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Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic,
exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions and
perimeter–area curves follow power-law scalings. In the coexistence regime, these patterns are robust:
their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend only
weakly on the parameters of the systems. These distributions, in particular the values of their exponents,
are close to those reported in the literature for systems associated with self-organized criticality (SOC)
such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demon-
strate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic
interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes
of growth and inhibition in space, such as those in predator–prey and disturbance–recovery dynamics.
Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions,
would therefore require spatial forcing by environmental variability.
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1. INTRODUCTION

The ‘colour’ of population fluctuations has been a pervas-
ive subject in the recent ecological literature, with titles
such as ‘From out of the blue’ (Sugihara 1995), ‘In the
red zone’ (Blarer & Doebeli 1996), and ‘Red, blue, green:
dyeing population dynamics’ (Kaitala et al. 1997a).
Although the subject has been approached with modern
tools and ideas, including chaotic dynamics and stochas-
ticity, it has deep roots in the early debate of whether
population and community patterns are intrinsic, gener-
ated by ecological interactions and density dependence,
or extrinsic, merely reflecting chance and environmental
fluctuations (Gleason 1926; Clements 1936; Nicholson
1958; Smith 1961).

Colour in temporal dynamics results from patterns of
autocorrelation and refers to the relative dominance of low
and high frequencies. It has been explored with a variety
of models to address population persistence, responses to
environmental variability, and the existence of patterns
that characterize intrinsic versus extrinsic processes (e.g.
Kaitala et al. 1997b; Miramontes & Rohani 1998; Morales
1999; Petchey 2000). Clean signatures identifying these
types of process have been evasive and patterns in nature
most often reflect their complex interplay. The search for
such signatures has, however, greatly increased our under-
standing of this interplay for different types of environ-
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mental fluctuations, and established reference patterns to
gauge specific models. In particular, the initial observation
by Cohen (1995) that complex dynamics in a variety of
simple population models generated similar patterns of
temporal correlation, and that these were opposite to the
ones typically observed in nature, provided a stimulating
starting point to address how modifications of the models
altered the patterns.

In a similar vein, one can ask whether spatial models
with intrinsic interactions that are local generate charac-
teristic signatures. It is well known that spatial ecological
models can generate elaborate spatial patterns in the
absence of an environmental blueprint (e.g. Hassell et al.
(1991) and numerous chapters in Dieckmann et al.
(2000)). Are there common properties of spatial patterns
that are robust to the details and parameters of the local
interactions? We address this question for one class of sys-
tems in which the local interactions are antagonistic, such
as those in predator–prey and host–parasite, but also dis-
turbance–recovery, dynamics. These interactions are
capable of generating oscillations, either decaying or per-
sistent, in temporal models that ignore space and assume
that individuals or patches are well mixed. When space is
introduced, clusters continuously form and disappear (e.g.
Rand & Wilson 1995; Pascual & Levin 1999). To search
for commonalities in ecological patterns generated by local
antagonistic interactions, we chose three models that
incorporate both stochasticity and nonlinearity and treat
individuals or the state of a site as discrete. In all three
models, the local rules modifying the state of a site are
simple but capture essential aspects of the processes of
local growth and inhibition, present in predator–prey and
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Figure 1. Spatial patterns in the predator–prey individual-based model. In the simulation, the size of the lattice is 1000 × 1000
and the boundaries are periodic (�1 = 1/3, �2 = 1/10, � = 1/3 and � = 1). (a) Clusters are shown for a snapshot of the lattice and for
200 × 200 sites after transients have died out. Prey sites are red, predator sites are white, and empty sites are black. (b) The
cluster size distribution shown for the prey in a log–log plot. Cluster frequency decays as a power law with size. The dotted
line indicates the fitted line with slope �1.99. (c) The perimeter t(s) plotted as a function of cluster size. The dotted line
shows the fitted line with a slope of 0.97 and an intercept of 0.974. For both (b) and (c), all prey clusters in 5000 time-steps
were considered.

disturbance–recovery dynamics. We show that the three
models exhibit remarkably similar properties in the
geometry of patches or clusters. In particular, the size dis-
tribution of clusters exhibits power-law scaling with many
small clusters and progressively rarer large ones. Not only
is the type of distribution similar but the associated
exponent is similar among the different models. This
exponent depends only weakly on the specific parameter
values of the models and is indicative of a high degree
of patchiness. It is indeed related to the so-called Korcak
exponent previously applied in ecology to characterize
patchiness (Hastings et al. 1982; Hastings & Sugihara
1993). Another striking power law characterizes the
geometry of the clusters and appears robust across the dif-
ferent models. The perimeter of the clusters scales as a
power law with their size, and does so at almost the high-
est possible rate, with the exponent close to unity. From
this scaling, it can be shown that the ratio of perimeter to
interior becomes independent of cluster size, and that all
clusters have an extensive boundary.

