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Role of uncertainty in sensorimotor control
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Neural signals are corrupted by noise and this places limits on information processing. We review the
processes involved in goal-directed movements and how neural noise and uncertainty determine aspects
of our behaviour. First, noise in sensory signals limits perception. We show that, when localizing our
hand, the central nervous system (CNS) integrates visual and proprioceptive information, each with differ-
ent noise properties, in a way that minimizes the uncertainty in the overall estimate. Second, noise in
motor commands leads to inaccurate movements. We review an optimal-control framework, known as
‘task optimization in the presence of signal-dependent noise’, which assumes that movements are planned
so as to minimize the deleterious consequences of noise and thereby minimize inaccuracy. Third, during
movement, sensory and motor signals have to be integrated to allow estimation of the body’s state. Models
are presented that show how these signals are optimally combined. Finally, we review how the CNS deals
with noise at the neural and network levels. In all of these processes, the CNS carries out the tasks in
such a way that the detrimental effects of noise are minimized. This shows that it is important to consider
effects at the neural level in order to understand performance at the behavioural level.
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1. INTRODUCTION

Neural signals are noisy and this limits the amount of
information that a signal can contain. The noise at the
single neuronal level translates into uncertainty and varia-
bility at the higher, cognitive level. For instance, noise in
sensory information about an object’s location leads to
uncertainty in the position at which the object is per-
ceived, and noise in motor commands results in move-
ment inaccuracy and variability. Noise at the neural level
therefore has direct effects at the cognitive level. In this
paper, we explore these effects. We mainly use goal-
directed arm movements as an example to illustrate the
effects.

Goal-directed movements require several different pro-
cessing steps. First, the target and the hand have to be
localized. Second, motor commands have to be determ-
ined that can bring the hand to the target position. Finally,
the motor commands have to be sent to the arm muscles,
resulting in a movement. Neural noise is present at all of
these stages and a main theme of this review is that the
strategy used to achieve these processes is the one that
minimizes the detrimental effects of neural noise. The
emerging view therefore is that the neural control of move-
ments, but possibly of other tasks as well, has evolved to
maximize fitness. Through natural selection, movement
control may have been ‘improved’ until performance was
limited by biophysical constraints, thereby reaching a glo-
bal or local optimum. Clearly, neural noise is one of the
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important constraints. Therefore, some of the CNS’s
functioning at the higher, cognitive level can be under-
stood from the properties of the underlying activity at the
lower, neural level.

In this review, we first describe how noise in sensory
signals limits spatial perception and how information from
different sensory modalities is combined so as to minimize
the perceptual uncertainty. We then describe a control
framework called TOPS, which formulates how goal-
directed movements are planned on the basis of the
expected effect of noise in motor commands. We show
how the nervous system combines noisy sensory signals
and noisy motor output signals during a movement to
allow the state of the body to be estimated, and show how
these mechanisms can be used to reduce the uncertainty
about whether sensory information is due to changes
induced by one’s own action or by events in the outside
world. Finally, we explain how uncertainty can be enco-
ded and decoded by neural networks.

2. SENSORY NOISE

If we want to make a goal-directed reaching movement,
the nervous system first has to have spatial information
about the target and the hand. Their positions are
important, as are their orientation, size, shape, etc. Sen-
sory information is used to estimate these quantities.

The amount of information that sensory signals convey
about the outside world and about the state of one’s body
is limited. At the neural level, this is reflected by noise in
the neural signals. Neural noise can lead to two kinds of
imperfections that can be quantified at the higher level:
accuracy, which refers to constant errors, and precision,
which refers to variable errors and uncertainty. Here, we
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mainly address limitations on the precision because these
are a direct consequence of neural noise.

Precision is limited by the properties of the sensory
receptors. For instance, the size of photoreceptors in the
retina sets a limit to visual acuity. Because continuous sig-
nals in the outside world must be coded by discrete spikes,
noise may be added at later processing stages, which
further reduces the precision. Spatial and geometric fac-
tors can also play an important role in shaping the charac-
teristics of the precision at the perceptual level. This will
be illustrated for visual and proprioceptive information
about the position of one’s hand.

