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Demographic, mechanistic and density-dependent
determinants of population growth rate: a case study

in an avian predator
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Identifying the determinants of population growth rate is a central topic in population ecology. Three
approaches (demographic, mechanistic and density-dependent) used historically to describe the determi-
nants of population growth rate are here compared and combined for an avian predator, the barn owl
(Tyto alba). The owl population remained approximately stable (r = 0) throughout the period from 1979
to 1991. There was no evidence of density dependence as assessed by goodness of fit to logistic population
growth. The finite (A) and instantaneous (r) population growth rates were significantly positively related
to food (field vole) availability. The demographic rates, annual adult mortality, juvenile mortality and
annual fecundity were reported to be correlated with vole abundance. The best fit (R?> = 0.82) numerical
response of the owl population described a positive effect of food (field voles) and a negative additive
effect of owl abundance on r. The numerical response of the barn owl population to food availability was
estimated from both census and demographic data, with very similar results. OQur analysis shows how the
demographic and mechanistic determinants of population growth rate are linked; food availability deter-
mines demographic rates, and demographic rates determine population growth rate. The effects of food
availability on population growth rate are modified by predator abundance.
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1. INTRODUCTION

The empirical estimation of the determinants of how
quickly or slowly population density increases or
decreases, has used a variety of approaches. Krebs (1995,
2002) suggested that, historically, two approaches
(paradigms) have been used: a density paradigm, which
focuses on the effects of density on population growth
rate, and a mechanistic paradigm, which focuses on the
effects of trophic factors such as food, predators and para-
sites on population growth rate. These paradigms, and a
related approach, the demographic paradigm (Sibly &
Hone 2002) that focus on the effects of demographic rates
(fecundity and survival) on population growth rate, have
been widely used, though rarely compared and contrasted.

This paper demonstrates the application of the various
approaches to identify the determinants of population
growth rate in a closed population. A range of alternative
hypotheses, as expressed in mathematical models, are
described and evaluated empirically. Data from Taylor’s
exemplary (1994) study of the barn owl (Tyto alba) are
used to illustrate the approaches.
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2. MODELS

The patterns described in five ecological models, and
the field data, are compared. The first four models are
specific examples of the general discrete-time population
model of Dennis & Otten (2000; eqn (2.1)). The general
model is

Nz+1 — Nteu+sz+w’ (21)

where abundance at time ¢ + 1 (N,;,) is related to abun-
dance at time ¢ (IN,) and food availability (v) at time
t + 1. Coefficients a, b, ¢ are parameters to be estimated.
The model of Dennis & Otten (2000) has been modified
here to be a deterministic model, and by substituting food
availability (v) for their weather term (W).

The first a priori model is exponential growth, which
occurs in density-independent growth. Abundance at
time ¢ + 1 (NN, ;) is related to abundance at time ¢ (N,) by

Nz+1 =NtAt=Nzen3 (22)

where the finite population growth rate is A (= N,,,/N,)
and the instantaneous population growth rate is
r (=In A). Exponential growth occurs in equation (2.1)
when b=c¢=0, and a=r and there is a time-step of 1 yr.
This and other models assume the population is closed,
with no emigration or immigration. The barn owl popu-
lation studied by Taylor (1994) was sedentary with very
little movement into and out of the population.

The second a prior: model is logistic growth, as a form
of density-dependent population growth. Logistic growth
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is described by equation (2.1) when ¢=0. Evidence of
logistic growth is an example of the density paradigm of
Krebs (1995, 2002).

The third a priori model is a numerical response. Two
types of numerical response were estimated: (i) a Solo-
mon-type, after Solomon (1949), relating predator (owl)
abundance to prey (vole) abundance (v); and (ii) a Caugh-
ley-type relating the predator (owl) population growth rate
(A or ) to food availability (vole abundance). The types of
numerical responses are reviewed briefly by Sibly & Hone
(2002), and Bayliss & Choquenot (2002). The Caughley-
type numerical response using r is described by equation
(2.1) when b=0. Use of the numerical response is an
example of the mechanistic paradigm of Krebs (1995,
2002). Alternative hypotheses were, that there was a posi-
tive linear relationship between A and vole abundance, and
a positive linear relationship between r and vole abun-
dance. The latter relationship is the linear assumption in
the original Lotka—Volterra model (May 1981; table 5.1).
The linear regression of A and voles is the finite difference
analogue of the linear Lotka—Volterra model. The Caughley-
type numerical responses were examined with, and with-
out, a time-lag of 1year in the vole data, to examine
whether there was any evidence of lagged effects of food
on owl dynamics.