Phil. Trans. R. Soc. Lond. B (2002)

Robust scale invariance in cluster-size distributions
has been observed in other models and in related data
for disturbance–recovery dynamics (Drossel &
Schwabl 1992; Solé & Manrubia 1995; Malamud et al.
1998; Alonso & Solé 2000). In particular, power-law
scalings with similar exponents have been described for
FFMs in association with SOC. We briefly discuss
these models to show the generality of the patterns
described here. FFMs differ, however, from our pred-
ator–prey systems in their underlying assumptions of
openness and separation of time-scales. Thus, taken
together, the models described here and those in the
literature show that power-law scalings in cluster-size
distributions and their specific exponents are generic
properties of spatial systems whose intrinsic local pro-
cesses involve antagonistic interactions. We therefore
argue that strong deviations from these patterns, such
as those previously observed in phytoplankton distri-
butions, must necessarily involve spatial variability of
the environment.
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Figure 2. Spatial patterns for the prey in the food-web model. (a) Sites with prey are coded in red and those with no prey are
coded in black. (b) The cluster size distribution for the prey decays as a power law with an exponent of �1.75. (c) The
perimeter scales as a power law with cluster size, and with an exponent of 0.92. For further details see figure 1 caption.

2. INDIVIDUAL-BASED PREDATOR–PREY
DYNAMICS

The first predator–prey model is an interacting-particle
system (Durrett & Levin 2000) and a successor of an earl-
ier cellular automaton which incorporated individual age
(Dewdney 1988; Sutherland & Jacobs 1994 (we return to
this more detailed version later in § 7)). Space in the
model is given by a 2D lattice in which each site is either
occupied by a prey, occupied by a predator, or empty. All
processes are local and depend on the state of neighbour-
ing sites.

The particular neighbourhood we consider in the simula-
tions consists of the four nearest sites. Prey growth occurs
as a contact process: a prey chooses a neighbouring site at
random and gives birth onto it only if this site is empty at
rate �1. Predators hunt for prey by inspecting their neigh-
bourhood for the presence of prey at rate 1. If prey are
present, the predator selects one at random and eats it, mov-
ing to this neighbouring site. Only predators that find a prey
can reproduce, and do so with a specified probability, �2.
The offspring is placed in the original site of the predator.
Predators that do not find prey are susceptible to starvation
and die with a probability �. Random movement occurs
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through mixing: neighbouring sites exchange state at a con-
stant rate �. Stochasticity in the model is demographic: the
above rates specify probabilities for the associated events to
happen in a given interval of time. Specifically, an event
occurs at times of a Poisson process with the specified rate.
The model is also nonlinear as the rates of local growth and
predation depend on local densities.

Simulations have shown that after transients die out,
prey clusters continuously change as they form and disap-
pear through prey growth and predation (Pascual & Levin
1999; Durrett & Levin 2000). Similar clustering is pro-
duced by other predator–prey systems on 2D lattices (e.g.
Rand & Wilson 1995). Typical patterns are illustrated
with a snapshot of the lattice for one particular parameter
set (figure 1a). Prey clusters appear to span a wide range
of sizes, with spatial correlations developing well beyond
the size of the local neighbourhood of interaction.

To characterize these patterns, we define a prey cluster
as a group of prey sites connected to each other by neigh-
bourhood distances, where the neighbourhood of a site is
identical to that used in the model. We consider the num-
ber n(s) of clusters with a given area s, normalized by the
total number of clusters on the grid, where the size or area
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Table 1. Values of exponent � for prey clusters in the individual-based predator–prey model as a function of parameters �2 (first
row) and � (first column).
(In all simulations, transients are removed for 5000 time-steps. The exponent is computed from the size distribution obtained
for the following 2000 time-steps, and estimated by linear least-square regression. The s.d. are given in parentheses. The exponent
is close to 2 and shows the largest deviations from this value when the probability of reproducing is high and that of starving is
low for the predators.)

