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A new interpretation of thalamocortical circuitry

Paul Adams* and Kingsley Cox
Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Almost all the information that is needed to specify thalamocortical and neocortical wiring derives from
patterned electrical activity induced by the environment. Wiring accuracy must be limited by the anatom-
ical specificity of the cascade of events triggered by neural activity and culminating in synaptogenesis. We
present a simple model of learning in the presence of plasticity errors. One way to achieve learning speci-
ficity is to build better synapses. We discuss an alternative, circuit-based, approach that only allows plas-
ticity at connections that support highly selective correlations. This circuit resembles some of the more
puzzling aspects of thalamocorticothalamic circuitry.
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1. INTRODUCTION

Almost all the information that reaches the neocortex
arrives via the thalamus, which, to a first approximation,
acts as a simple relay. Since the simplest, most efficient
relay would be an uninterrupted axon, why does the thala-
mus exist at all? The unknown functions of the thalamus
must be rather general, because its basic anatomy and
physiology are universal throughout the various nuclei. It
seems unlikely that this universal circuitry is used differ-
ently in each nucleus to perform specialized processing
appropriate to the particular type of information being
relayed by that nucleus (visual, somatosensory, auditory,
motor, hippocampal, etc.). This universality has become
even clearer with the recent realization that much (in pri-
mates, most) of the relayed information arises from layer
5 of the neocortex itself, rather than from subcortical
sources (Sherman & Guillery 1996).

The universal core circuits of thalamus include massive
feedback from layer 6 of the cortical region to which a
thalamic region projects, side projections to layer 6 of the
main relay input to middle cortical layers, and relay cell
feed-forward excitation to and feedback inhibition from
reticular nucleus. All these circuits are roughly topo-
graphic, although in no case is the detailed pattern of the
connections understood (Sherman & Guillery 2001).

Many aspects of thalamic physiology also seem univer-
sal. Some of these (and their anatomical correlates) reflect
basic relay function. Thus, a particular incoming ‘driver’
axon (which can originate subcortically or from layer 5 of
the neocortex) typically makes numerous powerful syn-
apses on the proximal dendrites of a relay cell, such that
an incoming spike is likely to trigger an outgoing spike
with a very short, fixed delay. Each relay cell receives only
one such major input, though it may also receive a few
subsidiary synapses from other driver axons. However,
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other universal features seem inexplicable in a simple relay
scenario. For example, all relay cells have two firing
modes, ‘tonic’ and ‘burst’, both of which carry out effec-
tive (though slightly different) relay functions (Guido et
al. 1995).

A popular view is that the universal function of the
thalamus is ‘gating’ (Steriade & McCarley 1990). In its
simplest form, this asserts that the thalamus selects which
information is sent on to the cortex. In one extreme form,
the gate would be closed throughout the thalamus during
sleep, and the rhythmic bursting of relay cells would be a
type of busy signal or screensaver. In the awake thalamus,
bursting would also be a ‘no signal’ mode, but could be
selective for individual nuclei, or even individual relay
cells, and might correspond to an attentional ‘spotlight’
(Crick 1984). However, the discovery that, in the awake
state, bursting is irregular and time-locked to driving input
(Swadlow & Gusev 2001) is difficult to reconcile with the
‘no-signal’ hypothesis. Instead, it seems likely that both
burst and tonic modes are relay modes, and that the firing
mode instructs the cortex how to handle the incoming
information, rather than fundamentally changing that
information.

We present a speculative account of some of the univer-
sal features of thalamocortical circuitry and physiology,
based on the idea that complex circuits should be built
using accurate synaptic learning.

2. CONNECTIONISM

Clearly, whatever the thalamus does, it is intimately
related to whatever the neocortex does. Although the neo-
cortex carries out a vast range of different functions, a suit-
able starting point is that it probably uses rather basic
‘connectionist’ principles. These principles are: (i) cortical
neurons integrate their synaptic inputs and provide out-
puts to other neurons (or more formally, neurons compute
weighted sums of their inputs); and (ii) activity-dependent
changes in synaptic strength programme these neuronal
computations using purely local signals (for example,
Hebbian rules in unsupervised learning), perhaps together
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with global feedback. The ways in which these connec-
tionist principles actually work out in terms of circuits,
synaptic weights, coding strategies, etc., may vary greatly
from region to region, but these important details are
unlikely to explain the universal aspects of thalamocort-
ical circuitry.

Connectionist principles have to be embodied in real
neurons and synapses, which have limitations of accuracy
and speed. A reasonable starting point might be that the
thalamus exists to minimize the impact of these limi-
tations, to which very elaborate networks such as the neo-
cortex might be particularly sensitive. One obvious
possibility is that real biological inputs and outputs, enco-
ded as spike trains, contain noise caused by imprecise
spike timing, ultimately traceable to the small sizes of neu-
ral components and finite ion-channel numbers. It has
been proposed, for example, that intracortical recurrent
circuitry can minimize such noise, by a sort of spatial aver-
aging mechanism (Deneve et al. 1999). Some current
ideas about the thalamus (Sillito et al. 1994; Dong & Atick
1995) might fit into this category.