The fourth a priori model is the full Dennis—Otten
model (2000) as described in equation (2.1). In that
model, there are additive effects of food and of owl abun-
dance.

The fifth a priori model is the two-stage Euler—Lotka
equation,

A*(1 — s/A) = 1b, (2.3)
where « is the age at first reproduction, s is annual adult
survival, / is survival from birth to age at first reproduction,
and b is annual fecundity (mean female young per female)
(Lande 1988; Sibly er al. 2000). When the age at first
reproduction equals 1.0 then the equation can be
rearranged to give

A=s+ b, 2.4)

which states that the finite population growth rate (A)
equals the sum of annual adult survival (s) and recruit-
ment (/b).

The implementation of equations (2.3) or (2.4) is an
example of the demographic paradigm. It can be com-
bined with the ideas in the mechanistic paradigm by
assuming or demonstrating that one or more of the demo-
graphic rates in equations (2.3) or (2.4) are determined
by mechanistic factors, such as food. In the study of barn
owls in southern Scotland (Taylor 1994), the demo-
graphic rates, s, [/ and b, were shown to be correlated with
the abundance of the main food of the owls, field voles
(Microtus agrestis). If it is assumed that the demographic
parameters in equations (2.3) or (2.4) are related to food
availability, then it follows that the finite population
growth rate (A) must be determined by food availability.

In the analyses described here, model fit is assessed
firstly by statistical significance and then by the coefficient
of determination (R?). An information-theoretic analysis,
such as Akaike’s information criterion, was not used as
the x- and y-terms in analyses were not consistent.
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Burnham & Anderson (1998) advised against use of
Akaike’s information criterion with such analyses.

(a) Parameter estimation
(i) Population growth rates (A, r)

The finite population growth rate (A) was estimated as
the ratio of successive annual estimates of abundance of
pairs of barn owls. Data on abundance of pairs of barn
owls (Taylor 1994; fig. 15.1; Newton 1998; fig. 7.4) were
used. Total abundance of pairs was the sum of the number
of breeding pairs and the number of non-breeding pairs.
The mean annual population growth rate (r) was esti-
mated by the regression of the natural logarithm of abun-
dances over time (Caughley 1980).

(i1) Intrinsic population growth rate (r,,) and carrying
capacity (K)

Evidence of logistic growth was assessed by the
regression of observed instantaneous growth rate
(r=1In(N,./N,)) on total owl abundance (N,) (Caughley
1980). The fitted regression has an intercept on the y-axis
of the intrinsic rate of population growth (7,,), and on the
x-axis of carrying capacity (K).

(iii) Numerical responses

The Solomon-type numerical response was estimated as
the linear regression of abundance of pairs of owls in year
t on vole abundance in year z, following Solomon (1949).
The Caughley-type numerical response relationships
between the finite population growth rate (A) and vole
abundance, and the instantaneous growth rate (r) and vole
abundance were estimated by linear regression. The abun-
dance of pairs of barn owls was estimated by the minimum
number known to be alive in the breeding season (spring
and summer) each year during intensive observation and
mark-recapture of owls. An index of abundance of field
voles (v) was estimated annually by trapping in spring
(Taylor 1994).

(iv) Age at first reproduction (o)

Taylor (1994) reported that owls fledged in spring and
summer first bred the following spring or summer. Hence,
it was assumed that a =1 year.