�/�2 0.15 0.30 0.45 0.60 0.75 0.90

0.15 2.3730 (0.0032) 2.4902 (0.0046) 2.5923 (0.0061) 2.7310 (0.0083) 2.8731 (0.0110) 2.9442 (0.0132)
0.30 2.1027 (0.0030) 2.2687 (0.0051) 2.2966 (0.0065) 2.3497 (0.0064) 2.4446 (0.0060) 2.5375 (0.0058)
0.45 1.9736 (0.0040) 2.1730 (0.0054) 2.2049 (0.0074) 2.2218 (0.0080) 2.2626 (0.0074) 2.3229 (0.0068)
0.60 1.9116 (0.0052) 2.1099 (0.0054) 2.1601 (0.0075) 2.1675 (0.0090) 2.1864 (0.0087) 2.2162 (0.0083)
0.75 1.8842 (0.0057) 2.0618 (0.0054) 2.1327 (0.0073) 2.1434 (0.0085) 2.1484 (0.0089) 2.1611 (0.0090)
0.90 1.8757 (0.0063) 2.0286 (0.0050) 2.1063 (0.0072) 2.1248 (0.0086) 2.1292 (0.0091) 2.1375 (0.0094)

s is given by the number of sites in the cluster. Figure 1b
shows the distribution of prey clusters on a log–log scale
for n(s) as a function of s. The distribution exhibits power-
law decay over two orders of magnitude with

n(s) � s��, (2.1)

and exponent � = 1.99 (s.d. = 0.0048). Such power-law
distributions have been previously applied to describe eco-
logical patchiness but in their cumulative form
(Hastings & Sugihara 1993). In this form, the number of
clusters N(S) with a size larger than a given value a is
given by

N(s) � s�B, (2.2)

where the exponent B is known as the Korcak exponent.
A cumulative distribution of this form was first introduced
by Korcak to describe the size distribution of Aegean
islands (Korcak 1938; see Hastings & Sugihara (1993) for
ecological discussion). Clearly, the exponents � and B are
related to each other with B = � � 1. The value B = 0.99
obtained here for prey clusters is indicative of a high
degree of patchiness, that is of patterns with many small
patches and a long tail in the size distribution.

Although the results presented so far apply to one parti-
cular parameter set, they are representative of parameter
space as a whole. In particular, the existence of a power-law
scaling for the cluster-size distributions is independent of the
values of �2 and � in the coexistence regime. Only the size
range over which the scaling holds varies, as the maximum
cluster size in the system also varies. More importantly, how-
ever, the values of the exponents (� and B) characterizing
the size distributions depend only weakly on parameter
values. This is illustrated in table 1 for the probabilities �2

and �. A similar range of exponents was observed for different
values of �1 (results not reported here).

Another striking geometrical property regards the
relationship between the perimeter and the area of prey
clusters. It is at this boundary that the processes of prey
growth and predation occur. Therefore, its extent effec-
tively determines how space alters the rates of these pro-
cesses. We describe here another power-law scaling which
demonstrates a fast accumulation of perimeter with area,
and implies a low interior fraction for the clusters, regard-
less of their size.

We define the perimeter of a prey cluster as the set of
prey sites belonging to the cluster with at least one non-
prey neighbour (where a non-prey site is either occupied
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by a predator or empty). The mean perimeter t(s) is then
given by averaging over the size of individual perimeters
for all clusters of the same area s. Figure 1c shows that
the perimeter scales with the area as

t = bs�, (2.3)

with the exponent � very close to unity. Thus, the per-
imeter grows as a power law of the area and does so almost
at the fastest possible rate. Compare this observation with
that expected for clusters with a regular geometry for
which the perimeter scales as s0.5.

Figure 1c also shows that the scaling coefficient b is itself
close to unity, as the intercept of the line is close to the
origin of the log–log plot. The twin results �, b � 1 are
important indicators of the ramified structure of prey clus-
ters. This can be illustrated by defining the cluster interior
fraction f(s) = (s � t)/s and noting that

f(s) = 1 � bs��1. (2.4)

For � � 1, it follows that f � 1 � b and therefore that
the interior fraction f becomes almost independent of clus-
ter size. Furthermore, for b � 1, the value of f is close to
zero and the clusters have very small interior, irrespective
of their sizes. This observation is easily confirmed by
directly computing f as a function of s. Not only does it
remain constant but, for the simulation of figure 1, it does
so at a value of 0.20. In other words, on average, almost
80% of the cluster area is made up of its perimeter. These
results are again robust to changes in parameter values:
the exponent � depends only weakly on the rates of pre-
dation and growth. For example, for the values of �2 and
�2 in table 1, � falls in the interval (0.92, 0.96).

Thus, the local interaction of predator and prey gener-
ates patterns with characteristic power-law scalings in the
cluster-size distribution and in the perimeter–area
relationship. We show next that the same power-law scal-
ings are produced by another predator–prey system, in
which the resource that limits prey growth is modelled
explicitly.