Another aspect of ‘biological connectionism’ that has
hitherto been largely ignored centres on the second half
of the connectionist paradigm—local activity-dependent
weight setting. Two obvious biological limitations that are
usually ignored in connectionist modelling are: (i) biologi-
cal networks are very sparsely connected (because neural
numbers are huge and neural wires are expensive); and (ii)
because synaptic learning is a physical event, using small
numbers of molecules it cannot be anatomically com-
pletely precise.

The traditional view of the first problem is that appro-
priate sparse connectivity is ‘precomputed’ by Darwinian
gene-based evolution, and hard-wired by suitable marker
molecules (netrins, ephrins, etc.). Activity-dependent syn-
aptic learning is then used to set appropriate strengths of
existing connections. An example of this is the use of
‘arbour functions’ in models of visual cortex development
(Miller 1990, 1994). Particularly striking evidence for
such hardwiring comes from the olfactory system (Wang
et al. 1998), where individual wiring is achieved using
thousands of special-purpose markers. However, in a way
this beautiful example actually shows the weakness of the
hardwiring approach as a general strategy, because these
markers monopolize a significant fraction of the entire
genome. The strategy works here only because these mar-
kers, which are the odorant receptor molecules them-
selves, are available ‘gratis’ for the secondary task of
hooking up olfactory neurons to the appropriate glomeruli
in the olfactory bulb. It would be impossible to coarsely
wire the neocortex using such a costly, precomputed
marker approach.

There is a second, even more powerful, argument
against extensive cortical hardwiring. Only those features
of the environment that persist over thousands of gener-
ations can be exploited by gene-based evolution. Prewiring
eliminates most of the advantages of flexible learning that
are thought to be a neocortical hallmark. Finally, there is
considerable experimental evidence against such hardwir-
ing (Sur & Leamey 2001).

It is widely suspected that sprouting provides a bridge
between genetically specified hardwiring and activity-
dependent learning at fixed complete connections (Miller
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1990). Thus, sprouting from existing connections could
provide new trial connections, which are then tested by
activity-dependent synapse adjustment (Willshaw & von
der Malsburg 1979; Fraser & Perkel 1990). Unfortu-
nately, this approach has not been very extensively tested.
It is commonly assumed that sprouting provides a ‘free
lunch’, in that it allows new configurations to be tested
without seriously degrading the quality of the final set of
connections and weights (which could be more speedily
attained with non-biological complete connectivity). How-
ever, there is some evidence that this may not be so (Elliott
et al. 1996).

The second biological limitation of synaptic learning is
that it may be anatomically imprecise in that, not just the
connection across which there is correlated activity may
strengthen, but nearby inactive connections may also be
affected. There is a good deal of evidence that this occurs
in the hippocampus (Bonhoeffer et al. 1994; Schuman &
Madison 1994; Engert & Bonhoeffer 1997) and in the
neocortex (Kossel et al. 1990). It has been argued that
spines exist to compartmentalize the calcium signals that
are the immediate trigger for synapse strengthening
(Koch & Zador 1993), which suggests that minimization
of anatomical learning inaccuracy has been of enormous
importance in the vertebrate nervous system, and it has
been widely assumed that such compartmentalization is
complete. However, this hope is unrealistic because there
are concomitant opposing pressures to miniaturize
synapses, which makes anatomical specificity harder to
achieve.

A final limitation that biological realism imposes on
connectionism concerns the dynamic range of synaptic
learning. Typical models require a wide range of possible
synaptic weights, which can be implemented biologically
in two different ways: varying the strengths of individual
synapses (‘physiology’) and varying synapse numbers
(‘anatomy’). There is, as yet, no good experimental evi-
dence as to how long-term weight changes are distributed
between these two routes, although there is some evidence
that as time progresses physiological changes are con-
verted to anatomical changes (Colicos et al. 2001). The
most efficient arrangement would probably be to make the
initial change at the level of existing synapses (increasing
transmitter release, phosphorylating existing receptors,
recruiting additional receptors), and then (perhaps if sub-
sequent activity does not immediately countermand these
temporary changes) convert these changes pari passu to a
change in the number of synapses. Pari passu refers to the
requirement that the switch from physiological substrate
to anatomical substrate should preserve the ‘strength’ of
the connection, a parity that raises some interesting cell
biological questions.

If synaptic strengthening is anatomically imprecise, and
involves the creation of new synapses, these new synapses
may not always form at the connection across which trig-
gering activity occurred, and may even involve the creation
of new connections. This could be regarded as an activity-
dependent ‘sprouting’ mechanism, and could be either
presynaptic or postsynaptic, or both. Such ‘accidental’
new synapses could provide a solution to the problem of
finding the best set of connections in a very sparsely con-
nected network such as the neocortex. However, such ana-
tomical errors could also severely degrade network
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performance. We propose that the thalamus could set the
balance between flexibility and accuracy during neo-
cortical learning. In § 3, we explore these ideas more quan-
titatively.