V) Annual adult survival (s)

Annual survival is the complement of annual mortality.
Taylor (1994) reported that annual mortality of adult owls
ranged from 15 to 55%, and was strongly negatively corre-
lated (correlation coefficient=—0.78, d.f. =9, p <0.01)
with vole abundance (Taylor 1994; fig. 14.5). The linear
regression was estimated to be,

annual adult mortality=1 —s =0.44 — 0.0071v, (2.5)

where vole abundance is v.

i) Fuwvenile survival ()

Survival from birth to age at first reproduction (/) was
significantly negatively correlated (correlation coefficient
= —0.78, p < 0.01) with vole abundance (Taylor 1994; p.
210). It was assumed, for analysis, that in the absence of
voles many, but not all, owls died so survival was low
(0.1). When vole abundance was high (30) it was assumed
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Table 1. The coefficients of determination (R?) and statistical significance (p) of each model of barn owl dynamics. Also shown

is the dependent variable (InN, A, r or N,) in each analysis.

model A, ror N, R? p
exponential InN, 0.30 0.053
logistic r 0.21 0.137 (NS)
Solomon-type numerical response (no time-lag) N, 0.44 0.014
Caughley-type numerical response (no time-lag) A 0.72 0.0005
Caughley-type numerical response (1 year time-lag) A 0.05 0.476 (NS)
Caughley-type numerical response (no time-lag) r 0.72 0.0005
Caughley-type numerical response (1 year time-lag) r 0.01 0.720 (NS)
Caughley-type numerical response (vole and owl effects with no time-lag: full

model) r 0.82 0.0004

that survival was 0.3. The linear regression was then esti-
mated to be

1=0.1 + 0.007%. (2.6)

Equation (2.6) estimates that when mean vole abundance
is 20, then survival is 0.24, and therefore juvenile mortality
equals 0.76. This is similar to the higher juvenile survival
estimates reported (Taylor 1994; p. 207).

(vil) Annual fecundity (b)

The clutch  size (correlation coefficient = 0.87,
d.f.=11, p<0.001) (Taylor 1994; fig. 11.8) and the
number of young fledging (correlation coefficient = 0.72,
< 0.01) (Taylor 1994; fig. 12.9), varied positively with
vole abundance. The estimated linear regression relating
the number of female young fledged per female per year
to vole abundance was

b=1.02 + 0.030. 2.7
(viil) Sensitivity analysis

The effects of a small change in each demographic para-
meter («, s, [ or b) on the finite population growth rate
(A) were estimated in a sensitivity analysis using the equa-
tions of Lande (1988). The assumed parameter values,
based on data in Taylor (1994) were as follows: age at
first reproduction («) was 1 year, mean annual adult sur-
vival (s) was 0.65, mean juvenile survival (/) was 0.3 and
mean annual fecundity (b) was 1.5 females per female.
These values provide an estimated annual finite popu-
lation growth rate (A) of 1.1 and a generation interval of
2.4 years.

3. RESULTS

(a) Exponential growth

The regression of the natural logarithms of owl abun-
dance over time, was not quite statistically significant
(F=4.69, d.f.= 1,11, p=0.053, R>=0.30) (table 1). The
slope of the regression, an estimate of mean r, was
—0.06 yr~! with 95% CI of —0.115 to 0.001. Hence, there
was no strong evidence against the proposal that r=0;
however, with additional data that conclusion would be
reinforced. The observed trends in abundance of barn
owls and field voles are illustrated in figure 1, showing
apparently linked oscillations over time.

Phil. Trans. R. Soc. Lond. B (2002)
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Figure 1. Observed trends in abundance of pairs of barn
owls (solid line) and field voles (dashed line) in southern
Scotland. Modified from Taylor (1994).

(b) Logistic growth
The analysis for evidence of logistic growth showed a
non-significant result (F=2.62, d.f.=1,10, p=0.137,
R?2=0.21) (table 1). Hence, there was no strong evidence
supporting the proposal of logistic growth. Therefore,
there were no estimates of 7, or K estimated by the
regression analysis. Given the observed trend in owl abun-
dance (figure 1) it was not surprising that there was no

empirical support for logistical growth.

(¢) Numerical responses

The Solomon-type numerical response of the relation-
ship between the number of pairs of owls and vole abun-
dance was significant (F=38.52, d.f.=1,11, p=0.014,
R?2=0.44) (table 1). The relationship and the fitted
regression are shown in figure 2.