3. INDIVIDUAL-BASED FOOD-WEB DYNAMICS

The second model is motivated by predator–prey inter-
actions in plankton. In particular, the growth of the prey
is determined by a limiting nutrient, which diffuses freely
to adjacent sites in the lattice. The space as before is 2D
but sites within the lattice can harbour multiple individ-
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Table 2. Values of exponent � for the prey clusters in the food-web model as a function of parameters �2 (first row) and �
(first column).
(The values of this exponent are given only for the region of parameter space in which we observe coexistence and a continuous
cluster size distribution. For low grazing (low �2) and high starvation probabilities (high �), the predator is unable to persist and
the system reaches an absorbing state with the prey occupying the whole lattice. As for table 1, transients are removed for 5000
time-steps. The coexistence of predator and prey is verified for a much longer period (20 000).)

�/�2 0.15 0.30 0.45 0.60 0.75 0.90

0.15 — 1.8433 (0.0032) 1.8233 (0.0052) 1.8418 (0.0050) 2.0117 (0.0130) 2.1746 (0.0194)
0.30 — — 1.8249 (0.0043) 1.8029 (0.0074) 1.7055 (0.0058) 1.6790 (0.0033)
0.45 — — — 1.8640 (0.0052) 1.7791 (0.0083) 1.6995 (0.0075)
0.60 — — — — 1.8578 (0.0064) 1.7583 (0.0084)
0.75 — — — — 2.0921 (0.0027) 1.8288 (0.0073)
0.90 — — — — — 1.9298 (0.0056)

uals for both the predator and prey. The sites can be
thought of as areas over which the nutrients are accessible
to prey and over which predators can forage during a time-
step. The presumption is that this region is large enough
to contain a number of individuals but smaller than the
scale of groups. Predation and reproduction occur within
a site, and the spatial coupling between sites occurs
through the random mixing of individuals and the dif-
fusion of nutrients.

We implement the model as a cellular automaton by
treating time as discrete and therefore synchronously
updating the sites in the lattice. In one time-step, a prey
takes up nutrients within the same site with a probability
�1. For simplicity, we assume that the nutrient concen-
tration has been normalized so that uptake occurs in units
of one. Nutrient uptake by a prey leads to production of
one offspring in the same site. A predator finds and eats
prey with a probability �2, in which case it produces one
offspring in the same site. If the predator fails to find a
prey, it starves and dies with a probability �. So far all
processes are local, applying to each individual within a
site. Once the whole lattice is updated, random mixing of
individuals and nutrients couples the dynamics of the sys-
tem across sites. Each predator and prey moves, with a
probability � to one of the sites in a local neighbourhood
given by the four nearest neighbours and the original site.
The same neighbourhood is used to implement the move-
ment of nutrients with a diffusion coefficient D, by discret-
izing the diffusion operator. In all simulations, boundaries
are periodic.

Simulations of the model show that the prey aggregates
into patches. To characterize these spatial patterns, we
focus as before on the size of prey clusters. To define clus-
ters, we first translate the spatial distribution of abun-
dances into presence or absence of the prey population in
a site. Figure 2a shows a snapshot of the resulting clusters.
After transients die out, these clusters form and disappear
continuously throughout space, as nutrients fluctuate and
populations of prey and predators go locally extinct but
recolonize new sites. The resulting size distribution is
similar to the one described before for the individual-
based predator–prey model. It is given by a power law with
exponent � = 1.75 (0.0049) (figure 2b). In the coexistence
regime, the value of this exponent varies weakly with
model parameters. This is shown in table 2 for the para-
meters of the predator–prey interaction.

A power-law scaling also holds for the perimeter of the
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clusters as a function of area (figure 2c). The exponent is
again almost unity (� = 0.92) and it varies weakly with the
parameters of the interactions, falling within the interval
(0.87, 0.99) for the parameters of table 2. The associated
interior fraction is again low, with the perimeter account-
ing on average for 75% of the cluster in the simulation of
figure 2.

Thus, the two models exhibit similar power-law scal-
ings for the prey clusters, in spite of significant differ-
ences in the details of the processes and implementation.
The food-web model is implemented as a cellular
automaton, while the predator–prey model is an inter-
acting-particle system. The former model further con-
siders a spatial scale of interaction larger than that of the
individuals, in which sites of the lattice contain subpopul-
ations of the predator and prey. The spatial coupling
across subpopulations is given through the diffusion of
nutrients and the random mixing of individuals. In both
models, however, the local growth of clusters is limited
by a resource, either space or nutrients, and inhibited
by predation. Similar processes of growth and inhibition
occur in the spatio-temporal dynamics of disturbance
and recovery. We consider this type of dynamics next;
first with a model for gap dynamics in intertidal mussel
beds, and then through comparison with the literature on
forest-fire dynamics.