Visual and proprioceptive localization have been studied
in the horizontal plane at waist level (van Beers et al
1998). It was found that, for both modalities, precision
depends on the position and, for a given position, the pre-
cision also depends on the direction considered. For visual
localization, precision decreases with increasing distance
from the observer and localization is less precise in depth
than in azimuth. This reflects that it is more difficult for
the visual system to judge distance than direction (Foley &
Held 1972), which is also partly due to the geometry of
the setting in which subjects look slantwise down on the
table. It is different for proprioceptive localization. Pre-
cision decreases with increasing distance from the
shoulder, but here, localization is more precise in depth
than in azimuth. This is mainly a geometric effect (van
Beers er al. 1998). Assuming that proprioceptive signals
reflect joint angles, the observed pattern can be under-
stood by transforming these signals from joint angles to
hand positions (known as the kinematic transformation).
Consider, for instance, an almost extended arm (see figure
1). Uncertainty in both the shoulder and elbow angles
translates into uncertainty in hand position mainly in azi-
muth, with less uncertainty in the distance from the
shoulder. According to such principles, the 2D precision
should vary with arm posture, and this has been observed
experimentally (van Beers er al. 1998). The precision of
both visual and proprioceptive localization thus simply
reflects noise in the sensory signals that is translated into
the perceptual domain. This is, in essence, also true for
auditory localization, which is most precise directly in
front of and behind the observer and decreases monoton-
ically towards the periphery (Fedderson ez al. 1957). This
follows from how properties of wave sounds moving
around the head vary with direction, but the situation here
is more complicated because it also depends on the fre-
quency and, especially for estimating elevation, on the
spectral shape of the sound (Middlebrooks & Green
1991).

When localizing the hand on the basis of simultaneous
visual and proprioceptive information, the question arises
as to how the CNS integrates the information from differ-
ent sources. This issue of multisensory integration is of
fundamental importance because in everyday life there is
an abundance of information from various senses, and
combining this into a single percept is one of the complex
tasks that our CNS accomplishes continuously. The
mechanism can be understood from the non-uniform pre-
cision of visual and proprioceptive localization, as
explained above. When the right hand is in front of and to
the left of the body, the visual and proprioceptive precision
ellipses are approximately orthogonal to one another
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Figure 1. Illustration of the relationship between noise in
proprioceptive signals about shoulder and elbow angles and
the resulting uncertainty in finger localization. Ellipses
represent the precision of proprioceptive localization. The
narrower an ellipse in a certain direction, the more precise is
the localization. For the almost extended right arm shown
on the left, noise in information about the shoulder (dashed
lines) and elbow angles (dotted lines) results in uncertainty
in approximately the same direction. This results in a
relatively high precision in depth, and low precision in
azimuth. For the more flexed right arm shown on the right,
noise in information about shoulder and elbow angles has
effects in different directions. In addition, the effect of
shoulder noise is much less than for the extended arm
because the distance between the hand and the shoulder is
smaller. Consequently, the precision ellipse is smaller and
has a different orientation.

(figure 2a). In general, visual and proprioceptive localiz-
ation have different constant errors (Warren & Schmitt
1980); therefore the visual and proprioceptive ellipses
have been plotted at different locations in figure 26. One
can now ask where, and with what precision, is the hand
localized if both senses provide information simul-
taneously? There are several possibilities. First, one
modality could completely dominate, and the information
from the other modality may not be used at all. Second,
the CNS could calculate the arithmetic mean of the pos-
itions sensed by each modality. Finally, the CNS could
calculate a more complicated average.

Absolute dominance of one modality would imply that
the hand is localized exactly the same as if the other
modality were not present. Simple averaging, irrespective
of the direction-dependent precision, would mean that it
is localized on the straight line between the centres of the
visual and proprioceptive ellipses. In the case of an arith-
metic mean, the percept would be exactly halfway between
the two centres, whereas it could be at other places on the
straight line were a weighted mean calculated (the larger
a modality’s weight, the closer it will be localized to the
centre of that ellipse). The optimal weighted mean (i.e.
the one producing the smallest variance) is illustrated by
the dashed circle in figure 2b. This seems a reasonable
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Figure 2. Optimal integration of visual and proprioceptive information about the position of the right hand. (a) Top view of a
subject. For this hand position, the ellipses representing the precision of visual and proprioceptive localization (not to scale)
are approximately orthogonal. (b) The visual and proprioceptive ellipses have been plotted at different locations to reflect that
vision and proprioception generally have different biases. If integration of visual and proprioceptive information would amount
to weighted averaging, irrespective of the direction-dependent precision, the seen hand would be localized on the straight
(dashed) line. The circle labelled ‘suboptimal integration’ represents the best (i.e. producing the smallest variance) way in
which this can be done. However, optimal integration does take the direction-dependent precision into account, and this
predicts that localization of the seen hand will be as indicated by the ellipse labelled ‘optimal integration’. This is the smallest
ellipse that can be obtained, indicating that this method minimizes the uncertainty in the overall estimate.