3. A MODEL OF SYNAPTIC ERROR

As a first step, we constructed a very simple model of
synaptic learning that allows a more quantitative dis-
cussion of these issues. We considered a single presynaptic
neuron (such as a lateral geniculate relay cell) that can
connect to a set of postsynaptic neurons (such as the set
of layer-4 cells in striate cortex that are the potential tar-
gets of LGN cells). The aim is to accurately connect the
relay cell to a subset of these cortical cells using activity-
dependent mechanisms. In our model, the various layer-
4 cells do not influence one another, so each set of connec-
tions can be considered independently. The postsynaptic
neurons are ‘linear’, so their output Vi (‘activity’) is simply
given by the weighted input activity wi Vpre, where wi is
the strength of the connection to the ith postsynaptic cell:

Vi = wiVpre. (3.1)

An important feature of the model is that when a connec-
tion strengthens it does so in a digital manner, by adding
new synapses. Because synaptic strengthening occurs in
an all-or-none manner (Petersen et al. 1998), the addition
of synapses should occur probabilistically. Except when
errors occur, the new synapses added as a result of coinci-
dent activity across a connection should have the same
‘connectivity’ as the synapses comprising the original con-
nection, and the only reasonable way to accomplish this
is for a new ‘daughter’ synapse to be closely associated
with an existing ‘parent’ synapse, either because the orig-
inal synapse ‘divides’ (Carlin & Siekevitz 1983; Toni et al.
1999; Luscher et al. 2000; but see Fiala et al. 2002) or
because of de novo formation of a bouton/spine pair very
close to the original synapse, the new bouton belonging
to the same axon as the parent bouton, and the new spine
belonging to the same dendrite as the parent bouton
(Colicos et al. 2001). Either mechanism seems compatible
with the expectation that the biochemical triggers for
activity-dependent synaptogenesis act locally near, or at,
the initiating synapses. In either case, the fundamental
mechanism is one of synaptic ‘replication’, in which the
connectivity of the new synapse is specified by, and trig-
gered at, an existing synapse (Adams 1998).

In the model, we used a standard Hebb rule, according
to which the change in strength of a connection due to
coincident activity is proportional to the product of the
presynaptic and postsynaptic firing rates (ki is a, possibly
connection-specific, learning rate):

dwi /dt = kiVpreVi. (3.2)

How is this rule to be interpreted at the level of single
synapses? If the probability that each existing synapse
gives rise to a new synapse depends simply on the coinci-
dent activity, then the effective gain of the Hebb rule over
the whole connection would increase as more synapses are
added, and equation (3.2) would not be obeyed (see figure
1b). To use a traditional Hebb rule in a framework of indi-
vidual synapses (rather than the abstract ‘synaptic weight’
of traditional models) appears to imply that the probability
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Figure 1. Asymmetrical and symmetrical synaptogenesis
following correlated firing (c.f.) across a connection. In this
figure, the new synapses preserve the connectivity of the
original synapse, though this does not necessarily imply
physical splitting. A group of AMPA receptors is shown as a
black dot. AMPA receptors located in the membrane of the
spine head are electrophysiologically functional and endow a
synapse with its ‘strength’. AMPA receptors located in the
spine head interior are electrophysiologically silent, but
constitute a reserve pool that endows a synapse with
plasticity. In (a), correlated firing across the connection,
initially comprising one synapse, leads to physiological
strengthening (insertion of a group of AMPA receptors).
The strengthened synapse is no longer plastic (the actual
mechanism could be different from depletion of the reserve,
which is used here as an iconic representation of plasticity).
This is followed by structural changes (s.c.) that convert the
temporary two-strength synapse to two one-strength
synapses, only one of which, however, regains its plasticity.
If the same amount of correlated firing occurs again, the
same strengthening of the connection occurs (as in a
conventional Hebb rule). In (b), both the orginal and the
new, correlation-induced, synapses are plastic, so a second
episode of correlated firing leads to a larger increase in
synaptic strength (in contradiction of the usual quantitative
formulation of Hebb’s rule). Thus, in both parts ‘strength
replication’ and ‘connectivity replication’ are symmetrical,
but only in (b) is ‘plasticity replication’ symmetrical. If the
new synapses do not have the connectivity of the original
synapses, the result would be a ‘synaptic mutation’.

that coincident activity causes synapse replication depends
inversely on the number of synapses comprising a connec-
tion—a decidedly ‘non-local’ and rather implausible
requirement. Instead, we suggest that when replication
occurs, either the existing or the new synapse be ‘implas-
tic’ (figure 1a). This would allow the Hebb rule to operate
locally at individual synapses (which is where the machin-
ery appears to be located), while preserving the Hebb rule
quantitatively over the whole connection. Thus, coinci-
dent activity would promote ‘replication’ of the connectiv-
ity and strength of existing synapses, but not their
plasticity. The rather anticlimactic result of this discussion
is that we retain a conventional Hebbian learning rule,
though expressed in terms of synaptic number rather
than weight.
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Combining equations (3.1) and (3.2), we obtain

dwi /dt = �iwi, (3.3)

where �i = kiV2
pre. The parameter �i plays a rule rather

similar to ‘fitness’ in evolution models. Straight Hebbian
learning leads to unlimited synaptic growth, which is bio-
logically unrealistic, especially when expressed in terms of
synapse number. Most models introduce a ‘normalization’
process at this point, for example constraining the total
number of synapses made by the presynaptic neuron to
be constant. There are various ways to biologically
implement such normalization, such as competition for
growth factors, inclusion of a non-Hebbian forgetting term
or use of a time-dependent learning rule, but in our simul-
ations we used a brute force normalization, dividing the
weights by a factor that kept their sum constant. Thus,
activity merely triggered synapse rearrangement between
the various target cells.

