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SUMMARY

The properties of hippocampal place cells are reviewed, with particular attention to the nature of the
internal and external signals that support their ¢ring. A neuronal simulation of the ¢ring of place cells in
open-¢eld environments of varying shape is presented.This simulation is coupled with an existing model of
how place-cell ¢ring can be used to drive navigation, and is tested by implementation as a miniature
mobile robot. The sensors on the robot provide visual, odometric and short-range proximity data, which
are combined to estimate the distance of the walls of the enclosure from the robot and the robot's current
heading direction. These inputs drive the hippocampal simulation, in which the robot's location is repre-
sented as the ¢ring of place cells. If a goal location is encountered, learning occurs in connections from the
concurrently active place cells to a set of g̀oal cells', which guide subsequent navigation, allowing the robot
to return to an unmarked location. The system shows good agreement with actual place-cell ¢ring, and
makes predictions regarding the ¢ring of cells in the subiculum, the e¡ect of blocking long-term synaptic
changes, and the locus of search of rats after deformation of their environment.

1. INTRODUCTION

The hippocampus has been implicated as the neural
basis of mammalian navigation ever since the discovery
of spatially tuned neurons (place cells) in the hippo-
campus of freely moving rats (O'Keefe & Dostrovsky
1971). The fact that each place cell (PC) tends to ¢re at
a high rate only when the rat is in a particular portion
of its environment, independently of local sensory cues
such as the odour of the £oor covering, prompted the
idea that they provide the neural representation of the
location of the rat within its environment (O'Keefe &
Nadel 1978). It has recently been shown that the ¢ring
of PCs does indeed contain su¤cient information to
localize the rat (Wilson & McNaughton 1993). Lesions
of the rat's hippocampus impair its navigational ability,
speci¢cally in tasks requiring an internal representation
of space such as returning to an unmarked goal location
from novel starting positions (see, for example, Morris
et al. 1982; Jarrard 1993).

More recently, head-direction cells have been found
near the hippocampus in the dorsal presubiculum
(Taube et al.1990) and elsewhere (Mizumori &Williams
1993; Taube 1995). These cells code for the direction of
the rat's head, regardless of its locationwithin the envir-
onment.The existence of cells of this type was predicted
byO'Keefe &Nadel (1978). Although general amnesia is
the primary symptom of lesions of the temporal lobes
and hippocampus in humans (Scoville & Milner 1957),
evidence is nowbeginning to emerge relating the human
hippocampal region to navigation and topographical

memory in neuropsychological (Habib & Sirigu 1987;
Maguire et al. 1996a) and functional imaging (Maguire
et al. 1996b, 1997a,b) studies.

The behaviour of the spatially tuned neurons in and
around the hippocampus of freely moving rats provides
an insight into the neuronal basis of mammalian naviga-
tion. Understanding the working of these neurons o¡ers
the tantalizing prospect of developing control algorithms
that directly emulate mammalian navigational abilities.
In this paper the spatial properties of place-cell activity
are reviewed, and a computational model of the hippo-
campus as a navigational system implemented on a
mobile robot is presented.The use of a robot ensures the
realism of the assumed sensory inputs and enables true
evaluation of navigational ability. Navigation is driven
by place-cell ¢ring in amanner similar to that described
by Burgess et al. (1994), and is compared to data showing
that rats can return to an unmarked goal location from
novel starting positions.The behavioural data that show
two separate loci for gerbils' search after two cues indi-
cating a single reward site are pulled apart (Collett et al.
1986) are also considered.The neurons in the model are
compared to single-unit recordings from the corre-
spondingbrain regions, where possible.

2 . WHAT INPUTS SUPPORT PLACE -CELL
FIRING ?

