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Since the discovery of a power law scaling between the mean and variance of natural populations, this
phenomenon has been observed for a variety of species. Here, we show that the same form of power law
scaling also occurs in measles case reports in England andWales. Remarkably this power law holds over
four orders of magnitude. We consider how the natural experiment of vaccination a¡ects the slope of the
power law. By examining simple generic models, we are able to predict the e¡ects of stochasticity and
coupling and we propose a new phenomenon associated with the critical community size.
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1. INTRODUCTION

The last two decades have seen a major synthesis of ideas
from epidemiology and ecology (Anderson & May 1979;
May & Anderson 1979; Grenfell & Dobson 1995; Earn et
al. 1998). Host^parasite interactions have proved to be
some of the best systems for the study of ecological
dynamics, including predator^prey dynamics and natural
enemy interactions in single communities (Dobson 1985;
Grenfell 1988, 1992; Anderson & May 1992), questions of
persistence (Keeling 1997; Keeling & Grenfell 1997),
metapopulation dynamics (Nee & May 1992; Grenfell &
Harwood 1997) and nonlinear behaviour (Olsen &
Scha¡er 1990; Rand & Wilson 1991).

One area of epidemiology which has been relatively
unexplored is the basic relationship between abundance
and variability. The ecological paradigm here is Taylor's
power law (Taylor 1961; Taylor et al. 1978; Taylor &
Woiwod 1980; Anderson et al. 1982; Hanski & Tiainen
1989; Boag et al. 1992). Taylor et al. (1978) proposed a
power law relationship between the mean M and
variance V of natural populations: V /M�. This was
originally interpreted by invoking density-dependent
behaviour of the organisms, leading to di¡ering levels of
aggregation (Taylor et al. 1978). However, Anderson et al.
(1982) pointed out that simple birth^death processes
could also produce power law behaviour.

In order to explore variability^abundance relation-
ships, we ideally require a system with a large quantity of
spatio-temporal data and plausible models. As with many
other theoretical studies in ecology and epidemiology we
propose that the dynamics of measles in developed
countries is highly suitable for exploring this issue.

(i) Data availabilityöin the UK measles is a noti¢able
disease, which has led to a highly detailed spatio-
temporal data set of reported cases. Approximately
60% of all cases are reported and this proportion
remains roughly constant, both over time and

between communities. The available data span a
large range of urban community sizes, from popula-
tions of just over 1000 to London with a population
of several million. This range of community sizes
means that a large variety of behaviour is observed
although all the time-series possess strong biennial
components.

(ii) Modelsöthe majority of compartmental models for
measles are of the SEIR type, classifying individuals
as susceptible (S), exposed (E), infectious (I) or
recovered (R) from the disease. The latest model of
this type is the stochastic, pulsed realistic age-struc-
tured (PRAS) model (Keeling & Grenfell 1997)
which accurately captures the observed qualitative
dynamics (Finkensta« dt et al. 1998) and persistence of
infection.

In this paper, we explore the temporal (as opposed to
spatial) variability in abundance of measles in communities
in England andWales. In the next section we consider the
observed data together with suitable epidemiological
models, using di¡erent historical levels of vaccination as a
natural experiment. In order to interpret the power law of
the mean^variance relationship, we propose a simple
birth^death model; this allows us to analyse the e¡ects of
stochasticity, coupling and community size.

2. THE POWER LAW BEHAVIOUR OF MEASLES

We examine the power law relationship between the
temporal mean and variance, looking for changes in the
exponent (�) as the level of vaccination varies. This is
most easily achieved by measuring the least-squares
gradient of log(variance)^log(mean) plots; power law
behaviour appears as a linear relationship between these
two quantities.

(a) Case reports
Figure 1a shows the mean^variance relationship for

measles case reports, each point representing the mean
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Figure 1. (a) Mean^variance plots for the case reports of measles in 366 communities in England and Wales. The data are
subdivided between the pre-vaccination era (1944^1966, green dots), the 80% vaccination era (1980^1990, red dots) and the
90% vaccination era (1990^1997, blue dots); data from 1968^1980, when the vaccination rate was 60%, shows the same power
law scaling as the pre-vaccination era. The solid black line is the expected results for Poisson distributions where V �M. The
inset graph gives the total number of reported cases in England and Wales, with the bars indicating the three vaccination eras.
(b) Mean^variance plots from 250 years of the PRAS model (Keeling & Grenfell 1997) for the three regimes of 0, 80 and 90%
vaccination. The solid lines show the best power law ¢t to the England and Wales dataöthere is clear agreement between the
model and observations. For the model results in the pre-vaccination era, there is a change in the power law gradient for large
populations (M4 70). The black line is the Poisson distribution.



and variance from one community. The data are taken
from the Registrar General's Weekly Reports and give the
number of reported cases of measles each week in 366
communities in England and Wales. The data has been
partitioned into four eras approximately corresponding to
di¡erent levels of vaccinations. If the number of reported
cases in community i during week w is Ci

w, then the mean
and variance are de¢ned as:

Mi �
1
W

XW
w�1

Ci
w

and

Vi �
1
W

XW
w�1

Ci
w ÿMi

ÿ �2
.