So far, this model exhibits very simple behaviour (von
der Malsburg & Willshaw 1980). Connections with high
�i values grow at the expense of low-�i connections, and
eventually all but the ‘fittest’ connections disconnect. The
Hebbian rule is able to detect and amplify small biases
and generate a completely precise set of final connections.
However, these final connections are irreversible, since
there is no way to create new connections.

We now introduce synaptic error, by assuming there is
some low probability, E, that a new synapse created by
conjoint neural firing appears, not at the connection across
which conjoint activity occurred, but at an adjacent con-
nection (even if that ‘connection’ was nonexistent, with
no synapses). The learning rule becomes

dwi /dt = (1 � E)�iwi � E(�i�1wi�1 � �i�1wi�1)/2. (3.4)

(This could also be regarded as a rule incorporating coac-
tivity-dependent sprouting; the vital point is that it pro-
vides for the creation of new connections).

We simulated the behaviour of this model numerically,
using a row of 13 target neurons and a probabilistic ver-
sion of equation (3.4) for the formation of individual syn-
apses. We assigned a high value, �m, for the neuron at the
left end of the row, and a uniform low value, �p, over the
remainder of the row. We found that eventually a steady-
state distribution of synapses was attained, with (as
expected) most of the synapses located near the preferred
neuron, but a considerable tail of synapses straggling away
from it (figure 2). This steady tail arises because synapses
leak from the high-fitness neuron at a rate that exactly
compensates for the excess production there. As expected,
we also found that increasing the error rate or decreasing
the fitness ratio �m/�p led to a broader tail of synapses
(figure 2). As expected, zero error leads to completely spe-
cific connections.

We also examined the transient behaviour of the model.
Figure 3 shows the initial steady distribution of synapses
generated when the leftmost neuron was fittest, and the
subsequent migration of synapses when the rightmost neu-
ron instead became the fittest. The initial trail of synapses
acts as a seed for the growth of the rightmost connection.
In figure 4, all the synapses were initially placed on the
leftmost neuron, and then allowed to migrate to the fitter,
rightmost neuron. The figure shows the number of syn-
apses accumulating on this target neuron. There is an
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initial, rather variable delay before the first synapse
reaches the target, which then rapidly flourishes. As
expected, this delay grows smaller as the total number of
synapses increases.

The model can be analysed straightforwardly in the con-
tinuum limit (large numbers of synapses and neurons). In
the above equations w becomes a synapse density at the
point x on a continuous neuronal line, and equation
(3.4) becomes

∂w/∂t = (� � ���)w � 0.5�E∂2w/∂x2. (3.5)

(The average fitness ��� is introduced to enforce weight
normalization; see von der Malsburg & Willshaw (1980)).
Although equation (3.5) is nonlinear, in the steady state
��� attains some constant value, leading to an ordinary
second-order differential equation, whose solution in the
particular case of a high-fitness mesa surrounded by a low-
fitness plateau is, over the low-fitness plateau,

wp = Cexp(�x/�p) � Dexp(x/�p), (3.6)

where �2
p = E�p/2(��� � �p) and C and D are constants.

For short mesas and long plateaux (the conditions of our
simulations), the second term on the RHS can be neg-
lected, and the decay outside the mesa is exponential, as
observed. The space constant �p is given by

(2�p � n)/n�2
p = 2(�m/�p � 1)/E, (3.7)

where n is the number of neurons in the mesa. We found
that the distributions in our simulations were close to
exponential, with space constants described by equation
(3.7) (figure 5).

This is a highly simplified model of synaptic rearrange-
ment, probably the simplest that exhibits selective wiring,
but it clearly shows an intuitively plausible phenomenon
which is probably common to more elaborate models, that
incorporation of anatomical error into a learning rule pro-
duces a blurring of connections away from the precise pat-
tern attained in the absence of error. Furthermore, it
illustrates quantitatively (equation (3.7)) the expectation
that the extent of blurring is greater when error rates are
high or when targeting signals are weakest. We regard the
mutual interdependence of the factors that promote blur-
ring (i.e. error) and those that enhance specificity
(selective neural activity) of capital importance, because it
means that a correlational mechanism (such as Hebb’s
rule) cannot build circuits of unlimited precision. Further-
more, even very low synaptic error rates could be of great
significance in preventing the self-organization of large
networks such as the neocortex because correlations in the
real world are likely to be weak and near the limits of
detectability (a tiger in the grass).