way to fuse the information, but in 2D space there is
a better way. The maximum-likelihood estimate
(Ghahramani er al. 1997), based on the 2D precision of
visual and proprioceptive localization, is illustrated by the
smallest ellipse in figure 26 (van Beers er al. 1999). Sur-
prisingly, the centre of this ellipse is not on the straight
line between the centres of the visual and proprioceptive
ellipses. This can be understood from the orientation of
these ellipses. The fusion can be considered as a more
complicated weighted averaging in which the weights vary
with direction. For instance, in the direction of the major
axis of the proprioceptive ellipse, vision is more precise
than proprioception and therefore the visual weight is
larger than the proprioceptive weight. In the direction
orthogonal to that, however, the proprioceptive weight is
larger. This explains why the ellipse lies off the straight
line.

There is strong experimental support for this model.
The predictions for both the constant errors (the mean
lying off the straight line) and the variable errors (the
variance being smaller than can be expected from any
direction-independent weighted mean) have been con-
firmed experimentally (van Beers et al. 1996, 1999).
Recently, it has also been tested directly whether the
weighting varies with direction (van Beers er al. 2002).
The visual and proprioceptive weights have been esti-
mated many times using a classical method. In the para-
digm of prism adaptation (Welch 1978), subjects view
their hand through optical prisms that displace the visual
field, inducing a conflict between vision and propriocep-
tion. This leads to adaptation of the visual and propriocep-
tive mappings in order to resolve or reduce the conflict.
The magnitudes of the adaptation in the two modalities
are a measure for their weights. With normal vision, pro-
prioceptive adaptation has usually been found to be larger
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than visual adaptation (Welch & Warren 1986). Because
the dominant modality will adapt least, this finding has led
to the belief that, for spatial localization, vision dominates
proprioception. This finding is in accord with the model,
because traditional prism adaptation creates a conflict
between vision and proprioception in azimuth, which is in
a direction in which localization is ‘best’ for vision and
‘worst’ for proprioception. The model predicts that the
relative weighting and thus the relative adaptation varies
with direction. In line with this prediction, it was found
that the relative visual adaptation in depth was larger than
in azimuth. More than that, proprioception was found to
be weighted more heavily than vision in depth.

There is evidence that the CNS uses similar mech-
anisms to integrate other types of information. For
instance, visual and auditory localization (Ghahramani ez
al. 1997) and visual texture and motion cues to depth
(Jacobs 1999) are combined according to the 1D equival-
ent of the mechanism explained above. Therefore, in inte-
gration, all of the available information is used and the
CNS fuses it in a way that minimizes the uncertainty in
the overall estimate. This indicates that the way in which
the CNS integrates information from different sources can
only be understood from the effects of uncertainty, and
therefore of noise at the neural level.

3. MOTOR NOISE

We now return to goal-directed arm movements. When
the hand and the target have been localized, the move-
ment can be planned. Movement planning involves
determining the motor commands that will produce the
intended movement. A movement is usually specified at a
high, symbolic level, such as: ‘pick up that glass and drink
from it’. However, the motor system works at a low, much
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Figure 3. Comparison of observed and predicted trajectories
for goal-directed arm movements in the horizontal plane.
(@) Observed hand paths for five different point-to-point
movements (from Uno er al. 1989). The origin of the
coordinate system is on the shoulder. X and Y directions
represent the transverse and sagittal axes, respectively.