4. DISTURBANCE–RECOVERY DYNAMICS

The MDM was developed to explore the role of local
interactions between physical disturbance and biological
processes in marine benthic communities (Guichard et al.
2002). In communities dominated by mussels, wave
action is often an important source of disturbance, cre-
ating gaps in the mussel bed which are progressively reco-
lonized by a series of opportunistic species and finally by
mussels. The model is lattice based and describes space
occupancy by mussels over a homogeneous midzone inter-
tidal area.

The MDM assumes that a few strong waves create
initial gaps in the mussel bed but that most waves are only
able to spread the disturbance by removing unstable mus-
sels along recently disturbed edges. Similarly, the MDM
assumes that mussels will recolonize gaps along edges of
the bed, thus allowing nearest-neighbour interactions for
both disturbance and recovery (recolonization). MDM
was built as a generalized FFM allowing local interactions
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Table 3. Values of exponent � for clusters of the mussel bed in the disturbance–recovery model, as a function of parameters �d

(first row) and �r (first column).
(In all simulations, transients are removed for 5000 time-steps. The exponent is estimated by linear least-square regression for
the size distribution obtained in the following 2000 time-steps. Values are reported only for the cases in which the different types
coexist and the size distribution is continuous. If the disturbance probability is not sufficiently high, the mussel bed takes over
and the system reaches an absorbing state. For the reported values, we consider that the system is in the coexistence regime if
all types persist after 20 000 time-steps. The size of this region depends also on the rate at which new disturbances are initiated,
which has been kept constant here. The exponent shows the largest deviations from a value of 2 when both the disturbance and
the recovery probability are high.)

�r/�d 0.80 0.85 0.90 0.95 1.00

0.550 — — — — 1.9115 (0.0027)
0.625 — — — 1.9349 (0.0031) 1.8040 (0.0031)
0.700 — — 2.0105 (0.0034) 1.8380 (0.0028) 1.7283 (0.0031)
0.775 — — 1.9174 (0.0024) 1.7735 (0.0025) 1.6788 (0.0030)
0.850 — 2.0603 (0.0028) 1.8533 (0.0026) 1.7210 (0.0027) 1.6460 (0.0024)
0.925 — 1.9901 (0.0031) 1.8031 (0.0025) 1.6873 (0.0023) 1.6232 (0.0024)
1.000 — 1.9410 (0.0024) 1.7662 (0.0026) 1.6633 (0.0023) 1.6116 (0.0018)
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Figure 3. Spatial patterns in the mussel-disturbance model. (a) Red sites are occupied by the mussel bed, white sites are
disturbed, and black sites are empty. (b) The size distribution for clusters of the mussel bed decays as a power law with an
exponent of �1.82. (c) The perimeter scales as a power law with cluster size, and with an exponent of 0.97. For further
details see figure 1 caption.
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during the regrowth process, which is implemented as a
constant rate in the FFM.

Each cell of the lattice is defined by three states: empty,
occupied or disturbed. The disturbed state is the equival-
ent of burning trees in the FFM and refers to newly dis-
turbed mussels leaving unstable edges along the bed,
which is then more susceptible to disturbance. During the
asynchronous update, an empty site becomes occupied
with probability �r if at least one of its four nearest neigh-
bours is occupied. An occupied cell becomes disturbed
with a probability �d if at least one of its neighbours is
disturbed. The probability of a new disturbance is
�0 = 2 × 10�6. All simulations are run with periodic bound-
ary conditions.

The relative values of the parameters �r and �d deter-
mine the long-term behaviour of the system. Different
asymptotic states, including absorbing ones, are possible.
For example, when the disturbance probability �d is too
low relative to the probability of recovery �r, the disturbed
state is unable to persist and the mussel bed eventually
covers the whole lattice. We focus here on the spatial pat-
terns of the system when the occupied and disturbed states
coexist. In this case, there is formation of clusters in the
mussel bed after transients die out. Figure 3a shows a typi-
cal configuration of the lattice. As for the predator–prey
models, the clusters continuously form and disappear at
different spatial locations. The resulting cluster-size distri-
bution decays as a power law with exponent � = 1.82
(0.0012) (equation (2.1); figure 3b). This power-law sca-
ling persists as we vary the parameters of the model within
the coexistence region. The exponent itself decreases from
a value close to 2 for parameters near the transition
between the coexistence regime and the absorbing state,
to 1.6 for high �r and �d (table 3).

