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. . .The limbs on the right side are stronger. [The] cause may be . . . [that] . . .motion, and abilities

of moving, are somewhat holpen from the liver, which lieth on the right side.

(Sir Francis Bacon, Sylva sylvarum (1627).)

Fifty per cent of people with primary ciliary dyskinesia (PCD) (also known as immotile cilia syndrome or

Siewert–Kartagener syndrome) have situs inversus, which is thought to result from absent nodal ciliary

rotation and failure of normal symmetry breaking. In a study of 88 people with PCD, only 15.2% of 46 indi-

viduals with situs inversus, and 14.3% of 42 individuals with situs solitus, were left handed. Because cerebral

lateralization is therefore still present, the nodal cilia cannot be the primary mechanism responsible for sym-

metry breaking in the vertebrate body. Intriguingly, one behavioural lateralization, wearing a wrist-watch on

the right wrist, did correlate with situs inversus.
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1. INTRODUCTION
Humans, like other vertebrates, mostly have their heart on

the left side, and there is a secondary asymmetry of other

organs such as lungs, liver, spleen, testicles and bowel, the

configuration known as situs solitus. Over the past few years,

as a result of the important work by Hirokawa and Nonaka

in mice (Nonaka et al. 1998, 2002; Okada et al. 1999), the

orthodox view, shown in figure 1a, has been that visceral

asymmetry in vertebrates results from symmetry breaking,

as a result of the rotation of 9+0 monocilia in the nodal

region for a short period during development (Brueckner

2002), which is then followed by a cascade of biochemical

asymmetries determining visceral situs (Raya et al. 2004).

Defective ciliary rotation in the kif3b mouse and iv mouse

results in a 50 : 50 mixture of situs solitus and situs inversus

(heart on the right, liver on the left, etc.; see figure 1b)

(Capdevila et al. 2000; Mercola & Levin 2001; Brueckner

2002; Essner et al. 2002), and situs inversus can be induced

in the mouse experimentally by reversing the usual nodal

flow (Nonaka et al. (2002), although see Tabin & Vogan

(2003)). Despite noting the ‘intellectually satisfying’

nature of this model, and while acknowledging that ‘some

aspect of the cilia model is almost surely right (at least in

mice)’, Levin (2003) has detailed a range of problems with

the ciliary model, both in timing and in functional general-

ization to species other than themouse.

Unlike other vertebrates, humans also show functional

cerebral lateralization, most people being right handed,

and in addition, most people also having left-sided cerebral

dominance for language (Knecht et al. 2000), although the

correlation of handedness and language dominance is far
from perfect but nevertheless can be explained by a

straightforward genetic model (McManus 1985, 1999;

Annett & Alexander 1996). The complex functional asym-

metries of the human brain should not be confused with the

anatomical asymmetries found in the diencephalon of

fishes and vertebrates (von Woellwarth 1950; Morgan

1977), which are probably controlled by the same mechan-

isms as control other aspects of situs (Concha et al. 2000;

Concha & Wilson 2001; Gamse et al. 2003; Halpern et al.

2003).

Sir Francis Bacon (1561–1626), in his posthumous

Sylva sylvarum of 1627, suggested that human handedness

resulted from visceral asymmetry: ‘the limbs on the right

side are stronger... [because]... motion, and abilities of

moving, are somewhat holpen from the liver, which lieth on

the right side’. If this Baconian model were correct, then

people with situs inversus should mostly be left handed (fig-

ure 1b). However, several large-scale, but old, studies have

found that most individuals with situs inversus seem to be

right handed for writing (Watson 1836; Cockayne 1938;

Torgersen 1950), although those studies do suffer from lit-

tle information being available on aetiology, and they have

very limited assessments of laterality. In the absence of a

known pathophysiological mechanism for such cases of

human situs inversus, it is not clear to what extent they

provide a challenge to the concept of the nodal cilia as the

primary source of symmetry breaking, and hence of body

asymmetry in general.

