0 (TE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R0 � 1)

p
R0exp(R0 � 1)= ).

Figure 2c,d shows how cross-immunity, which increases

geometrically with the number of infections experienced,

greatly limits diversity compared with the constant cross-

immunity profile results shown in figure 2a,b. This is
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because geometrically increasing cross-immunity limits the

number of infections a host may experience over its life-

time. As discussed above, the R0r � 1 threshold for a geo-

metric immunity profile does not generate the major

system restructuring caused in the constant-immunity

case. Hence antigenic diversity depends critically on how

cross-immunity accrues withmultiple infections.

The dependence of strain diversity on host population

size (figure 3a,b) merits attention. The concept of the criti-

cal community size—the host population size below which

disease extinction by random chance is likely—is well

established for single-strain pathogens (Bartlett 1960;

Black 1966). We extend this concept to define the quantity

Ncrit(n): the minimum population size for which long-term

persistence of n strains is possible. Figure 3a shows that for

N�Ncrit(1) and either R0r51 or R0r�1, diversity increa-

ses linearly with population size, i.e. Ncrit(n)� n.

A more detailed look at the behaviour of equilibrium

diversity near the single-strain persistence threshold is

informative (figure 3b). Three dynamical regimes can be

discerned: no strains below the critical community size,

multiple strains for large N and r, and an intermediate

region where there is only one strain in the system. These

results highlight the fundamental dynamical distinction

between one- and multi-strain systems, namely that cross-

immunity—which increases extinction rates—affects only

systems with more than one strain.

These results demonstrate how emerging pathogens

have three fates: extinction, single-strain endemicity, and

multi-strain endemicity. For a pathogen with epidemiolo-

gical properties, putting it at the interface between single-

and multi-strain systems, small evolutionary changes (or

increases in host population size) can rapidly move a

disease from single-strain to multiple-strain endemicity.

Multi-strain endemicity does not necessarily imply long-

term persistence of all strains, but rather that there is

enough strain generation to balance strain extinction, lead-

ing to a system with continuous strain turnover. The time

to extinction for individual strains in multi-strain systems is

typically much lower than for single-strain systems, and for

diseases such as influenza (where individual strains survive

for at most a few years), it is orders of magnitude lower.

Figure 3c,d focuses on this type of dynamical regime, and

plots the average number of strains and the time to extinc-

tion for a single strain as a function of cross-immunity and

mutation rate for a pathogen with typical influenza-like

parameters. It is important to note that the limited diversity

of influenza A observed at any point in time implies that

this pathogen must fall below the R0r � 1 diversity thresh-

old. The observed rate of strain emergence is generated

primarily by the large size of the host population and the

high mutation rate, and diversity is restricted by intense

cross-immunity between strains.

Short-term non-specific immunity has recently been

proposed as being key to explaining the limited diversity of

influenza (Ferguson et al. 2003). In the current framework,

non-specific immunity would add a time delay between

recovery from infection and re-entry into the susceptible

population for infection by other strains. Consequently

such immunity lowers strain diversity and improves model

realism by producing reasonable levels of strain diversity at

population sizes considerably larger than the relatively

small value of 107 used in figure 3b. Overall the pattern of
Proc. R. Soc. Lond.B (2004)
strain replacement dynamics generated by our simple

model is broadly consistent with influenza A evolution.

However, it is arguable that the simple cross-immunity

structure used here (where all strains compete equally with

each other) makes reproducing the qualitative pattern of

influenza evolution artificially easy compared with more

realistic frameworks (Ferguson et al. 2003) which permit

strains to progressively escape pre-existing host immunity

throughmutation.
4. CONCLUSIONS
The goals of this work differed somewhat from previous

theoretical analyses of multi-strain infectious disease sys-

tems: rather than focusing on characterizing the impact of

cross-immunity on transmission dynamics for systems with

a fixed (usually small) number of strains (Gupta et al.

1998), here we have examined how system properties

change as a function of the number of strains. Moreover,

this paper presents one of the first analyses of how the inter-

actions between diversification processes (i.e. mutation),

inter-strain competition (via cross-immunity) and demo-

graphic stochasticity determine the equilibrium diversity of

a pathogen in a finite-sized host population. We solved a

complex multi-strain model at equilibrium for an arbitrary

number of strains and for a general cross-immunity profile.

The solution derived permits easy numerical evaluation,

but we also derived accurate analytical approximations to

the exact solution valid in a variety of parameter regimes.

Genetic variability and stochastic extinction were incorpor-

ated into the modelling framework through the derivation

of a novel approximate mapping of multi-strain systems

onto the stochastic single-strain SIRmodel.