The Caughley-type numerical response of the annual
finite population growth rate (A) and vole abundance (v)
was highly significant (F=25.16, d.f. =1,10, p=0.0005,
R?=0.72) (table 1). The fitted regression was

A=0.607 + 0.028v, 3.1

which is illustrated in figure 3. The regression estimates
that owl abundance declines when vole abundance drops
below 14, and when voles are absent the annual growth
rate (A) of the owl population equals 0.607. The numeri-
cal response using vole abundance in the previous year as
the independent variable was not significant (F=0.55,
d.f.=1,10, p=0.476, R*=0.05) (table 1).

The Caughley-type numerical response of the annual
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Figure 2. The Solomon-type numerical response of pairs of
barn owls in year ¢ to variation in field vole abundance in
year z. Data are estimated from Taylor (1994) and Newton
(1998) and are based on censuses.
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Figure 3. The Caughley-type numerical response of a barn
owl population to variation in field vole abundance. The
response variable is the annual finite population growth rate
(A) of the owl population. Data are estimated from Taylor
(1994) and Newton (1998) and are based on censuses.
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Figure 4. The Caughley-type numerical response of a barn
owl population to variation in field vole abundance. The
response variable is the annual instantaneous population
growth rate (r) of the owl population. Data are estimated
from Taylor (1994) and Newton (1998) and are based on
censuses.

instantaneous population growth rate (r) and vole abun-
dance (v) was highly significant (F=25.12, d.f.=1,10,

p=0.0005, R?>=0.72) (table 1). The fitted regression was
r=—0.446 + 0.026v, (3.2)

which is illustrated in figure 4. The regression estimates

Phil. Trans. R. Soc. Lond. B (2002)
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Figure 5. The Caughley-type numerical response of a barn
owl population to variation in field vole abundance and owl
abundance (equation (3.3)). The response variable is the
annual instantaneous population growth rate (r) of the owl
population.

that owl abundance declines when vole abundance drops
below 17, and when voles are absent, r of the owl popu-
lation equals —0.446 yr~!. The numerical response using
vole abundance in the previous year as the independent
variable was not significant (F=0.14, d.f.=1,10,
p»=0.720, R*=0.01) (table 1).

The Caughley-type numerical response of the annual
instantaneous population growth rate (r) and vole abun-
dance (v) and owl abundance in year ¢ (equation (2.1))
was highly significant (F=20.82, d.f.=2,9, p=0.0004,
R?>=10.82) (table 1).

The fitted regression was

r=—0.069 — 0.011 owls + 0.024v, (3.3)

which is illustrated in figure 5. The population growth rate
increased when vole abundance increased and decreased
as owl abundance increased. The standard errors, and
associated z-values, on each parameter (a, b, ¢ in equation
(2.1)) were 0.1871 (z=—0.37, NS), 0.0049 (z=—2.33,
p=0.045) and 0.0044 (t=5.49, p=0.0004), respectively.
These indicate the intercept (a) was not different to
r=0, but the coefficient for the effect of owl abundance
(b) was significant and for the effect of vole abundance
(¢) was highly significant. The observed (dashed line) and
reconstructed (using equation (3.3), solid line) abundance
of barn owls are shown in figure 6, showing the close
agreement.

(d) Demographic and mechanistic determinants of
population growth rate

The relationship between the finite population growth

rate (A) and vole abundance was estimated by substituting

equations (2.5) to (2.7) into equation (2.4). The resultant

equation showed a positive relationship between A and

vole abundance (figure 7). The estimated regression was

A=0.662 + 0.01722 + 0.000212°. 3.4)

The estimated relationship is slightly curved being
upwardly concave, though this is not obvious in figure 7.
Because of the substitution of equations, a quadratic equa-
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Figure 6. The observed (dashed line) and reconstructed
(solid line) abundance of pairs of barn owls over years.
There is no estimate of owl abundance in 1979 because of
the absence of data on owl abundance in the prior year.