Cluster geometry is also similar to that of the predator–
prey systems with regard to the extensive nature of the
boundary. Specifically, cluster perimeter grows with area
as a power law with exponent � = 0.97 (figure 3c). From
this curve, we can again show that the interior fraction of
the clusters is low with f = 0.35. In the coexistence regime,
the exponent � varies weakly with parameter values, falling
within the interval (0.94, 0.99).

In summary, the three models described so far exhibit
spatial self-organization in the coexistence regime, in the
sense of generating spatial patterns characterized by
power-law scalings. The patterns are characterized by the
absence of a characteristic cluster size and the existence
of correlations at spatial scales much larger than those at
which the local processes operate. Importantly, the emer-
gence of these patterns does not require the ‘fine tuning’
of any particular parameter. In fact, we have shown that
not only the existence of power-law scalings but also their
specific exponents are robust to changes in parameters
within the coexistence region.

5. RELATED MODELS AND SOC

Similar properties have been described for other sys-
tems, specifically those associated with SOC (Bak et al.
1988, 1990; Drossel & Schwabl 1992). FFMs are of parti-
cular relevance here since they address dynamics for dis-
turbance and recovery (e.g. Drossel & Schwabl 1992;
Grassberger 1993). FFMs have also been applied to the
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dynamics of epidemics in isolated populations (Rhodes &
Anderson 1996; Rhodes et al. 1997), with the infection
propagating through small susceptible populations. Inter-
estingly, FFMs exhibit power-law scalings in the size dis-
tribution of tree clusters, and both numerical and
analytical results have demonstrated that the correspond-
ing scaling exponent � = 2 (Drossel & Schwabl 1992; Clar
et al. 1999; Gabrielov et al, 1999). Patterns for forest fires
in nature have shown remarkable agreement with pre-
dicted scalings (Malamud et al. 1998).

Our models differ, however, from FFMs and other SOC
systems in important ways. Most importantly, they lack
one key assumption of FFMs, the separation of time-
scales. In FFMs associated with SOC, the sites of a lattice
can be in any one of three possible states: empty, occupied
by a tree, or occupied by a burning tree. Disturbances or
fires propagate rapidly as trees with nearest neighbours in
the burning state catch fire. New disturbances are initiated
by ‘lightning’, which allows trees with no burning neigh-
bours to ignite spontaneously. Recovery, the growth of
trees onto empty sites, occurs via open recruitment from
outside the system. Two basic parameters define key time-
scales: the tree growth rate, p, and the lightning or spark-
ing rate f. Critical behaviour and the associated power laws
are found when the following condition holds:

t(smax) � p�1 � f�1, (5.1)

where t(smax) is the time taken by large clusters (or the
order of the lattice size) to burn completely (e.g. Drossel &
Schwabl 1992; Rhodes et al. 1997). Thus, there is a clear
separation of time-scales, with defined disturbance events
in which fire spreads rapidly relative to the time-scale of
recovery, and long periods of stasis in which tree growth
proceeds before the initiation of a new fire. This separ-
ation of time-scales is absent from our predator–prey mod-
els, and is not required in the disturbance–recovery model
to produce the described power-law scalings. For the
parameter range considered here, the rates of disturbance
and recovery are indeed of the same order.

Another difference with FFMs is the treatment of recov-
ery as a local process involving the state of neighbouring
sites. In this regard, the predator–prey models offer an
even larger contrast, as all processes are local involving
nearest-neighbour interactions. The systems are in this
sense closed, with no recovery (prey growth) or initiation
of new disturbances (predation) driving the dynamics as
an external forcing. Thus, spatial self-organization with
similar patterns to those described for SOC systems is
possible under a different and complementary set of
assumptions.

6. TEMPORAL DYNAMICS

The lack of separation in time-scales leads also to differ-
ences in the temporal dynamics of densities between our
models and systems previously associated with SOC. In
the latter, time-series for the abundance or density of the
disturbed state (i.e. burning fires, infected individuals)
exhibit intermittent fluctuations, with short-lived bursts
separated by long periods of recovery, as disturbances
propagate and decay rapidly (e.g. Rhodes & Anderson
1996). The distribution of event sizes is described by a
power law specifying the frequency of fires or epidemics
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Figure 4. Parameter space �2 (predator’s probability of
reproducing) and � (predator’s probability of starvation),
showing the bifurcation line at which the equilibrium loses
stability.

as a function of their size (e.g. Rhodes & Anderson 1996;
Rhodes et al. 1997; see also Keitt & Marquet (1996) for
an example in a different ecological context). Because dis-
turbances propagate rapidly, event sizes in time closely
reflect disturbance sizes in space.