4. A SLIGHTLY MORE REALISTIC MODEL OF
SYNAPTIC LEARNING

Although the above model shows the basic phenomena,
it is rather unrealistic, because it neglects interactions
between different inputs (other than the normalization
process), and does not really specify the origins of the pos-
tulated fitness differences. To some extent, this can be
remedied by flipping the model, so that a row of presynap-
tic cells projects onto a single, linear postsynaptic cell. We
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Figure 2. Simulations of the steady-state distribution of synapses on target neurons for various error rates (a) or fitnesses (b).
In each case, the left connection was the fittest (� = �m), and there were 13 neurons and 1300 synapses. Connections on
neurons 2–13 had uniform low fitness �p. The average number of synapses on each neuron achieved at equilibrium is shown
for various values of error rate E and fitness ratio �m/�p (no synapses were formed on neurons 7–13, which are not shown). In
all cases, synapses are most numerous on the high-fitness neuron, but as error rates increase (a) or fitness ratios decrease (b)
synapses become more spread out. Values of E used in (a) were 0.1 (circles), 0.2 (squares), 0.3 (triangles) and 0.4 (inverted
triangles), with �m/�p = 1.4 throughout. Values of �m/�p used in (b) were 1.11 (circles), 1.25 (squares), 1.42 (triangles), 1.66
(inverted triangles), with E = 0.2 throughout.
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Figure 3. The migration of synapses following a mirror reversal of fitness. Initially synapses were equilibrated with the leftmost
connection (on cell 1) being 5% fitter than the others. This resulted in the zero-epoch profile, with most of the synapses on
cell 1, but with some spread across the entire set of target cells. The rightmost connection (on cell 13) was then made 5%
fitter than the others, and the resulting profiles were plotted for successive epochs (after attainment of equilibrium and then
binning results for 20 consecutive epochs to reduce noise). The total number of synapses was 13 000 and the error rate 0.25.

can now ask what stable set of weights emerges if the input
neurons are subjected to a given series of patterns. This
model (without synaptic error) is essentially the prototype
of all connectionist unsupervised learning models
(Diamantaras & Kung 1996). Because the Hebb rule
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detects correlations, in a fully connected error-free net-
work the weight vector gradually aligns with the leading
eigenvector of the covariance matrix of the set of patterns,
also known as the principal component. Each pattern
‘pulls’ the weight vector towards itself, and an equilibrium



1772 P. Adams and K. Cox Thalamocortical circuitry

�


��

���

�

	




�

��
� � �  


�����

��
�

��
���

���
��

��
��

��
��

���
 ��

��
�

������

������

Figure 4. Kinetics of appearance of synapses at the fittest
connection, on the rightmost neuron (cell 13). All synapses
were initially placed on the leftmost neuron. The number of
synapses on the right neuron was plotted at successive
epochs. The total numbers of synapses M were 26 000 (left
five runs), 13 000 (middle five runs) or 6500 (right five
runs). Note that there is a variable delay before the
formation of the first synapse on the fittest neuron, followed
by rapid increase in the connection strength. However,
because for the parameter values used (E = 0.1, �m/�p = 1.05)
the length constant is quite high, the fittest neuron only
gains about half of the total number of synapses.

is attained when all these little pulls balance out. If the
set of patterns is visualized as a cluster of points in high-
dimensional space, then the principal component is the
least-squares line through these points, the direction along
which the variability of the points is maximal. The post-
synaptic neuron evolves to act as an ideal statistical filter,
since its output in response to any particular pattern is the
projection of that pattern on the principal component.

If an unvarnished Hebb rule is used, although the
weight vector aligns with the principal component, the
weights themselves grow without bound. This could be
remedied by constraining the sum of the weights to be
constant (as in the previous section). However, to allow
for both positive and negative activities and weights, it is
usual to normalize the sum of the squares of the weights.
This can be done using a purely local rule, involving an
additional ‘forgetting’ term given by the product of the
square of the postsynaptic activity and the weight (Oja
1982).

We are currently investigating how introducing learning
errors modifies the behaviour of this single neuron princi-
pal-component analyser. We find that the weight vector
now stabilizes to a new direction that is intermediate
between the principal component and the direction corre-
sponding to a uniform weight distribution, so that the neu-
ron no longer acts as a statistically optimal filter. The
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extent of degradation of the filter depends both on the
error rate E and on the structure of the covariance matrix.

This behaviour can be seen particularly clearly in the
limiting case where the patterns are uncorrelated, corre-
sponding to a cloud of points whose main axis is aligned
with one of the input coordinates. This coordinate rep-
resents the input neuron whose activity over the set of
patterns has maximal variance. If the patterns are uncorre-
lated, then the optimum arrangement is for the postsynap-
tic neuron to be connected exclusively to the ‘most
interesting’ input neuron, the one whose variance is maxi-
mal. In this particular case, since the patterns are uncorre-
lated, the evolution of any particular synaptic weight does
not depend on the evolution of the other weights, but only
on the variance of the relevant input neuron. For uncorre-
lated patterns, the model becomes identical with that in
the previous section, with the variances replacing the fit-
nesses. In the simplest case, where the variance at one
input neuron is high, and the variance for all the other
input neurons is low, the main weight will be on the cor-
rect neuron, but it will not be exclusive, there being an
exponential tail of weight distribution onto ‘nearby’ neu-
rons. Thus, learning errors lead to a suboptimal filter.