2.5
2.0

1.51

annual 4

1.0

057

0 10 20 30 40 50
field vole

Figure 7. A comparison of the Caughley-type numerical
responses, estimated by two methods, of a barn owl
population to variation in field vole abundance. The
numerical response estimated from census data (equation
(3.1) and shown in figure 3) is shown by the solid line and
the numerical response estimated from demographic data
(equation (3.4)) is illustrated by the dotted line. The
response variable is the annual finite population growth rate
(A) of the owl population.

tion with a positive intercept and positive regression coef-
ficients for the linear and quadratic terms is produced.

The demographic numerical response relationship
shown in figure 7 is compared with that estimated from
the annual census data (figure 3). The two numerical
response relationships are very similar (figure 7) with that
derived from demographic and mechanistic data giving
slightly higher estimates of A than that estimated from the
census data.

(e) Sensitivity analysis
The sensitivity analysis showed that the largest effect on
A was produced by a small change in annual adult survival
(1.7), followed by survival to age at first reproduction
(1.5), annual fecundity (0.3) and age at first repro-
duction (—0.2).

4. DISCUSSION

The population growth rate of a closed population is
determined by demographic rates and the influence of
extrinsic mechanistic factors, such as food, and intrinsic
factors, such as spacing behaviour. The results reported
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here show that for the avian predator, the barn owl,
changes in abundance are closely related to the variation
in food supply (especially of field voles). The Caughley-
type numerical response, as estimated by the finite popu-
lation growth rate (A), to food supply can be estimated
directly from a field census of owls (figure 3). The Caughley-
type numerical response can also be estimated indirectly
(figure 7) from empirically estimated relationships
between demographic rates and food supply. Hence, use
of the demographic and mechanistic approaches to esti-
mating the determinants of population growth rate can
yield similar and complementary results.

The ecological model (equation (3.3)) with the best fit,
as assessed by the coefficient of determination R?2, was the
Caughley-type numerical response of population growth
rate, as r, on vole abundance and owl abundance
(table 1). That relationship accounted for 82% of the vari-
ation in population growth rate. The model combined the
mechanistic and density paradigms of Krebs (1995,
2002). The additive and negative effect of owl abundance
of population growth rate (r) in the barn owl study may
have been associated with some form of density-
dependent competition for food and possibly breeding
sites. The barn owls have overlapping home ranges but do
defend nesting sites (Taylor 1994).

The numerical response relationships showed that the
barn owls responded to variation in food availability within
a year. The analyses using lagged vole data were non-sig-
nificant. This result occurred through within-year changes
in survival and fecundity of owls. With higher vole abun-
dance, owls laid their first egg earlier in the breeding sea-
son (Taylor 1994; fig. 9.3b), mean clutch size was higher
(Taylor 1994; fig. 11.8) and the mean number of young
fledged per pair increased (Taylor 1994; fig. 12.9). Such
a quick response, with no time-lag, has also been recorded
in Tengmalm’s owl (Aegolius funereus) (Korpimaki &
Norrdahl 1989) and red kangaroo (Macropus rufus) and
western grey kangaroo (M. fuliginosus) populations
(Bayliss 1987) in response to variation in food availability.

Variation in prey availability has been shown to be
related to demographic rates of predatory wildlife in sev-
eral studies. For example, microtine rodent abundance
was related to fecundity in Tengmalm’s owls
(Korpimaki & Norrdahl 1989), variation in lifetime repro-
ductive success in male Tengmalm’s owl (Korpimaki
1992), survival of male Tengmalm’s owl (Hakkarainen ez
al. 2002) and survival of breeding females and age at first
reproduction in Ural owl (Strix uralensis) (Brommer et al.
1998). Fecundity in kit fox (Vulpes macrotis) was positively
related to leporid abundance (White & Garrott 1999).

The Solomon-type numerical response of predators
(barn owl) and prey (voles) was positive (figure 2). Such
a positive relationship has also been reported for Teng-
malm’s owl and Moicrotus spp. (Korpimaki & Norrdahl
1989).