Recent experiments have begun to reveal the nature
of the signals underlying the apparently mysterious
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ability of place cells to restrict their ¢ring to speci¢c
portions of an environment. Visual stimuli at or
beyond the edge of the rat's reachable environment are
su¤cient to control the overall orientation of the place
(O'Keefe & Speakman 1987; Muller & Kubie 1987)
and head-direction (Taube et al. 1990) representations.
Rotation of these stimuli can be shown to cause rotation
of the receptive ¢elds of place and head-direction cells
about the centre of a symmetrical environment.
However, objects placed within the environment do
not show this control (Cressant et al. 1997). Interocep-
tive (possibly vestibular) inputs relating to self-motion
also in£uence the overall orientation of the place
(Sharp et al. 1995; Knierim et al. 1995) and head-direc-
tion (Blair & Sharp 1996) representations.
Place cells' receptive ¢elds (`place ¢elds') recorded in

a series of uniform, rectangular, walled environments
appear to be composed of the thresholded sum of two
or more separate Gaussian tuning curves, each peaked
at a ¢xed distance from one wall of the environment
(O'Keefe & Burgess 1996). (See ¢gure 1.) Because the
walls used in this experiment were indistinguishable,
and often interchanged, they can be presumed to be
disambiguated on the basis of their allocentric direction
from the rat. Recent results (Je¡ery et al. 1997) have
proved consistent with this interpretation: altering the
rat's sense of direction by rotating it very slowly
(0.15 rpm) in the dark causes the ¢elds to rotate so as to
maintain a ¢xed distance from two walls identi¢ed as
being in particular directions from the rat relative to its
own (rotated) frame of reference. However, if the rat
and the box are slowly rotated in the presence of polar-
izing visual cues in the experimental room, the place
¢elds may rotate with the box, or may stay in ¢xed
orientation with the room, demonstrating the addi-
tional e¡ect of extramaze visual cues in determining
the rat's sense of direction. Figure 2 shows a place ¢eld
that rotated in the dark, but was not a¡ected by rotation
in the presence of the visual room cue: in this case it
maintained a ¢xed distance from two walls identi¢ed
as being in particular veridical allocentric directions.

(a) What types of input are available, and how
precise are they?

These remarkable properties of place and head-
direction cell ¢ring are apparently derived from rela-
tively unsophisticated sensory inputs. Rats have wide-
angle vision (320^3608 in the horizontal plane
depending on head angle (Hughes 1977)) but do not
necessarily segment stimuli into objects or extract
much sensory information beyond the location or
motion of the stimulus (see, for example, Dean 1990).
The ability of rodents to maintain an estimate of their
location and orientation by keeping a cumulative
record of their own movements (referred to as `path
integration') is also limited. For example, hamsters err
signi¢cantly in returning to the start location after an
L-shaped route of 1m per side or after ¢ve active rota-
tions or two passive rotations in the dark; see Etienne et
al. (1996) and ¢gure 3. Thus, although it is useful for
maintaining a sense of direction, path integration is
clearly not su¤cient to support the ¢ring of place cells

over long periods of combined translation and rotation
(see ¢gure 3). However, once established, both the place
representation and the locus of searching can be main-
tained in the dark (O'Keefe 1976; Quirk et al. 1990) or
in the absence of the environment's polarizing extra-
maze stimuli (O'Keefe & Speakman 1987).
Uncontrolled auditory, olfactory, and somatosensory
cues may contribute to these ¢ndings.

(b) Phase coding

Place-cell activity shows interesting temporal as well
as spatial properties. Place cells tend to ¢re in short
bursts of between one and four action potentials. The
timing of the ¢ring of these bursts has a systematic
relation to the concurrently recorded electro-
encephalogram (EEG).Whenever the rat is involved in
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Figure 1. Firing-rate maps showing the place ¢elds of two
hippocampal neurons in four rectangular boxes of varying
size and shape (the peak ¢ring rate is shown in white on each
plot). The place ¢elds maintain ¢xed distances from two or
more walls of the environment. This occasionally leads to
bimodal ¢ring-rate maps. See O'Keefe & Burgess (1996).



head-displacement movements or locomotion, the EEG
exhibits a roughly sinusoidal oscillation of 6^11Hz,
called the `theta' rhythm. As the rat runs through a place
¢eld on a linear track, the phase at which spikes are ¢red
is not constant, but shifts in a systematic way (O'Keefe &
Recce 1993).When the animal enters the ¢eld the ¢ring
occurs late in the cycle, but shifts to progressively earlier
phases as the rat runs through the ¢eld.