The data from 1944^1968 show a power law scaling
with a gradient of ca. 1.7 holding from populations of just
over 1000 to large cities. As well as reducing the total
number of cases, vaccination also decreases the slope of
the power law (¢gure 1a) bringing the system closer to a
Poisson distribution (V �M). During 1968^1980, when
the vaccination coverage was ca. 60%, there is little or no
change in the mean^variance relationship from the pre-
vaccination case: it is interesting to note that during this
period (1944^1980) the critical community size also
remained constant (Bolker & Grenfell 1996; Keeling
1997). In later eras, vaccination levels reached as high as
80 and 90% and the associated power law gradient, �,
was reduced to 1.5 and 1.2, respectively (¢gure 1a).
Associated with the increase in vaccination is an increase
in the residuals about the power law, this may in part be
due to heterogeneity in vaccination coverage.
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Figure 2. The stochastic dynamics of a population can be expressed as a Markov chain, with the probabilistic rates of increase
and decrease being In and Dn respectively (see text). Below the equilibrium point of the underlying dynamics we expect In to
dominate, while above the equilibrium point Dn should be larger; this leads to a stable distribution of population sizes Pn.

Figure 3. Below the critical point the power law scaling � is, in general, an increasing function of both the randomness R and
the import rate c. As the amount of stochasticity increases the power law asymptotes to 2. � was calculated as the gradient of a
least-squares ¢t to the log(mean) versus log(variance) relationship, over the values of K when extinctions were common. Notice
that power law gradients outside the range 1^2 are associated with extreme import rates. The regions of the graph are colour
coded to show how much of the variance is explained by the power law; red corresponds to greater than 99:9%, green to between
99 and 99:9% and blue to less than 99%.



Not all the cases of measles in a given community are
recorded. If we assume that reporting a case is an
independent random event with probability r, then this
will lead to a binomial distribution. The recorded mean
and variance (M and V) will then be related to the actual
mean and variance ( bM and bV) as follows:
M � r bM
and

V � r2bV � r�1ÿ r� bM.

However, as the variance is usually much greater than
the mean and r � 0:6 (Finkensta« dt & Grenfell 1998)
there should be little change in the power law gradient �,
due to underreporting.

We note that, for all three vaccination eras, the inter-
cept between a Poisson distribution (V �M) and the
mean^variance power law (once the data has been
corrected for underreporting, i.e. using bM and bV) occurs
at a population size of one. Therefore, only isolated indi-
viduals experience a Poisson-distributed force of infec-
tion; the aggregation of individuals in a community
causes aggregated patterns of infection.

(b) A comparison with epidemiological models
Age-structured models of measles, seasonally forced by

school-term structure, have been highly successful
(Schenzle 1984; Bolker 1993); in particular, these models
have been shown to capture the stochastic dynamics of
the disease accurately (Ferguson et al. 1996; Keeling &
Grenfell 1997; Finkensta« dt & Grenfell 1998; Finkensta« dt et
al. 1998). The comparison between models and reported
cases relies on the assumption that there are minimal
changes in population size or other parameters for the
observed data. Small changes in population size or birth
rate will lead to a slight increase in the power law slope �
(Keeling & Grenfell 1999). However, by partitioning the
observed data into biennial cycles we can reduce the
amount of social change in each sample; although these
data are slightly noisier, they display the same power law
gradient.

Figure 1b is the mean^variance relationship for the
PRAS model corresponding to the observed data. We
again witness a decrease in the power law slope with
increasing vaccination, as well as an overall decrease in
the mean. The solid lines in ¢gure 1b are the best ¢t power
laws to the England andWales data, showing that there is
good agreement between the reported cases and model
predictions. As with all stochastic disease models external
imports of infection are necessary to ensure the persis-
tence of the disease. The number of imports used is that
given in Keeling & Grenfell (1999) and, although chan-
ging the import rate has a slight multiplicative e¡ect on
the variance, it does not noticeably change the power law.

The data from the PRAS model is a far tighter ¢t to
the power law curve than observed in real populations.
Even for very short time-series (using just a two-year
sample) the PRAS model still shows far less variation.
This leads us to conclude that the unexplained residuals
in the observed cases are primarily due to external e¡ects
such as di¡erences in birth rate or di¡erent levels of
infection imports in each community.