Of course, it is unlikely that neurons in the visual sys-
tem, or anywhere else, act as principal component filters,
primarily because such a representation is suited only to
the simplest type of Gaussian pattern statistics. Neverthe-
less, something like the core concept, statistically optimal
representation, is probably at work in the neocortex, and
it is likely that in all cases anatomical learning errors will
impose limitations on the self-organization of neural net-
works in response to structured inputs. In § 5, we consider
how the impact of such errors can be minimized.

5. LIVING WITH ERROR

One obvious way to minimize the impact of learning
errors is to lower the error rate, by optimizing the machin-
ery of synaptic plasticity. Perhaps the most obvious poss-
ible way for synaptic weight adjustment to be anatomically
imprecise would be diffusion of second messengers
involved in the plasticity cascade from active to inactive
synapses. Of these messengers, calcium is the best under-
stood and probably the most important, since calcium
influx through NMDA receptors seems to be crucial for
Hebbian learning. Consistent with the idea that activity-
dependent learning should be synapse-specific, spines
(which are found wherever vertebrate learning occurs)
seem to exist to compartmentalize these calcium signals,
by a combination of physical barriers and biochemical
machinery (Koch & Zador 1993).

However, achieving the goal of complete synaptic inde-
pendence is incompatible with the equally desirable goal
of maximizing synapse numbers (since ultimately the
amount of useful information that can be stored in a neu-
ral network depends both on the numbers of synapses and
the precision with which their strengths can be indepen-
dently set). For example, increasing the distances between
synapses decreases both crosstalk and numbers. Over the
open times of NMDA receptors (ca. 100 ms) even well-
buffered calcium diffusion (D � 0.01 �m2 ms�1) can span
typical intersynaptic distances. The problem is com-
pounded by the requirement that synapses should not only
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Figure 5. Comparison of simulation results (points) with theory (lines). (a) The fraction of the total number of synapses
(13 000) that form at less fit connections (i.e. the plateau region) compared with an exponential curve of length constant
� = 2.45 neurons. E = 0.2; �m/�p = 1.05. Cell 13 received no synapses and was omitted. (b) The reciprocal effects of relative
fitness and error rate. Each point was obtained for a different combination of �m/�p and E from data similar to those shown
in (a). The linear regression through the origin has a slope of 2.2, compared with the predicted slope 2.0 (see equation (3.7)).
Because in the simulation the fit neuron was at the end of the line, while in the analysis it is in the middle, n = 2.

be well separated but also small, since this means that
rather small numbers of calcium ions must reliably trigger
synapse modification.

It is therefore not surprising that recent experimental
tests have shown that the synapse specificity of LTP can
break down quite dramatically (Engert & Bonhoeffer
1997; Schuman & Madison 1994). In these experiments,
one common feature was that the stimulation protocols
used to generate LTP were rather drastic, typically involv-
ing hundreds of spikes or long-maintained depolarizations,
precisely the circumstances in which calcium diffusion will
be favoured. It seems probable that under more natural
conditions, involving rather precise timing of pre- and
postsynaptic spikes, and very brief and localized calcium
signals, the specificity of synaptic strengthening or weak-
ening will be much greater, but presumably not perfect.

So how can the brain live with ineluctable learning
errors? The problem is that, because of the positive feed-
back inherent in the Hebb rule (which is what makes it so
useful), errors can propagate and prevent useful learning,
especially when the statistical regularities that guide learn-
ing are relatively weak. Ultimately the useful size of a bio-
logical neural network must be limited by the accuracy
with which the individual ‘bits’ that constitute its ‘pro-
gramme’ can be written, and this limitation is likely to be
particularly severe in a vast network such as the neocortex
which deals with relatively subtle statistical regularities
(such as finding principles in masses of neuroscientific
data).

More specifically, how can a single LGN relay axon be
correctly wired to a handful of neurons amongst the hun-
dred million or so in the primate striate cortex, using the
statistical correlations that are generated either by intrinsic
prenatal activity (such as retinal waves) or postnatal
visual experience? Roughly speaking this wiring feat is
accomplished because the firing of the incoming axon is
more highly correlated, on average, with the firing of the
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‘correct’ handful of cells than with the incorrect myriad
of other potential targets, although it might also be aided
by biochemical cues. However, we have seen in § 3 that if
learning is anatomically imprecise, connections will also
be formed onto ‘neighbours’ of the correct cells, and these
incorrect connections will abound to an extent that
depends inversely on how much more the axon’s firing is
correlated with ‘correct cells’ than with the ‘incorrect’
cells. If the selective correlations that guide wiring are
strong, then wiring can be accurate even though the learn-
ing rule is anatomically imprecise (see equation (3.7)). If
these correlations are internally generated (for example, by
retinal waves) then they could, in principle, be sufficiently
selective that precise wiring could still be achieved, but if
they are generated by interaction with the real world, this
cannot be guaranteed, and self-organization may fail.