3. THE MODEL

The sensory and motor aspects of the rat are simu-
lated using a robot, see below. Visual estimates of the
distances from the robot to the walls of the environment
are used to drive the ¢ring of `sensory cells', entorhinal
cells (ECs) and thence place cells (PCs); see ¢gure 5.
The walls are identi¢ed by their allocentric direction
from the robot. The estimate of the allocentric direc-
tion (orientation) of the robot is maintained by
odometry and sightings of the north wall, which is
visually distinct from the other walls and serves to
polarize the environment. When the robot encounters
a goal location, a reinforcement signal prompts one-
shot Hebbian learning in connections from the place
cells to a set of goal cells. The subsequent ¢ring rates of
these cells provide a continuous estimate of the direc-
tion and proximity of the goal location, enabling
navigation (see Burgess et al. 1994; Burgess & O'Keefe
1996).

(a) Physical implementation

The model is implemented using a Khepera minia-
ture robot, with on-board video and a ring of short-
range infrared proximity detectors to provide arti¢cial
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Figure 2. E¡ect of internal and external inputs on place-
¢eld location. Firing-rate maps as in ¢gure 1, showing the
e¡ect of slowly rotating a rat with and without rotation of
the environment and with the polarizing visual room cues
either masked (the `dark' condition) or visibly present (the
`light' condition). Left column: rotation of both rat and box
in the dark, ¢rst 908 anticlockwise and then 908 clockwise,
resulted in corresponding rotations of the ¢eld. Middle
column: rotation of the rat alone in the dark by 1808
rotated the ¢eld by 1808 even though the box remained
stationary. Right column: when the procedure shown in
the left column was repeated in the light, the ¢eld failed to
rotate with the rat and the box, but maintained a constant
distance from the south and west walls (as de¢ned in the
reference frame of the room).

(a)

(b)

P
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Figure 3. Path integration and place-cell ¢ring. (a) The
mean return direction (continuous line) of hamsters that
had followed an L-shaped path (broken line) from a point
of departure (D) to the point P in darkness (adapted from
Seguinot et al. (1993)). (b) Typical path of a rat searching
for randomly scattered food pellets (37 s shown). The loca-
tions at which a place cell ¢red spikes are shown as black
squares. The rat starts in the top right corner, initially
enters the place ¢eld (indicated by a short string of spikes),
leaves the place ¢eld and performs a long and circuituous
trajectory before re-entering the ¢eld (indicated by the
¢ring of many spikes) and eventually leaving for the
bottom left corner. Note that the inaccuracy in path inte-
gration (a) implies that it would not be su¤cient to
support the place-speci¢c ¢ring of place cells (b) on its own.



visual and haptic information. Two independently
driven wheels allow movement around a rectangular
environment formed by white walls and a dark £oor
(see ¢gure 4a). Visual processing consists solely of
¢ltering for horizontal dark^light edge points formed
where a wall meets the £oor, and ¢nding the row ( y)
in the image containing the most dark^light edge
points and the column (x) of the centroid of the edge
points on that row (see ¢gure 4b). The distance to the
wall is estimated from y; the bearing of the wall to the
robot from x. This scheme does not work if the robot
accidentally faces directly into a corner; however, the
estimated orientation does not drift fast enough for
this to happen (see below). One wall (the north wall)
is marked by a dark horizontal stripe along the top: its
presence is detected by ¢ltering for horizontal light^
dark edge points. The infrared proximity detectors
detect the presence of a wall within about 4 cm. Their
function might be compared to that of a rat's whiskers.