Although such complex models can reproduce the
observed scaling, it is important to consider what can be
inferred about the disease dynamics from �, the gradient
of the power law.

3. INTERPRETING THE POWER LAW

Anderson et al. (1982) conclude, that the power law
scalings observed for the majority of ecological time-
series generally lie between 1 and 2. This agrees with
results from a variety of one- and two-species models
(Keeling & Grenfell 1999). When � � 1 the population
behaves as if it were composed of many independent
elements (cf. Keeling et al. 1997) or that all events are
independent leading to a Poisson distribution. Therefore,
large amounts of heterogeneity or weak spatial interaction
will reduce � toward unity.

When � � 2, the individual nature of the population is
unimportant, as the standard deviation scales linearly
with the mean. This limit is achieved when the determi-
nistic dynamics swamp the stochastic noise and the
system is homogeneous, but can also be produced when
the stochastic noise is very large relative to the dynamics.
We can see the observed power law as scaling between
these two extremes, from local independence to global
determinism.

The stochastic SEIR model and other compartmental
disease models are more biologically realistic and, there-
fore, more complex versions of simple birth^death
models. However, interpretation of the results from these
disease models is complicated, so simpler, more tractable
models need to be considered.

(a) A demographic model
To understand the origin of power law scaling and the

meaning of the power observed, we shall consider a
single-species stochastic model. Although the metho-
dology given will hold for any such system, we shall
concentrate on the stochastic logistic equation with
imports as the simplest model which displays the full
range of stochastic behaviour.

Given a population of n individuals, we shall assume
that the rates at which the population increases or
decreases by 1 are In and Dn respectively. The underlying
di¡erential equation for the population would generally
be taken as

dn
dt
� In ÿDn � r c� nÿ n2

K

� �
,

where the right-hand side is the logistic equation with
imports, K being the carrying capacity and c the import
rate. The parameter r acts as a temporal scaling, so
without loss of generality we can take r � 1. We assume
that I and D have the following forms (¢gure 2):

In � c� �R� 1�n Dn � Rn� n2

K
.

This formulation for stochastic changes to the population
gives us a Markov chainöthe probability of moving to a
new population level is only dependent on the current
population level. Notice that both the rates contain a
term Rn which cancels; we can therefore use the
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parameter R to increase the amount of stochasticity in the
model without changing its deterministic behaviour.
The probability distribution of population sizes (Pn)

can be found in terms of the rates of change:

dPn

dt
� Inÿ1Pnÿ1 ÿ �In �Dn�Pn � Dn�1Pn�1.

From this in¢nite set of coupled di¡erential equations we
can ¢nd an expression for the equilibrium probability
distribution of the system:

Pn �
Yn
m�1

qm

where

qm �
Imÿ1
Dm

.

From the distribution Pn we can calculate numerically the
expected mean and variance of the population. Note that
in the absence of imports (c � 0) all populations are
doomed to permanent extinction and M � V � 0.

As the carrying capacity K is varied, mean^variance
plots for many one-species systems (with a variety of
functional forms) demonstrate two distinct regions of
power law scaling as discussed later. A more technical
discussion of the behaviour for large populations is given
in Keeling & Grenfell (1999), but, in essence, the power
law frequently asymptotes to either 1 or 2. We shall
initially concentrate on the behaviour for smaller commu-

nities as this most closely matches the observed pattern
for measles in England andWales.

For smaller populations the slope � is found to increase
with the randomness R asymptoting to 2 as R becomes
large (¢gure 3). In agreement with results from the PRAS
model, we ¢nd that, for biologically realistic values,
changes in the import rate c are associated with a multi-
plicative change in the variance but little change in the
power law. The decrease in � associated with higher
levels of vaccination can therefore be compared to R
tending to zero in the logistic modelöthe system then
becomes closer to a Poisson process.

4. THE CRITICAL COMMUNITY SIZE AND A CHANGE

IN THE POWER LAW

Figure 4 shows the mean^variance behaviour for the
stochastic logistic equation; two distinct regions of power
law scaling are observable. When the mean is small, the
distribution of population sizes contains many zeros and
� � 1:6, whereas when the mean is large the distribution
is closer to a Gaussian and � � 1 (see inset graphs in
¢gure 4). The critical point, where the distribution
changes from having many to few zero states, can be
compared to the critical community size for a disease
(Bartlett 1957; Keeling 1997) and for many parameter
values is associated with a jump in the variance. This
jump in variance appears to be due to the distribution
changing from bimodal, with many zeros, to unimodal
with few zeros. As expected, this critical point increases
with the randomness R, but decreases with the import
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Figure 4. The typical mean^variance behaviour for the logistic equation with imports; R � 5 and c � 0:025. There is a clear
decrease in the variance at the critical point which occurs when the mean is around 70. Below the critical point the gradient is
� � 1:6, whereas above the critical point � � 1:00. The long-term distribution of population sizes Pn is shown either side of the
critical pointöthere is a change from dominance of zeros to a monotonic distribution.