(b) The optimal hand paths as predicted by the TOPS
framework for the same movements as in (a). (¢) Observed
velocity profiles for movements from T1 to T3 in (a). The
other movements had similar bell-shaped velocity profiles.
(d) Velocity profiles of all the predicted movements shown
in (b), normalized to have a maximum velocity of 1.

more detailed level; it specifies temporal profiles of muscle
activations. There is a large gap between these high- and
low-level specifications, and the question is how the ner-
vous system bridges this gap. We present a control frame-
work called TOPS, which formulates how goal-directed
movements specified at the high level are planned on the
basis of properties of the motor system at the low level
(Harris & Wolpert 1998).

Given a task, the motor system usually has an infinite
number of ways in which to achieve it, due to redundancy
in the motor system. This can be illustrated if we consider
the simple task of moving the hand from one point in
space to another. Such a movement can be made with a
range of durations and an infinite number of paths
between the start and final hand locations. Given the path,
the hand could move along it with infinitely many speed
profiles and, for each point on the path, the hand can be
placed there with a infinite set of different arm configur-
ations. Similarly, the arm can be held in a given posture
stiffly, with opposing muscles co-contracting, or with low
co-contraction levels. Finally, the same muscle tension can
be generated by different patterns of neural firing. Motor
planning can be considered as the problem of selecting
one solution from the infinity of possibilities.

Despite the redundancy, humans produce very stereo-
typed movements. Hand trajectories are, in general, very
smooth, with approximately straight paths (compared with
the corresponding trajectories in joint space) and bell-
shaped velocity profiles (Morasso 1981; see also figure 3).
Certain movements, however, have a consistent but small
amount of curvature (Atkeson & Hollerbach 1985). The
faster a movement is executed, the worse is its precision;
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this relation is characterized by Fitts’ law (Fitts 1954). For
curved movements, such as in writing and drawing, there
is a relation between the curvature and the movement
speed, known as the two-thirds power law (Lacquaniti ez
al. 1983). It is interesting to note that saccadic eye move-
ments are also stereotyped, but in a different way. Sac-
cades have approximately symmetrical velocity profiles,
although for longer saccades velocity profiles are skewed
towards the end of the movement (Collewijn ez al. 1988).
In addition, there is a relationship between the duration
and peak velocity of a saccade and its amplitude, known as
the main sequence (Bahill ez al. 1975). Finally, the ocular
system has three degrees of freedom but effectively uses
them as if there were only two, because the eye position
defines the torsion, which is known as Donders’ law
(Donders 1848) and Listing’s law (von Helmholtz 1867).

Stereotypical patterns of movement are, therefore, the
end result of motor learning or evolution, indicating that
movements may have been optimized to maximize fitness
(Harris 1998). Movements are ‘improved’ until the per-
formance is limited by biophysical constraints, thereby
reaching an optimum. The question then is in what way
are arm and eye movements optimal? The idea taken from
optimal-control engineering is to define a cost function.
The cost can be determined for every possible movement
and the optimal movement is the one with the lowest cost.
Movement planning then amounts to selecting the move-
ment with the lowest cost. For eye movements, it has been
proposed (Enderle & Wolfe 1987) that the cost is move-
ment time. The rationale was that vision is very degraded
during a saccade; keeping movement time to a minimum
would minimize the time for which we are deprived of
vision. For arm movements, the observed smoothness has
led to the idea that the cost function is the mean-squared
jerk (the temporal derivative of the acceleration) of the
hand (Hogan 1984; Flash & Hogan 1985), or the mean-
squared rate of change of the joint torques (Uno er al
1989). Although these cost functions predicted the
observed movements quite well, there were some prob-
lems associated with them. First, they seem arbitrary
quantities; it is not clear why it would be advantageous
to minimize jerk. Second, these quantities are difficult to
calculate for the CNS. Third, why would the costs be dif-
ferent for the eye and the arm? The ideal cost would be
similar for all systems, simple to compute and have some
evolutionary advantage.

In TOPS, the cost is the variability in movement end-
points, or, in other words, the expected movement error.
This seems to be a sensible quantity because the goal of
a movement is to reach the target and this cost directly
represents how well this is achieved. In addition, it can be
applied to all systems and is easy to compute, because the
nervous system usually gets direct feedback about move-
ment errors.