It could be argued that although imprecise wiring is
inevitable, its flexibility advantage (arising because cur-
rently incorrect connections may be useful in the future)
always outweighs its drawbacks (poor performance). We
suspect, however, that since errors are inevitable there will
always be adequate flexibility, and that the main learning
task is to ensure that residual errors do not prevent use-
ful learning.

We therefore suggest the following formulation of the
neocortical-learning problem. Given that a particular set
of ‘correct’ connections has been established as a result of
past selective correlations, how can we guarantee that
these connections will remain correct if (i) they remain
plastic and (ii) the correlations are not guaranteed to
remain selective? The difficulty is, of course, that if the
network continues to learn, less selective correlations can
allow errors to persist, leading to incorrect wiring.

Formulating the problem in this way immediately sug-
gests a solution. If the survival of errors depends on the
selectivity of correlations across currently connected neu-
rons compared with the correlations across incipient con-
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nections, then a measurement of these correlations (across
current and incipient connections) could be used to con-
trol learning at current connections. In particular, if the
ratio of the correlations across current and incipient con-
nections exceeds some critical value (which will depend
on the error rate and the number of synapses comprising
a connection), learning could be switched off entirely,
guaranteeing that error will not occur. In this context, an
‘incipient connection’ is defined as one that could be
immediately formed as a result of an anatomical error in
strengthening of an existing connection and subsequent
synaptogenesis. (Of course, further errors could result
from strengthening of newly formed ‘erroneous’ connec-
tions; the gradual propagation of these errors away from
the original ‘correct’ connections underlies the insidi-
ousness of the error problem, but this is avoided if the
initial error is prevented).

The circuitry that is required to implement this solution
is shown in figure 6. Presynaptic neurons are labelled J,
postsynaptic neurons are labelled I, and neurons which
detect correlations are labelled K. Actually, two different
though related circuits are needed, corresponding to two
different types of synaptic learning error. If an anatomical
error is made in creating a synapse at an existing connec-
tion, the erroneous synapse could be made either between
the correct presynaptic neuron and an incorrect postsyn-
aptic neuron (dubbed a ‘presynaptic error’ because the
initial correct change is presumably initiated presynap-
tically, but triggers the selection of an incorrect postsynap-
tic target which happens to be available nearby), or
between the correct postsynaptic neuron and an incorrect
presynaptic neuron (a ‘postsynaptic error’). (Error rates
are assumed to be sufficiently low that the probability of
a double error is negligible.) In figure 6 the set of incorrect
‘neighbours’ onto which errors can be made is depicted,
for convenience, as the neurons whose cell bodies are
‘neighbours’ of the cell bodies of the correct neurons.
However, the actual set of neurons is presumably determ-
ined instead by the anatomical disposition of the terminals
of the presynaptic neurons and the dendrites of the post-
synaptic neurons; difficulties with this assignment are dis-
cussed below.