It is interesting to compare our approach with status-

based models (Gog & Grenfell 2002) in which cross-

immunity is polarized, acts on infectiousness, and does not

incorporate accumulation of immune memory. Status-

based models give a very rapid decay in the fraction of

infected population as a function of the number of strains

and cross-immunity, with the effect of cross-immunity

being much more severe compared with immune-memory-

based approaches of the type used here. When cross-

immunity is completely effective, both approaches reduce

to a one-strain SIR model. For zero cross-immunity,

status-based models yield n independent and uncoupled

SIR systems while in our model, even though no cross-

immunity is present, strains do interact because of

prohibition of co-infection. Overall results from the two

approaches converge for small number of strains but

diverge substantially for large numbers of strains. This

discrepancy makes model dependence a cause for concern.

A detailed clarification of the extent of homology in system

dynamics between these approaches would therefore be

valuable.

This work has identified three distinct dynamical trajec-

tories for novel genetically variable pathogens entering a

naive host population: inevitable extinction as a result of low

host population size and/or transmissibility, stable and

largely static single-strain population structure, and mul-

tiple-strain dynamics with stable diversity but possibly high

rates of strain turnover. Which outcome is realized depends

critically on the reproduction number of the pathogen, the

intensity of cross-immunity and, to a lesser extent, on the
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rate of mutation and duration of infectiousness. This delin-

eation of outcomes results from the three distinct dynamical

regimes exhibited by multi-strain systems at equilibrium: a

region below the R0r � 1 transition marked by low preva-

lence and no or limited diversity, the R0r � 1 diversity

threshold characterized by explosive increase in disease

prevalence and strain diversity, and last, a region with satu-

rating growth in prevalence and moderate increase in diver-

sity above R0r � 1. The severity of the R0r � 1 transition is

determined by the manner in which immunity accumulates

with repeated strain infections. Progressively (e.g. geomet-

rically) increasing immunity gives a smooth transition while

constant immunity gives a sudden phase transition and a

near total restructuring of the system at R0r � 1.

A novel aspect of the work presented here is the inclusion

of demographic stochasticity and hence the insight given

into how the diversity of pathogen populations depends on

host population size. Our results indicate that outside the

threshold regime of R0r � 1, the diversity of pathogen

populations is expected to depend linearly on host popu-

lation size for a homogenously mixing population, agreeing

with the population genetics result that diversity of clonal

organisms increases linearly with effective population size,

given that effective population size is proportional to host

population size for directly transmitted pathogens. How-

ever, our analysis extends simple population genetic analy-

ses by giving quantitative insight on how epidemiological

parameters (such as transmissibility, cross-immunity and

infectious period), as well as host population size, deter-

mine pathogen diversity. As such, the methods presented

may be of use in improving assessments of the likely poten-

tial consequence of increasing global population size on

pathogen diversity. Another interesting though technically

challenging future extension of the work presented here

would be to explore how host metapopulation structure

might affect the relationship between pathogen diversity

and host population size.

Simplifications were necessary to examine the properties

of multi-strain systems with arbitrary diversity. In parti-

cular, the current analysis is restricted to examining equi-

librium dynamics for the completely symmetric system (i.e.

all strains were assumed to share identical epidemiological

properties). In extending the deterministic analysis to

incorporate stochastic extinction, we therefore implicitly

assumed highly simplified strain establishment dynamics:

new strains arising through mutation either go extinct with

probability 1=R0eff or immediately reach equilibrium

prevalence. Because influenza strains in reality are unlikely

to reach equilibrium, this assumption (together with that of

symmetric cross-immunity between all strains) may in part

explain the otherwise encouraging ability of this framework

to reproduce influenza-like dynamics (i.e. low average

diversity but a high rate of strain turnover) without

recourse to the additional mechanisms necessary in more

realistic models (Ferguson et al. 2003).

Ongoing work is therefore focusing on relaxing some of

these simplifications and examining systems with randomly

distributed R0 and inter-strain cross-immunity. The chal-

lenges are considerable, in particular because incorpor-

ation of such heterogeneity disrupts the interior

equilibrium studied here, with more extreme parameter

choices already shown to give rise to limit cycles and some-

times chaotic behaviour (Gupta et al. 1998; Lin et al.
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1999). However, characterizing the statistical dynamics of

large numbers of strains with heterogeneous but potentially

strong immunity-mediated interactions is key to gaining a

more complete understanding of both the epidemiological

and evolutionary dynamics of genetically variable patho-

gens.
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