The other assumption in the TOPS framework is that
the endpoint variability is due to noise in the motor com-
mands. It assumes signal-dependent noise, which is the
standard deviation in the motor command signal is pro-
portional to its magnitude (constant coefficient of
variation). This is an important assumption. Constant
noise, for instance, would not work because that would
predict that the faster a movement is executed, the more
precise it will be. This is the converse of the empirical
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Fitts’ law. Signal-dependent noise, however, predicts
Fitts’ law because a faster movement requires larger motor
commands and larger commands are noisier. A smaller
endpoint variability can thus be obtained by using smaller
motor commands, which results in a longer movement
time. The assumption of signal-dependent noise is sup-
ported by the empirical finding that the standard deviation
in isometric force production is proportional to the mean
force (Schmidt ez al. 1979; Meyer et al. 1988). It has been
shown (Jones er al. 2002) that the basic physiological
organization of the motor-unit pool, such as the range of
twitch amplitudes and the range of recruitment thresh-
olds, is responsible for this relationship.

The idea behind TOPS is that the CNS aims to minim-
ize the consequences of noise in the motor system. Move-
ment planning uses the redundancy of the motor system
to reduce the endpoint variability. Movements predicted
by this principle correspond to actual movements. For
example, it predicts approximately straight finger tra-
jectories and bell-shaped velocity profiles that match very
well with observed trajectories (see figure 3). Optimal tra-
jectories are inherently smooth, because abrupt changes
in the trajectory would require large motor commands that
would carry more noise than motor commands for
smoother trajectories. In addition, Fitts’ law and the two-
thirds power law are also predicted by TOPS. This frame-
work also works very well for rapid eye movements; for
instance, it reproduces saccadic velocity profiles and the
main sequence. Moreover, it was recently shown that it
also reproduced observed trajectories for the more compli-
cated situation in which both the eye and the head move
simultaneously in order to fixate a peripheral target
(Wolpert & Harris 2001).

All of these findings strongly support the TOPS frame-
work. TOPS has more predictive power than the various
other cost functions proposed for arm and eye movements
because it can easily be generalized to other types of move-
ments. The framework is a biologically plausible theoreti-
cal underpinning for both eye and arm movements with
no need to construct highly derived signals such as jerk to
estimate the cost of a movement. Instead, in the TOPS
framework, variance of the final position is the cost and
this cost is almost directly available to the nervous system
via feedback of movement inaccuracy or its consequences,
such as time spent in making corrective movements
(Meyer er al. 1988; Harris 1995). There is no need
explicitly to calculate the cost of different movements
because the optimal trajectory could be learned from the
experience of repeated movements. In addition, the TOPS
framework highlights the important effects of noise and
uncertainty, and the methods that the CNS has developed
to minimize their effects. This stresses the need to take
into account the properties at the low, neural level to
understand human behaviour at the high, cognitive level.

4. SENSORIMOTOR NOISE

Information about hand position is necessary to plan a
goal-directed arm movement. However, due to motor
noise, actual movements generally differ from the
intended ones, yet we usually reach the target. This is
because feedback is used during the movement to make
the necessary corrections. This indicates that, during the
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movement itself, it is also important to have an estimate
of the hand’s position. It has been described above how
visual and proprioceptive information is combined to esti-
mate the position of a static hand. During the course of a
movement, however, another source of information can
be used as well: a copy of the motor commands sent to the
muscles. This efference copy (Sperry 1950; von Holst &
Mittelstaedt 1950; Festinger & Canon 1965) can be used
to predict the consequence of the motor commands. This
prediction is made by an internal forward model (Wolpert
et al. 1995; Miall & Wolpert 1996); a system that mimics
the causal flow of a process by predicting its next state
given the current state and the motor command. Due to
noise and possible inaccuracies in the forward model, the
predicted new state will, in general, have a finite precision
and accuracy.