Movement is controlled by setting the speeds of the
two independent wheel motors and occasionally moni-
toring the shaft-encoders on the wheel axles, stopping
when the desired amount of turn has been achieved.
This control is not precise, so the odometry of the
robot is not noticeably superior to that of a rodent
(see above). Control of the robot proceeds in steps:
the proximity detectors are read and the robot then
rotates on the spot to face in the estimated orientations
north, south, east and west, capturing an image at
each orientation. After each rotation the acquired
image is used to estimate the distance to the wall and
to correct the robot's estimated orientation to agree
with the estimate of its angle to the wall. If no wall
was perceived by the proximity detectors the robot
moves 3 cm forward in the desired direction. If a wall
is perceived, the robot moves 3 cm away from the wall,
whose direction is estimated from the relative values of
the proximity detectors. Each step corresponds to 0.1s
(one theta cycle; see below) implying a speed of
30 cm sÿ1 for the rat, but actually takes around 3 s
(processing on a SUN Ultra computer). During
exploration, each movement is made in a random
direction within 308 of the previous direction (unless
a wall is perceived). During navigation, each move-
ment is made in the direction indicated by the goal
cells (see below).

(b) The neural network

The visual inputs to the simulated hippocampus are
represented by a rectangular array of cells organized
such that each row of cells codes for the distance to a
particular wall, with each cell tuned to respond maxi-
mally at a particular distance (see ¢gure 5). Note that
identifying the walls on the basis of their allocentric
direction from the rat solves the `binding'or c̀orrespon-
dence' problem of how information regarding a
particular wall is channelled to a particular set of cells
as the robot moves about. This also suggests a reason
for the lack of in£uence on place-¢elds of objects
within the environment: if the rat moves around an
object, its allocentric direction from the rat will vary

and information regarding it will not arrive on one
constant set of channels.

The tuning of these `sensory' cells follows the form of
the independent place-¢eld components identi¢ed by
O'Keefe & Burgess (1996); for example, cell i in the
row coding for distances from the west wall has ¢ring
rate

Aexp�ÿ(xÿ di)
2=2�2(di)����

2
p

��2(di)
, �1�

where x is the distance from the wall (estimated
visually), di is the distance at which the cell responds
maximally, and the amplitude A� 500. The width of
the response curve increases with the distance of peak
response as �(x) � �0(L2 � x2)=L2. This re£ects the
decreasing reliability of the estimate of x at large
distances. If the rat uses the angle from vertical to the
top or bottom of the wall to estimate its distance, then a
¢xed angular error will produce this form of error
as a function of distance (to within a constant).
The constants are assigned values �0 � 10 cm and
L� 30 cm (half the values given by O'Keefe & Burgess
(1996), because the environments used here are about
half the size). All connections in the model take a
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Figure 4. (a) Hardware set-up (see text for further details).
(b) Robot's-eye view. Detected horizontal dark^light edge
points are shown in white; a black arrow marks the (x,y)
position in the image that is returned by the visual proces-
sing. The north wall can be identi¢ed (on the right) by its
dark upper half.



value of 0 or 1 (`on' or `o¡ '), and each cell ¢res at a rate
proportional to the amount by which its net input
exceeds a threshold. Each EC receives hard-wired
connections from two sensory cells related to two
orthogonal walls (see ¢gure 5). The connections from

the EC layer to the PC layer include an element of
learning. Initially, only one connection to each place
cell is `on', and a type of competitive learning turns on
connections from a limited number of ECs with nearby
receptive ¢elds to the most active PCs at each time-step
(0.1s) as the robot moves about its environment.
Learning and activation in the PC layer occurs as
follows. At each time step a threshold is set such that
the 50 PCs with the greatest input are active, and
connections between maximally active ECs and the
four most active PCs are switched on. Each PC has a
divisive threshold equal to the number of `on' connec-
tions to it (preventing one PC always being the most
active one and always receiving more `on' connections;
see Burgess et al. (1994)).

Depending on which connections to a PC have been
turned on, its place ¢eld will maintain a ¢xed distance
from two orthogonal walls, or re£ect more than two
inputs, all peaked at a ¢xed distance from a wall of the
environment. Thus, some place ¢elds will change in
amplitude and shape when the environment is
changed in size or shape. By contrast, the EC-receptive
¢elds will all remain at a ¢xed distance from two walls
and will not change shape or amplitude during changes
in the shape and size of the environment.
A simple model of navigation based on place-cell

¢ring could work in the following way. When the rat
encounters a g̀oal' (i.e. a location in its environment
that is associated with reward), a goal cell downstream
from the place cells is strongly excited by the attributes
of the goal. At the goal, a one-shot Hebbian increment
is induced in the synaptic connections to the goal cell
from the place cells that are active at the goal location.
As the rat moves away from the goal location, the net
activity of place cells with strong connections to the
goal cell will be a monotonically decreasing fraction of
the total place-cell activity. Consequently, the activa-
tion of each goal cell will code for the proximity of a
goal location, and thus could be used as an evaluation
function in a gradient-ascent-type search for the goal,
i.e. the rat could return to the goal location simply by
moving around so as to increase the ¢ring rate of the
appropriate goal cell (see ¢gure 6a,b).