In primary ciliary dyskinesia (PCD) (also known as Sie-

wert–Kartagener syndrome or immotile cilia syndrome) a

motility defect of 9+2 cilia results in bronchiectasis,

chronic sinusitis, and male infertility (Bush et al. 1998). In

addition visceral situs is randomized, 50% of cases having

complete situs inversus (with the heart on the right, liver on
#2004The Royal Society
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the left, etc.; PCD-SI), and 50% having the normal situs

solitus (with the heart on the left, liver on the right, etc.;

PCD-SS) (Bush et al. 1998). The situs inversus probably

results from a concomitant dysfunction of 9+0 nodal

monocilia, as occurs in Hfh4 null mice (Brody et al. 2000),

resulting in absent vortical micro-flow and randomization

of situs, as also occurs in the DNAH5 mutation (Olbrich et

al. 2002). If vortical flow at the node is the principal cause

of symmetry breaking, then its absence in PCD should
Proc. R. Soc. Lond.B (2004)
either cause left handedness in PCD-SI and right handed-

ness in PCD-SS (if cerebral lateralization is secondary and

downstream to situs: figure 1b), or if the brain and the

viscera are randomized independently, a 50% rate of left

handedness should occur in both PCD-SI and PCD-SS
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Figure 1. Models of the relationship between visceral and
cerebral situs. (a) This shows the orthodox ciliary model in
which rotation of cilia in the nodal region breaks asymmetry,
causing the heart to be on the left, and other asymmetries of
viscera and brain to develop asymmetries which are secondary
to heart asymmetry. (b) This shows that with the orthodox
model, randomization of nodal flow will cause half of
organisms to show situs inversus, with a right-sided heart, left-
sided liver, etc. and the other half to show the normal pattern
of situs solitus, with a left-sided heart, right-sided liver, etc. If
cerebral asymmetry is secondary to visceral asymmetry then
the Baconianmodel suggests that individuals with situs inversus
should be left handed and individuals with situs solitus should
be right handed (but which our data on PCD show is not
actually the case). (c) This shows an alternative model to (a) in
which visceral asymmetry and cerebral asymmetry are caused
by independent ciliary rotations. (d) This shows that
disruption of the separate flows should result in situs and
handedness being random and independent, so that half of
those with situs inversus and half of those with situs solitus
should be left handed. The pattern of handedness in PCD in
our data is not consistent with (d). (e) This shows an
alternative model in which visceral asymmetry is still
determined by ciliary rotation at the node, but cerebral
asymmetry is determined upstream to ciliary rotation by a
mechanism not involving ciliary rotation. ( f ) This then shows
that disruption of ciliary flow, as in PCD, will result in situs
inversus in half of all individuals, but that individuals with situs
inversus and situs solituswill both show the same, low, rate of
left handedness as the rest of the population. ( f ) is compatible
with the present data on PCD.
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Figure 2. Degree and direction of lateralization of
handedness in patients with PCD-SI, PCD-SS, and in
controls. Black circles, left writing hand; white circles, right
writing hand.
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(figure 1c,d). The latter pattern is formally equivalent

to that found with diencephalic asymmetries in the

zebrafish, where heart looping and parapineal asymmetry

in LZoep�/� mutants are random and uncorrelated (Con-

cha et al. 2000).

2. METHODS
Eighty-eight individuals with PCD were studied through the UK

PCD Family Support Group, and compared with 334 individuals

in a student control group (mean age: PCD, 22.7 years; controls,

20.0 years) (McManus & Drury 2004). Clinical details of these

cases are presented elsewhere (McManus et al. 2003). Of the cases

studied, 47.7% were PCD-SS and 52.3% were PCD-SI. Controls

were presumed to have situs solitus. A postal questionnaire con-

taining written and photographic questions was used to assess 33

separate behavioural lateralities, including preferred hand for a

range of tasks, as well as hand clasping, arm folding, leg crossing,

footedness, ear preference, and eye preference (McManus &

Drury 2004). Conventional handedness was assessed both in

terms of writing hand, and by a standard laterality index, calcu-

lated as 100� (R � L)=(R þ L), based on 11 questionnaire items.