In estimating the state of the hand, the CNS faces
another integration problem: how does it combine sensory
inflow about hand position with a prediction of the pos-
ition based on motor outflow, when the information from
both sources is imperfect? This is a problem that has been
solved in the engineering field of optimal state estimation.
For linear systems, the solution is known as the Kalman
filter (Kalman & Bucy 1961; figure 4). This is a linear
dynamical system that integrates the motor outflow and
the sensory inflow in a way that minimizes the uncertainty
in the overall estimate. This optimal integration is achi-
eved at any moment throughout the movement. In the
feed-forward path, a forward model predicts the next state
on the basis of the efference copy of the motor command,
thereby simulating the dynamics of the arm. In the feed-
back path, the sensory feedback is compared with the sen-
sory feedback predicted by a second forward model, one
that mimics the behaviour of the sensory system. The dif-
ference between predicted and actual sensory feedback is
used to correct the state estimate of the (first) forward
model. Because the reliability of the estimate will vary dur-
ing the movement, the optimal weighting varies over time.
This is determined by the time-varying Kalman gain,
which determines the optimal weighting to minimize the
uncertainty in the overall estimate.

The Kalman filter has been used to model the esti-
mation of hand position immediately after a movement
based on motor outflow and proprioceptive feedback
(Wolpert ez al. 1995). Experimental data showed that both
the constant and variable errors initially increased mono-
tonically with movement duration. After about 1 s, both
remained constant or decreased slightly. The Kalman fil-
ter reproduced this pattern. During the early part of the
movement, when the current state estimate was accurate,
the position predicted by the forward model was weighted
heavily. Later, however, the estimate became less reliable,
and the weighting shifted smoothly towards the feedback
process. Models based purely on sensory feedback or on
motor outflow could not reproduce these patterns, thereby
providing evidence that information from both sources
was used to estimate hand position, in order to reduce the
combined effect of sensory and motor noise.

One problem in the estimation of state is that, due to
feedback delays, the sensory signals about the state
(position and velocity) of the arm will inevitably lag
behind the actual state. It takes about 200 ms for visual
feedback to influence an ongoing movement (Keele &
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Figure 4. Schematic representation of the Kalman filter that estimates the next state given the motor command and the
current state estimate. The model consists of two paths. In the (upper) feed-forward path, a forward model predicts the next
state on the basis of the current state estimate and an efference copy of the motor command. In the (lower) feedback path,
the actual sensory feedback is compared with the feedback predicted by a forward model of the sensory output (based on the
current estimate). The difference between actual and predicted sensory feedback is the sensory error and is used to correct the
forward model’s state estimate. The Kalman gain determines how the outcome of both paths is weighted.

Posner 1968; Georgopoulos ez al. 1981; van Sonderen ez
al. 1988), mainly because the photoreceptors in the retina
are slow. The corresponding delay for proprioception is
somewhat shorter, around 120 ms (Jeannerod 1988).
These delays are long compared with the duration of a
typical goal-directed movement, which is a serious prob-
lem for feedback control. One model developed to deal
with time delays is the Smith predictor (Miall ez al. 1993).
This model also uses a forward model of the dynamics of
the motor system, but in addition to that it also models
the delays present in the system.

It is difficult to prove that the nervous system follows
strategies identical to models such as the Kalman filter
and the Smith predictor. However, the key ingredient in
these architectures is the forward model, and there is
strong evidence that the nervous system uses forward
models to predict the consequences of motor actions. This
has been demonstrated convincingly for the situation in
which one could be uncertain about whether sensory
information is due to changes induced by one’s own action
or by a change in the outside world. It is often impossible
to distinguish between these two possibilities on the basis
of the sensory information only, because similar sensory
information can arise for external events or self-generated
movements. However, it is possible to distinguish between
them when the consequences of one’s own actions as pre-
dicted by a forward model are taken into account.

This has been studied extensively for tickling sensation.
It is well known that healthy humans cannot tickle them-
selves and that self-administered tactile stimuli feel less
ticklish than externally administered tactile stimuli
(Weiskrantz et al. 1971). This could be explained by the
use of forward models (Blakemore ez al. 1999; figure 5).
When motor commands have been sent, the forward
model predicts the resulting sensory feedback, which, in
the case of tickling movements, would include tactile sig-
nals. The predicted feedback is compared with the actual
sensory feedback and when these correspond to each other
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Figure 5. Model used to determine whether sensory
information arises from external influences or from a self-
produced movement. A forward model predicts the sensory
feedback based on an efference copy of the motor command.
This prediction is then compared with the actual sensory
feedback to produce the sensory discrepancy signal. If there
is little or no sensory discrepancy, the sensory information is
likely to be the result of a self-generated movement. If a
large discrepancy is detected, the sensory information is
more likely to be the result of external events.

they cancel each other, resulting in the absence of a tickle
sensation. However, when one is tickled by someone else,
the forward model does not predict any tactile feedback.
The comparison with the actual feedback therefore results
in a large sensory discrepancy, giving rise to a strong tic-
kle sensation.