In fact, a more complicated model of learning of the
goal location is used here, in which one-shot Hebbian
association of the PCs active at the goal location to a
set of g̀oal cells' sets up a `population vector' (Georgo-
polous et al. 1988) that codes for the direction of the
goal during subsequent navigation (see Burgess et al.
1994; Burgess & O'Keefe 1996). This has advantages
over the simple model, such as enabling rats to take
short cuts towards the goal (see, for example,
Benhamou & Seguinot 1995; Tolman 1948), and does
not require the rat to hunt around to determine the
direction in which to move.

The population-vector model depends in part on the
information carried by head-direction cells, and in part
on the timing of PC ¢ring showing the observed rela-
tion to the phase of the theta rhythm of the EEG
(O'Keefe & Recce 1993). An implication of this phase
relation is that PCs active at a `late' phase tend to have
place ¢elds that are centred ahead of the rat whereas
those ¢ring at an èarly' phase tend to have place ¢elds

Robotic simulation of rat navigation N. Burgess and others 1539

Phil.Trans. R. Soc. Lond. B (1997)

N
S

W
E

N      S     E    W

rate
x

goal cells

place 
cells

entorhinal
cells

population vector
guides navigation

1-shot Hebbian
learning

learning
competitive 

sensory
cells

he
ad

-d
ir

ec
tio

n 
ce

lls

reward
signal

(a)

(b)

Figure 5. (a) Schematic diagram of the neuronal simula-
tion. There are 60 sensory cells, 900 ECs, 900 PCs and 4
goal cells. Inputs from the sensors on the robot drive the
¢ring of the sensory cells. Activation propagates through
the model to form a representation in space in the place-
cell layer. Learning in the connections to the goal cells
while at the goal location allows them to code for the direc-
tion and proximity of the goal location during subsequent
movement. (b) The Khepera mobile robot. See text for
further details.



centred behind the rat (Burgess et al. 1994). In the
simulation, each time-step is divided into two intervals,
corresponding to the early and late phases of a 10Hz
theta rhythm. The appropriate phase coding of PCs in
the model results from the sensory cells responding to a
wall ahead of the rat ¢ring during the late phase, and
those responding to a wall behind the rat ¢ring at an
early phase.

Brie£y, each goal cell receives a projection coding
both for the rat's head direction and for the sensory
attributes (e.g. food, water, etc.) of a particular goal
(see ¢gure 5). These connections deliver a `learn now'
type of reinforcement signal to a goal cell whenever

the rat is at the appropriate goal location and facing in
the appropriate direction. If this learning signal arrives
at a `late' phase of the EEG, or if synaptic plasticity is
restricted to this phase (see, for example, Pavlides et al.
(1988) for the relation of long-term potentiation of
synapses to the theta rhythm), then the goal cell asso-
ciated with, for example, the direction north will form
active connections from place cells with receptive ¢elds
centred to the north of the location of the goal. As the
rat looks around in di¡erent directions from the goal
location, the connection weights to the set of goal cells
are incremented such that each is associated with a
particular allocentric direction, and will ¢re maxi-
mally at a location displaced from the goal in that
direction. Thus the `population vector', or vector sum
of the directions associated with each goal cell weighted
by their ¢ring rates, estimates the direction of the rat
from the goal (for example, whenever the rat is north
of the goal, the goal cell associated with north will be
¢ring more strongly than that associated with south;
see ¢gure 6c).
The ¢ring of these goal cells drives navigation of the

robot, enabling it to return to a previously visited but
unmarked goal location. The goal-cell population
vector is an allocentric direction (e.g. north-west) and
must be translated into an egocentric direction (e.g.
left) before being used. This transformation is simple
given that the robot knows its own orientation, and
might be expected to occur in the posterior parietal
cortex or in the basal ganglia (see Brown & Sharp
1995).