3. RESULTS
The rate of left handedness for writing in controls was

8.1% (27 out of 335), PCD-SS, 14.3% (6 out of 42),

and PCD-SI, 15.2% (7 out of 46) and this did not differ

significantly between the three groups (v2 ¼ 3:69,
d:f : ¼ 2, p¼ 0:158). The laterality index showed clear

bimodality (see figure 2), with 91.3% scoring greater than

0, all but three of whom wrote with their right hand, and

8.7% scoring less than zero, all of whom wrote with their

left hand. There were 7.4% controls, 11.4% PCD-SS and

14.9% PCD-SI that had a laterality index of less than zero

(v2 ¼ 3:377, d:f : ¼ 2, p¼ 0:185). The absolute laterality

index, which assesses degree or strength of handedness,

did not differ significantly between the three groups

(F(2,419) ¼ 0:194, p¼ 0:824).
A systematic comparison was made of left- and right-

sided usage for all 33 individual measures of behavioural

laterality in those with situs inversus (PCD-SI) and those

with situs solitus (PCD-SSþ controls). Because of multiple

testing, the Bonferroni correction was used to set alpha at

0:05=33 ¼ 0:0015. The only significant difference in

relation to side of the heart was for the side on which a

wrist-watch was worn (see table 1; v2 ¼ 13:19, d:f : ¼ 1,

uncorrected p¼ 0:00028; corrected p¼ 0:0107). Logistic
regression predicting right-sided wrist-watch wearing

showed independent effects of handedness (v2 ¼ 10:293,

d:f : ¼ 1, p¼ 0:0013) and side of the heart (v2 ¼ 11:245,

d:f : ¼ 1, p¼ 0:00080), with no interaction (v2 ¼ 0:140,
d:f : ¼ 1, p¼ 0:709).
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4. DISCUSSION
Our finding of a normal rate of left handedness in PCD-SI

is compatible with earlier studies in which individuals with

situs inversus are mostly right handed for writing (Watson

1836; Cockayne 1938; Torgersen 1950), of whom cases of

PCD would have been only a minority (Aylsworth 2001).

The present results in PCD, with its well-defined patho-

physiology, provide a strong challenge to current under-

standing of the developmental determination of body

lateralization, because despite the absence of symmetry

breaking by ciliary rotation, there is still consistent cerebral

lateralization. Such a result cannot be explained by the

models in figure 1a,b, and neither can it be explained by the

models in figure 1c,d (unless it were the case that despite

nodal cilia being non-functional, the cilia determining cer-

ebral asymmetry were still functional). The implication is

either that cerebral functional asymmetry results from a

separate (and unknown) mechanism of symmetry breaking

from that involved in body situs (Levin & Mercola 1998;

Capdevila et al. 2000), or that perhaps the cilia are not the

basis of ‘step 1’ (Levin 2003) in setting up the overall left–

right axis of the vertebrate body, so that instead the cilia act

to amplify a pre-existing asymmetry (figure 1e, f ). In either

case, functional cerebral asymmetry would remain normal

in the presence of random visceral situs.

The findings on the side of wearing a wrist-watch were

unexpected but statistically robust. There is little research

on this common behavioural laterality. Wrist-watches are

sophisticated, asymmetric artefacts primarily designed for

right handers, particularly when there is a clockwise winder

or electronic controls (see www.ac2w.com/en_ac2w.htm).

As a result, ‘custom helpeth’, as Bacon would have put it,

to ensure most are worn on the left side. Although left

handers are somewhat more likely to wear a watch on the

right wrist, nevertheless one in six right handers also wears

their watch on the right wrist. Ergonomic factors may

partly explain the association with handedness but contrib-

ute little to understanding why those with situs inversus,

who have their heart on the right, are more likely to wear a

wrist-watch on the right, irrespective of handedness.

We are grateful to Carol Polak, the members, and the scientific
committee of the PCD Family Support Group for their help
with this research, and to Julyan Cartwright, Mark Gardiner,
Mike Levin, Mark Mercola and Kyle Vogan for their helpful
discussions.
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