To test this hypothesis, Blakemore ez al. (1999) asked
subjects to move their left hand and to rate the tickle sen-
sation of stimuli that a robot applied to their right hand.
The movement of the robot could be coupled to the move-
ment of the subject’s left hand. When the robot’s move-
ment corresponded exactly to the movement of the left
hand, as if the left hand held an object that tickled the
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right hand, tickle sensation was lower than when the robot
tickled the subject when the subject made no movement.
Next, movements were tested in which the motion of the
left hand determined the robot movement, but now the
relationship between action and its consequences were
varied parametrically. The ticklishness rating increased
systematically with the discrepancy between the action
and its predicted consequence, either due to introducing
a time delay or a spatial rotation between the motion of
the left hand and the displacement of the robot that tickled
the right hand. This directly supports the forward model
hypothesis because it shows that the tickle sensation
increases with the discrepancy between the sensory feed-
back predicted by a forward model and the actual sen-
sory feedback.

A functional magnetic resonance imaging study
(Blakemore er al. 1998) showed that more activity was
found in bilateral secondary somatosensory cortex and the
anterior lobe of the right cerebellum for externally pro-
duced compared with self-produced stimuli. The increase
in somatosensory cortex activity probably reflects the
increased ticklishness sensation. The observed effect for
the cerebellum could reflect the discrepancy between pre-
dicted and actual sensory feedback, indicating that the for-
ward model that predicts the sensory consequences of
motor commands resides in the cerebellum. This is also
suggested by the finding that the cerebellar activity corre-
lates with the delay between hand movement and tactile
stimulation (Blakemore ez al. 2001).

This work has important consequences at the cognitive
level. It could be argued that a defect in the central self-
monitoring, as described above, might underlie delusions
of control experienced by people with schizophrenia (Frith
1992). These patients move their limbs but claim that they
are being moved by external agents. T'o examine whether
this symptom may be due to lack of prediction of the
consequences of action, Blakemore er al. (2000) used a
similar paradigm to the previous studies. The results
showed that patients with such symptoms did not rate self-
produced stimuli as less ticklish than externally produced
stimuli, whereas control subjects did rate the self-
produced stimuli as less ticklish. This indicates that an
impairment in the ‘self-monitoring’ mechanism, as
implemented as a forward model, could cause thoughts or
actions to become isolated from the sense of will normally
associated with them, leading to symptoms associated with
schizophrenia. This highlights the importance of the
mechanisms that the nervous system has developed to
reduce the uncertainties about whether sensory infor-
mation is due to self-induced changes or to changes in the
outside world.

5. NEURAL NOISE AND NETWORK MODELS

In this section, we review noise at the neural and net-
work level. In general, the neural mechanisms by which
the CNS copes with uncertainty are still poorly under-
stood. However, recent experimental and computational
studies have begun to shed light on both the sources of
neural noise and its control. Combined electrophysiolog-
ical recordings and theoretical analyses have delineated
important sources of neuronal noise, while neural network
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modelling has indicated the existence of links between
neural tuning and connectivity and noise control.

Noise is present at every level of the sensorimotor chain.
In sensors, errors can arise through an incorrect esti-
mation of sensor characteristics (e.g. temperature, meta-
bolic state, sensor position or activation). Noise is also
present in effectors: an incorrect estimate of limb position
or muscle fatigue will translate into a motor error. In both
proprioceptors and muscles, unavoidable instantaneous
noise is added by the transduction between a continuous
mechanical signal and a discrete sequence of spikes,
through nonlinear dynamical systems (Read & Siegel
1996). The operation of neural networks also generates
variability in the signals that are propagated. Synaptic
variability (Allen & Stevens 1994; Tsodyks & Markram
1997), local firing synchronization (Stevens & Zador
1998) and chaotic network dynamics (van Vreeswijk &
Sompolinsky 1996) have been shown to increase the vari-
ance of spike trains, although the isolated neuron is itself
extremely reliable (Mainen & Sejnowski 1995). In general,
this neural noise can be described by a Poisson distri-
bution (with the notable exception of motor neurons
where noise is close to Gaussian (Gomez etz al. 1986)).