rate c. As most communities su¡er frequent fade-outs of
measles, the power law behaviour below the critical point
should most closely match that from the reported cases.
This change in power law is also visible in the pre-

vaccination PRAS model (¢gure 1b) where, above the
critical point of ca. 200 000, the power law scaling
changes to � � 2. Once again the critical point is
associated with a transition from many to few zeros and a
jump in the variance. The power of 2 scaling seen for
large populations is due to the increasing dominance of
the deterministic biennial dynamicsöin this region
stochasticity and the individual nature of the population
have little e¡ect.

Closer examination of the data from the pre-vaccina-
tion era (¢gure 5) shows the residuals from the power law
scaling of � � 1:7, while the change in gradient is
obvious for the model results, there are too few popula-
tions above the critical point for this to be clear in the
England and Wales data. However, we would argue that
unless a power law of 2 eventually holds, then in large
populations the annual or biennial nature of the
epidemics is lost. When �52, the relative magnitude of
the non-stationary dynamics, as measured by the
standard deviation to mean ratio (

p
V/M), decays with

population size. In the absence of seasonal forcing, when
the deterministic dynamics have a ¢xed point attractor,
we ¢nd that about the critical community size the power
law is 1, con¢rming our belief that it is the biennial
dynamics that generate the power of 2.

5. DISCUSSION

Measles data from England and Wales has been shown
to be consistent withTaylor's power law and this relation-
ship is observed to hold over a huge range of population
sizes. The natural experiment of vaccination leads to a
decrease in the power law exponent with the distribution
of cases becoming closer to Poisson. Epidemiological
models are in close agreement with this behaviour, but
show less variability.

The use of simple demographic models has shown that,
in general, the power law � is an increasing function of
the amount of stochasticity in the system, although power
laws close to 2 can also be associated with the dominance
of large-scale deterministic behaviour. As the level of
vaccination increases, so the power law � decreases from
ca. 1:7, when there is little or no vaccination, to ca. 1:2
when ca. 90% of the population are vaccinated. As the
level of vaccination approaches the eradication threshold,
we would expect the number of cases to behave like
uncorrelated white noise and so �! 1. This decrease in
� may be further enhanced by an increase in the level
and scale of heterogeneities (Bolker & Grenfell 1996).
Hence and somewhat surprisingly, there is more stochasti-
city (cf. large R-values) associated with the more regular
dynamics of the disease before vaccination than the noisy
behaviour at high vaccination levels.

The clear change in power law behaviour, for both the
single species model and the PRAS simulation, gives us a
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Figure 5. For each biennial epidemic cycle from 1944 to 1965, the dots represent the residuals from the standard deviation
predicted by the power law for 845 communities in England and Wales. The dots are colour coded red or blue depending on
whether the variance is less than or greater than predicted. By using biennial samples, rather than aggregating over the entire
period, more data points are provided and e¡ects due to changes in the birth rate should be reduced. Black crosses are for results
from the PRAS model; this displays a clear trend for larger variances than predicted at large means.



new method of pinpointing the critical community size.
Unfortunately there are too few data points around the
critical point to determine its precise value, but, in prin-
ciple, this gives us a more robust de¢nition of the critical
community size.

Obviously the data for measles are more complicated
than simple demographic models, for example there is no
¢xed carrying capacity for the number of infectious cases;
instead it is the level of susceptibles that acts to regulate
their level (Finkensta« dt et al. 1998). Other di¤culties are
the existence of biennial cycles in the measles data and
the fact that the amount of stochasticity will vary around
this cycle. Despite this, we believe that the analytical
logistic equation allows us to interpret the more complex
behaviour of measles.
Such clear power law relationships are not exclusive to

measles dynamics; ¢gure 6 shows the mean^variance
behaviour of whooping cough for 60 cities in England
and Wales. Again a clear power law scaling is observed,
with � � 1:6. Therefore, despite a far more complex
natural history than measles, a more intermittent vacci-
nation campaign and a lower rate of reporting (Rohani et
al. 1998) whooping cough still conforms to the power law
behaviour associated with the simple models.

We believe the analytical results we have discussed here
are generic for many ecological systems. Similar mean^
variance relationships are also obtained for a variety of
functional responses in the one-species model, as well as for
more complex two-species simulations. We therefore
predict that two regions of power law scaling separated by
a phase transition should be observed in many stochastic
systems where a large range of means are observed.

This work further strengthens the analogies between
ecological and epidemiological systems and highlights
how epidemiological dynamics are often ideal for testing
ecological theory.
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