When time-scales are comparable, as in the predator–
prey and mussel-bed model, this temporal scaling does not
hold. There are no intermittent short-lived events in the
density of the disturbed state (i.e. predator, disturbed
mussel bed) but more regular oscillations whose ampli-
tudes decrease with the spatial scale of averaging (Rand &
Wilson 1995; Pascual & Levin 1999; Durrett & Levin
2000; Pascual et al. 2001). These oscillations are aperiodic
at intermediate scales, and become small deviations
around an apparent steady state at large scales (of the size
of the lattice). Pascual et al. (2001) provide an explanation
for this change in the amplitude of the cycles and for
their aperiodicity.

These temporal dynamics occur in the spatial system
when the corresponding mean-field equations display
either limit cycles or decaying oscillations towards an equi-
librium (Durrett & Levin 2000; Pascual et al. 2001). The
mean-field equations are written under the assumption
that individuals are well mixed and that therefore, at any
site in the lattice, local interactions occur according to
mean densities. These equations are given in Appendix
A for the predator–prey model together with the stability
analysis of the equilibrium. Figure 4 shows the resulting
bifurcation line separating limit cycles from an oscillatory
approach to equilibrium in the parameter space (�2, �).
Thus, oscillations, whether persistent or decaying, are
always present in the mean-field dynamics for the para-
meters of table 1. We claim, but it remains to be shown,
that this type of dynamics in the mean-field equations uni-
fies the spatio-temporal models considered here.
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7. CONCLUSIONS

We have shown that three different models, both spatial
and stochastic, exhibit similar scaling patterns in the size
distribution and perimeter-size relationship of clusters.
These power-law scalings result from local antagonistic
interactions, and imply both the lack of a characteristic
cluster size and the existence of spatial correlations, at dis-
tances larger than those of the local processes, in the
absence of any environmental blueprint. In this sense, we
refer to the emergence of these patterns from local intrin-
sic interactions as spatial self-organization. The scaling
exponents characterizing the patterns were also shown to
depend only weakly on parameter values in the coexist-
ence regime. The negative exponent of the size distri-
bution reflects many small clusters accompanied by
progressively rarer large clusters. From this distribution, a
patchiness exponent or Korcak exponent can be com-
puted, which in all cases is larger than 0.5 and typically
close to 1, indicating a high degree of patchiness in the
systems. The perimeter-size exponent is tightly clustered
below 1 for all models and parameters considered. Thus,
the perimeter grows rapidly with size and does so at almost
the highest possible rate. Together with the intercept, the
value of this exponent shows that clusters have a remark-
ably low interior, or equivalently an extensive perimeter,
and that this feature is independent of cluster size, holding
for the largest clusters.

We have varied parameters widely but away from the
limit in which a clear separation of time-scales exists.
Such a separation is a key assumption of FFMs, which
exhibit power-law scalings in cluster-size distributions
similar to the ones described here. Thus, we have argued
that the existence of such power laws does not necessar-
ily require this assumption. This scaling appears to hold
for a broad class of systems for antagonistic ecological
interactions, encompassing those associated with SOC
and the examples in this paper. Together with the
described power law for cluster perimeter, this scaling
provides a signature for intrinsic dynamics in spatial sys-
tems for antagonistic interactions. We expect it to hold
in other models, regardless of the details of local inter-
actions, not only for predator–prey and disturbance–
recovery but also for host–pathogen dynamics (e.g. Rand
et al. 1995; Keeling 2000).

Evidence for power-law scalings in cluster-size distri-
butions has been reported for vegetative ecosystems
(Hastings & Sugihara 1993). The associated Korcak
exponent varies across systems and with the degree of
human perturbation, but values are typically larger than
0.5 and as high as 0.8 (Hastings et al. 1982; Hastings &
Sugihara 1993; Xiao-Ping et al. 1999). The shapes of clus-
ter boundaries have also attracted attention, and estimates
using fractal dimensions, for example for patches in a
deciduous forest, indicate a large accumulation of peri-
meter (Krummel et al. 1987; Hastings & Sugihara 1993).
Further measurements of this type would be of interest.

Perhaps a more important question than whether the
scalings are common in nature is under what conditions
they do break down. We view these patterns as one
extreme from which to examine how added realism, such
as environmental heterogeneity and non-random disper-
sal, modifies them. An earlier study with a precursor of
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WATOR in which individual age was taken into account
as well as a larger neighbourhood, shows power-law sca-
ling in the cluster-size distribution (Sutherland & Jacobs
1994). However, a break-point appears and separates two
scaling regions, with a flattening of the slope for the larger
clusters. A similar break appears in our model when eight
instead of four adjacent neighbours are considered.
Although not pronounced, it appears linked to the appear-
ance of much larger clusters. The mechanism generating
this break remains to be understood. It is interesting to
note, however, that the existence of break-points in power
laws has typically been interpreted as evidence for a
change in the underlying processes (e.g. Bradbury et al.
1984; Krummel et al. 1987; Meltzer & Hastings 1992).
No such change is present here in the predator–prey
model.