4 . PERFORMANCE

The robot was tested in two rectangular environ-
ments of size 50 cm� 50 cm and 50 cm� 75 cm. Its
movements were tracked by an overhead camera and
tracking system that detected two LEDs on the robot.
Figure 7 shows the robot's exploration of a square
environment. The robot performs well in maintaining
estimates of the distance and direction of each wall
relative to it. Put another way, relative to its environ-
ment, the robot shows good self-localization and
maintenance of sense of direction. Figure 7 also shows
the performance of the robot in returning to an
unmarked reward location having visited it once
previously. The robot also shows generalization in
returning to the goal from novel starting locations.
Figure 8 shows the e¡ect of expanding the environ-

ment after the location of the goal has been learned.
When the environment is increased in size along one
axis, most simulated place ¢elds remain at a ¢xed
distance from one of the two walls, although some
become stretched and bimodal along that axis (see
¢gure 9). This compares well with observed data, in
which the most common pattern was for place ¢elds to
maintain ¢xed positions relative to a wall, although
some became stretched or bimodal (O'Keefe &
Burgess 1996). By contrast, EC-receptive ¢elds are
larger and always remain at a ¢xed distance from two
of the walls, consistent with the reported experimental
data (Quirk et al. 1990). In terms of the robot's beha-
viour, expanding the environment along one axis
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Figure 6. (a) Simple model of place cells and navigation. A
`goal' cell stores a goal's location by taking a snapshot of
place cell activity via long-term potentiation (LTP) when
a goal cell is excited by the attributes of a particular goal
location. Filled circles, active place cells; open circles, inac-
tive place cells; ¢lled squares, potentiated synapses. (b) The
¢ring-rate map of the goal cell in the simple model during
subsequent movements of the rat. This shows the cell's ¢ring
rate as as a function of the location of the rat. It resembles
an inverted cone, and codes for the proximity of the goal
(G). (c) Population-vector model of place cells and naviga-
tion. Each goal location is represented by a group of goal
cells. The ¢ring of each cell indicates that the rat is
displaced from the goal in a particular direction, such that
the population vector of the group of cells represents the
direction and proximity of the goal from the rat. The
¢ring-rate maps of four cells corresponding to the directions
north, south, east and west are shown. G marks the goal
location. Adapted from Burgess & O'Keefe (1995).



e¡ectively stretches out the goal-cell representation
along that axis, but still results in a unimodal search
pattern located between the loci indicated by ¢xed
distances from each of the walls.

The search pattern generated from the hippocampal
representation of space depends on the storage and
output mechanism that makes use of it. The particular
model of this mechanism presented here (i.e. the goal-
cell population vector) leads to the above behaviour.
The way that phase coding is used in this model in the

learning of connection weights to a goal cell leads to the
north goal cell e¡ectively being tied most strongly to
the north wall, and similarly for the south goal cell
and the south wall. Thus, the principal e¡ect of
expanding an environment is a separation of the peaks
of each goal cell's ¢ring-rate map (the locus of search
remaining between them). By contrast, contracting an
environment by a large enough factor can cause the
locations of peak ¢ring of opposing goal cells to cross
over, and produces a more dramatic e¡ect: the robot
searches only at the edges of the environment.
Whether or not these results predict the actual
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(a)
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Figure 7. (a) Exploration of a square environment. Dashes
show the actual path of the robot, each dash representing
0.1 s of simulated time (or about 3 s of real time). Dots show
the robot's estimate of the locations of the walls at each step.
Their proximity to the actual wall locations demonstrates the
maintenance of good self-localization. (b) Navigation
following exploration. The robot received a (simulated)
reward at the location marked O and was then replaced in
the environment in two di¡erent locations and required to
return to the goal location. When searching, the robot
follows the direction indicated by the goal cells at each time-
step, and is successfully guided back to the goal location.