The results reported here suggest that approaches used
in other studies of the determinants of population growth
rate may be usefully modified. For example, the demo-
graphic studies of population growth rate in northern spot-
ted owl (Strix occidentalis caurina), such as those of Lande
(1988) through to Seamans ez al. (2001), focused on using
demographic rates to estimate population growth rate, but
did not estimate food availability or a numerical response
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relationship. In contrast, studies of kangaroos, such as
those of Bayliss (1987), Caughley (1987), Cairns & Grigg
(1993) and McCarthy (1996), focused on estimating a
Caughley-type numerical response without any detailed
data on demographic rates. The study here shows that
such different approaches can be combined. Such a com-
bination of demographic and mechanistic approaches
occurred in a graphical, not quantitative, form in the study
of Himalayan thar (Hemitragus jemlahicus) of Caughley
(1970; fig. 5).

The models and analyses described in the present study
have strengths and limitations. The estimated numerical
responses reported here (figures 3, 4, 5 and 7) are linear.
Over a broader range of food availability, such numerical
responses should be curved with the population growth
rate approaching a maximum, the intrinsic rate of growth
(r,). The estimated relationships between the demo-
graphic rates and food availability should also be curved
relationships, as survival clearly has a maximum value of
1.0 and fecundity has a maximum value determined by
genotype. There was no clear evidence of curved relation-
ships in the data; however, perhaps such curves would be
evident if food (vole) availability occurred at higher levels
than reported in the study by Taylor (1994).

The numerical response may also be influenced by other
mechanistic factors. For example, fecundity may be partly
determined by the availability of nest sites, as well as food.
If that occurred then a modified version of equation (2.7)
would need to be estimated showing the effects of food
and nest sites. Expressing the effects of food and nest sites
on population growth rate would be similar to the descrip-
tion of ecological niche given by Sibly & Hone (2002) and
the modelling of the effects of two obligate resources on
population growth rate by Tilman (1982). Similarly,
effects of pesticides on owl abundance, or wildlife gener-
ally, could be incorporated into the modelling by evaluat-
ing whether adult and/or juvenile survival are affected by
food and pesticide exposure. In many studies of birds,
including avian predators, the effects of nest sites and pes-
ticides have been reported (Newton 1998).

Most models of the numerical response had no explicit
effects of density, though the full model (equations (2.1)
and (3.3)) did. Future research could evaluate whether
one or more demographic rates (such as adult survival and
fecundity) are density dependent, as has been reported in
wildebeest (Connochaetes taurinus) in which annual adult
survival was negatively related to per capita food avail-
ability (Mduma ez al. 1999).

The numerical response relationship of r versus food,
could be used in a model of trophic interactions, such as
described by a modified Lotka—Volterra model (Caughley
1987). That has not been done here as the data in the
original study do not allow description of vole dynamics
in the absence of owls, and the functional response of owls
to a variation in food supply was not described in the orig-
inal study by Taylor (1994). Such use of the numerical
response in a modified Lotka—Volterra model would
include a density-dependent response of the owls and their
food supply. That could occur in one of two ways: an
increase in vole abundance would cause an increase in owl
abundance that would cause, in the following year, an
increase in predation of voles by owls that may lower vole
abundance; hence, there would be negative feedback on
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vole abundance. Alternatively, use of the full model in
equation (3.3) describes an instantaneous effect of owl
abundance on r within a year.

The sensitivity analysis indicated that a change in
annual adult survival had the greatest effect on finite
population growth rate (A). That is similar to the results
reported for the northern spotted owl (Lande 1988). The
sensitivity analyses for both species ranked the demo-
graphic parameters in the same descending order of effects
on finite population growth rate: s, /, b6 and «. The sensi-
tivity of population growth rate to juvenile survival was
higher for barn owls, and was presumably associated with
the shorter life expectancy for that species. The results of
the sensitivity analysis and of the demographic and
numerical response analysis demonstrate an important
result from this study. The demographic and numerical
response analyses show the causes of changes in demo-
graphic rates, while the sensitivity analysis shows the
effects of changes in demographic rates. Those distinc-
tions show why it is useful to combine aspects of the
mechanistic and demographic paradigms in identifying the
determinants of population growth rates.

The authors thank The Royal Society, the Novartis Foun-
dation and the Universities of Canberra and Reading for their
support. J. Olsen, P. Caley, V. Forbes and P. Bayliss provided
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