A more extreme deviation from the described patterns
has been observed in marine ecosystems in association
with plankton. Phytoplankton patchiness has been ana-
lysed using variance spectra and typically shown to follow
a power-law form but with higher variance at the larger
wavelengths (e.g. Denman & Platt 1976; Gower et al.
1980; Weber et al. 1986). We can therefore infer that clus-
ter-size distributions would exhibit a power-law scaling
but with a positive slope. This inversion from the negative
slope described here is consistent with the well-studied
explanations for plankton patchiness and with the ingredi-
ents of models that reproduce it, including turbulent cas-
cades and variability of the environment (e.g. Bennett &
Denman 1985; Powell & Okubo 1994; Abraham 1998).
We argue more generally that pronounced deviations from
the patterns described here will require extrinsic factors in
the form of environmental forcing.

An inverse cascade model, opposite to the one invoked
for turbulence in plankton patchiness, has recently been
proposed as an explanation for the dynamics and self-simi-
lar scalings of clusters in FFMs and other systems
described as SOC (Gabrielov et al. 1999). In this cascade,
elements are introduced at the smaller scale, which then
coalesce to form larger and larger clusters, with the ulti-
mate loss of the largest ones. A similar cascade from small
to large clusters may arise more generally from local eco-
logical interactions and underlie the patterns described
here.

Finally, approaches to tackle the dynamics of systems
with large numbers of distributed variables have been
summarized as falling into two different classes: (i) those
that reduce the dimensionality of the system to consider
simpler and more tractable dynamical models; and (ii)
those that search for simple statistical patterns characteriz-
ing the full set of variables (Keitt & Stanley 1998). Numer-
ous examples of the former can be found in the recent
literature on spatio-temporal dynamics (e.g. Levin &
Pacala 1997; Dieckmann et al. 2000; Pascual et al. 2001),
and of the latter, in macroecological studies. Much less
understood are the links between these complementary
approaches. The existence of robust power-law scalings
characterizing statistical patterns may provide a basis for
model simplification. A simple modification of the mean-
field equations accounts for the effects of spatial pattern
and approximates accurately the dynamics of population
densities at large scales in one of the predator–prey sys-
tems described here (Pascual et al. 2001). The connection
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between this approach to simplify the system and the
geometry of the spatial patterns remains to be explored.
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APPENDIX A: BIFURCATION ANALYSIS FOR THE
MEAN-FIELD PREDATOR–PREY MODEL

Durrett & Levin (2000) show the existence of a Hopf
bifurcation for the mean-field equations of the predator–
prey model. We specifically derive here the bifurcation
curve in parameter space (�2, �) for which the equilibrium
loses stability. This curve is plotted in figure 4.

The mean-field equations for the predator–prey model
are

dp/dt = �1p[1 � (p � h)] � h[1 � (1 � p)q], (A 1)

dh/dt = �2h[1 � (1 � p)q] � �h(1 � p)q (A 2)

(Durrett & Levin 2000). These equations have a non-triv-
ial equilibrium, and linearization around this point yields
two eigenvalues 	i (i = 1,2) given by a conjugate pair
(Durrett & Levin 2000). The real part of these eigenvalues
is Re(	i) = T/2, where T is the trace of the Jacobian matrix
associated with the linear system. Thus, Re(	i) changes
sign, and therefore the equilibrium becomes locally
unstable, when T = 0. With H = �2/(�2 � �), we can write

T = �1(2H1/q � 1) �
�1H1/q(1 � H1/q)(�1 � qH(q�1)/q)

1 � H � �1(1 � H1/q)
.

(A 3)

For q = 4 and �1 = 1/3, one can symbolically solve T = 0
to obtain H = c, with c = 0.2915. This yields the equation
for the bifurcation curve on the plane (�2, �):

�2 =
c

1 � c
�, (A 4)

which is a straight line with slope c/(1 � c) = 0.4114 and
zero intercept. This is plotted in figure 4 for different
values of �2 and �. One can also numerically show that
the discriminant of the Jacobian matrix is negative, which
implies that 	i are a complex conjugate pair, on the entire
(�2, �) plane. Thus, the approach to equilibrium is oscil-
latory.
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GLOSSARY

FFM: forest-fire model
SOC: self-organized criticality
2D: two dimensional
MDM: mussel-disturbance model