(a)

(b)

Figure 8. Navigation in a square environment to a goal
location (marked by O) before (a) and immediately after
(b) expansion of the environment into a long rectangle.



experimental performance of rats re£ects directly on
the validity of this mechanism. Using a di¡erent
output mechanism, such as the simple model in ¢gure
6(a,b), would have di¡erent consequences for behaviour.

5. DISCUSSION

This model has developed from the work of Burgess et
al. (1993, 1994) and O'Keefe & Burgess (1996). In terms
of the overall aims and structure the work is similar to
recent work by Touretzky & Redish (1996). However,
their aim is more towards integrating suggested
functional roles for many brain regions, whereas that
of the present authors is more directed at the details of
the neuronal implementation. For example, this model
concentrates on the origins of the sensory inputs under-
lying place-cell ¢ring and on how the ¢ring of place
cells could drive navigation (i.e. specifying how a
vector-voting hypothesis could be implemented rather
than simply postulating its existence).
It is noted that the representation of space in the

entorhinal cell layer would be su¤cient to enable
navigation in a single environment if connected
directly to the goal cell layer (presumed to be in the
subiculum, immediately downstream of the place cells
in region CA1 of the hippocampus). It is supposed that
the role of the place cells in regions CA1 and CA3, and
in particular of the long-range recurrent collaterals in
CA3, is to support navigation in several distinct
environments. These recurrent collaterals might enable
the model to form an autoassociative memory for those
place cells active in a given environment. Di¡erent
subsets of place cells could then represent di¡erent

environments, with each subset forming a stable state
of the autoassociator (see also McNaughton & Nadel
1990). The di¡erent responses of ECs and PCs to
changes in environmental shape (Quirk et al. 1992)
indicate that this response might play a role in
environmental recognition. However, modifying the
size and aspect ratio of a rectangular environment
produced parametric changes in place ¢elds (O'Keefe
& Burgess 1996) rather than the discontinuous remap-
ping that might be expected if each environmental
shape was represented by the place cells as an ortho-
gonal attractor state.
Expansion of an environment after the goal location

has been learned stretches the goal-cell representation
of goal location. With the current choice of output
mechanism (see above) this results in a unimodal locus
of search midway between the locations corresponding
to maintaining ¢xed distances from each of the walls
that have been pulled apart. These experiments have
not yet been performed on rats, but the predicted
search behaviour in the expanded environment runs
contrary to that implied by simple extension of the
result of Collett et al. (1986) in which two cylinders
indicating the goal location were moved further apart.
However, the relative indi¡erence of PCs to objects
placed within an environment (Cressant et al. 1997)
compared with their response to the walls of the envir-
onment (O'Keefe & Burgess 1996) may indicate that
this task is not mediated by the hippocampus in any
case. A second prediction concerns the existence of
goal cells, postulated to exist in the subiculum. It
remains to be seen whether cells with the appropriate
¢ring behaviour can be found in this part of the brain.

Finally, the likely e¡ect on the model of preventing
long-term changes of connection weights is noted. This
would lead to an unstable association from ECs to PCs,
leading to an unstable mapping of place ¢elds onto
place cells. This would be consistent with the ¢nding
of Rotenberg et al. (1996) in which place ¢elds were
recorded in mice genetically engineered not to show
long-term potentiation of synapses in region CA1. The
second e¡ect of preventing long-term changes of
connection weights would be the impermanence of the
association from PCs to goal cells, and the loss of the
population vector indicating the direction of the goal
after the time interval over which any short-term
potentiation had occurred. This is consistent with the
behaviour of rats in a water maze after pharmacolo-
gical blockade of long-term potentiation (see Morris &
Frey, this volume).

A preliminary version of this paper can be found in: the Pro-
ceedings of theAISBworkshop onSpatial reasoning inmobile robots
and animals,Manchester,1997.Technical Report Series, Depart-
ment of Computer Science,ManchesterUniversity, ISSN1361^
6161, report no. UMCS-97^4-1. N.B. is supported by a Royal
Society University Research Fellowship; J.O'K., J.D. and
K.J. are supported by a programme grant from the MRC.
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