The increase in noise due to the complex architecture
of neural networks is compensated by the redundancy of
information representation. Indeed, sensory or motor sig-
nals are often coded by assemblies of neurons, each of
which is tuned to (i.e. discharges maximally for) a given
set of signal parameters. This distribution makes the sys-
tem immune to synaptic failure or to the death of individ-
ual neurons. When tuning distribution is uniform (e.g. in
primary visual cortex), population activity allows robust
information representation if noise is not too correlated
between neurons (Abbott & Dayan 1999). Moreover, it
has been suggested that a population can encode more
than one stimulus or response, thus enabling an internal
representation of uncertainty (Zemel er al. 1998).

A common problem for neurophysiologists is to decode
the information embedded in population activity. Infor-
mation theory shows how the precision of information
retrieval is bounded by the noise. The variance of the best
unbiased estimator will necessarily exceed a minimal value
called the ‘Cramér-Rao bound’ (Cox & Hinckley 1974).
Pouget and collaborators have described a neural network
of broadly tuned neurons that can at the same time
recover the information encoded in another population
with near-optimal precision (Pouget er al. 1998; Deneve
et al. 1999) and re-encode it in a noise-reduced pattern.
Thus, this type of neuronal architecture can clean up the
noise before further processing.

The optimal estimation of the information embedded
in the collective firing of neurons is also the solution to
multisensory integration when sensory inputs from differ-
ent modalities must be integrated in a common represen-
tation. We have seen in the preceding section that humans
seem optimally to estimate the position of their hand when
they can use both vision and proprioception. That is, they
compute the most likely place according to the probability
distributions associated with proprioceptive and visual
inputs in isolation. This is precisely how an optimal esti-
mator of the corresponding collective neural activity
would behave. Thus, principles close to those exposed by
Pouget et al. (1998) are possibly in operation. However,
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neurons involved in the localization task are not tuned to
a specific value of gaze or arm position, but respond mon-
otonically with gaze or hand position (Hepp & Henn
1985; Helms Tillery er al. 1996). In that case, it has been
shown that a very simple network can compute an esti-
mate whose variance is close to the Cramér-Rao bound
(Guigon & Baraduc 2002). Moreover, this type of network
has the capability of learning a new sensory—sensory
congruence, e.g. during prism adaptation.

This last point reminds us that neural networks do not
only process sensory information to get the best estimate
of a raw input, but in general process it to produce an
adapted motor response, be it scratching your nose or
making a saccade to the right of these words. Sensori-
motor transformation schemes that make use of redun-
dancy and broad tuning (Salinas & Abbott 1995; Baraduc
et al. 2001) are a good solution to minimize the detrimen-
tal effects of noise and seem ubiquitous in the CNS
(Georgopoulos et al. 1982; Kalaska er al. 1983;
Crutcher & DelLong 1984; Fortier ez al. 1989). Recently,
Todorov (2002) has shown that cosine tuning is an opti-
mal way to minimize motor errors in the presence of
signal-dependent noise.

Although these studies have provided clues, how neu-
ronal noise influences the computational schemes in the
CNS is a question that has just begun to be investigated.

6. CONCLUSIONS

We have reviewed a number of activities that the CNS
has to perform in order to execute a goal-directed arm
movement. We described spatial localization, integration
of information from multiple sensory modalities, move-
ment planning and integration of sensory and motor infor-
mation during movement. The way in which the CNS
carries out each of these activities can be understood from
the idea that there is noise and uncertainty in the sensory
and motor systems, and that the CNS tries to minimize
the detrimental effects of this noise. The noise is present
at the low, neural level, whereas the way in which tasks
are carried out is usually visible at the high, behavioural
level, for instance as hand trajectories. This indicates that
it is often important to consider effects at the neural level
in order to understand performance at the behavioural
level. This is true for execution of goal-directed arm move-
ments, but in a more general way, this idea could hold for
a much wider class of cognitive tasks.
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