In the case of ‘presynaptic’ errors, it would be necessary
to measure the correlations between the currently connec-
ted neurons, and also the correlations between the cur-
rently connected presynaptic neuron and the postsynaptic
neurons to which it could become connected if an error
occurs (figure 6a). These correlations would be measured
using a special type of coincidence-detecting ‘K’-neuron,
shown using a different symbol from the conventional pre-
and postsynaptic J- and I-neurons. Excitation of K-
neurons would be caused by a pair of spikes, one in a
presynaptic neuron and one in a postsynaptic neuron, with
a suitable timing delay corresponding to the paired spikes
which cause the strengthening of the existing connection.
K-excitation by a correlated spike pair would also reflect
any time dependence of the strength change at the J–I con-
nection triggered by that spike pair. One possible way to
accomplish this would be to use similar NMDA receptors
to trigger strength changes in J–I connections or excitation
of K-neurons, but selective innervation of distal and proxi-
mal dendrites of K-cells (as sketched in figure 6) could
also be employed.
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Figure 6. Circuits for error avoidance. In both (a) and (b)
the middle neuron in the top row (J0) has formed a selective
connection (small solid dots) on the centre neuron of the
middle row (I0), as a result of selective correlations in the
firing of these two neurons. If this connection undergoes
further strengthening as a result of correlated firing, the
added synapses could (with very low probability) be formed
on the neighbours of I0 (or, more exactly, on neurons whose
dendrites are neighbours of the existing connection). These
possible ‘presynaptic error’ synapses or ‘presynaptic
mutations’, which are incipient connections, are shown as
dotted lines and small open circles in (a). If these errors are
to propagate they must be supported by adequate
correlations in the firing of the J0–I�1 or J0–I1 pairs,
compared with J0–I0 correlations. These correlations are
measured by K-neurons in the bottom layer. If propagation
of errors is unlikely, K0 fires, presynaptically enabling the
plasticity of the current connection made by J0. (b) An
alternative ‘postsynaptic’ scenario, in which strengthening of
the J0–I0 connection could cause incorrect synapses to form
from neighbours of J0 (or, more precisely, from axon
branches which are neighbours of the existing connection).
In this case, the correlations that must be measured by K-
neurons are slightly different, and if their selectivity is
favourable, plasticity of the current connection should be
enabled postsynaptically. In real networks, each J-cell can
make several connections on I-cells, and each I-cell can
receive several inputs from J-cells. In these cases, the
relevant correlations, measured by K-cells, are the average
correlation across the current connections, compared with
the average correlation across incipient connections (see
figure 7).
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The next step is to compare the excitation of K-cells
corresponding to current connections with excitation of
K-cells corresponding to incipient connections. If this
relative excitation is strong enough, it must somehow
enable the plasticity of the current connection, secure in
the knowledge that if this connection strengthens, added
synapses either will be correctly placed or will be inad-
equately supported by weak correlations. An obvious way
to do this would be for the ‘current’ K-cell to be inhibited
(via an interneuron) by the ‘incipient’ K-cells, illustrated
in figure 6 by short horizontal arrows. Thus, firing of the
current K-cell (denoted K0 in figure 6) would signal that
the present input is well correlated with the firing of the
currently connected output, compared with the corre-
lation with the firing of the ‘neighbours’ of the current
output, and this firing should therefore enable the plas-
ticity of the current connections (only one shown in figure
6). Although at first sight it might seem logical to lead the
axon of this K-cell to the synapses comprising the current
J–I connections, this would be quite complicated to wire
up. It would be much simpler to lead the axon to the cell
body of the appropriate J-neuron, and to multiplex onto
the spike train emitted by that J-cell an additional com-
mand, which would automatically enable the plasticity of
any connection that J-neuron makes onto I-neurons. If the
average rate of the spikes of the J-neuron was used to con-
vey the information about the input, then it would be
natural to use a second-order statistical parameter such as
spike clustering to convey the plasticity-control signal; in
the simplest case, a ‘tonic’ firing mode could be used to
enable plasticity and a ‘burst’ firing mode could be used
to disable it. Thus, the J-cell associated with a current con-
nection would continuously monitor the selectivity of the
waxing and waning correlations across that connection
(just as the strengthening of that connection would itself
depend on the flux of the absolute correlations across it),
only allowing learning under favourable conditions. (Of
course, the I-cells would, under all circumstances, process
the impinging J-spikes.)

Figure 6a illustrates the principle, but it is highly over-
simplified. Not only might a given J-cell connect to several
I-cells, but also each I-cell could obtain input from several
J-cells. Indeed, part of the reason that the firing of the
neighbouring I-cells I�1 and I1 are to some extent corre-
lated with the firing of J0 is that they obtain input from J-
cells whose firing is correlated with the firing of J0 (for
example, because of patterned visual input). These corre-
lations have, in the past, been insufficient to cause direct
wiring to J0, even though the occurrence of errors tends
to promote such wiring. All the other I-cells also have their
plasticity controlled by suitable K-cells, which can be
imagined as additional K-sublayers not shown in the fig-
ure. At first sight it might seem that if there are n I-neu-
rons, and each I-neuron has m neighbours, a total of nm
K-cells would be needed. However, insofar as each J-cell
innervates several I-cells, all these I-cells constitute a ‘cur-
rent connection’, and a single K-cell could compute the
average correlation between that J-cell and its I-targets.
Likewise, a single K-cell could also compute the average
correlation between a J-cell and all the neighbours of its
current I-targets. (In these average correlations, a K-cell
would be excited by paired spikes originating in any of its
J- or I-inputs).
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What modifications to figure 6a should be made to
allow for the fact that several J-cells can converge on a
single I-cell? For example, in the cat striate cortex several
LGN relay neurons converge onto single layer-4 cells,
endowing these neurons with their characteristic receptive
field properties (Reid & Alonso 1995; see figure 7). Pre-
sumably, this arrangement exists because in the past the
activities of these particular relay neurons were highly cor-
related with the activities of this particular layer-4 target
cell (Miller 1994). One way to maintain the specificity of
these connections, even if present visual experience is less
structured than in the past, would be to enforce a strong
‘critical period’ outside which plasticity is turned off, but
this would make the system inflexible. Instead, the
approach advocated here is that plasticity should merely
be temporarily disabled, on a connection-by-connection
basis, whenever the correlations that initially wired the
connections wane. In this case, the output of the K-cell
that corresponds to the I-cell receiving the convergent J-
input should be led back to the all the appropriate J-cells,
and enable their plasticity (figure 7). (Of course, this has
the disadvantage that some of these J-cells also make syn-
apses on other I-cells, and the plasticity of these connec-
tions will also be spuriously enabled. However, the K-
partners of these I-cells will not be firing, limiting the
enablement; plasticity would be controlled in a ‘distrib-
uted’ manner just like regular neural computation.)

Figure 6b shows the rather similar machinery that would
be required to control ‘postsynaptic errors’. In this case,
a synaptic strengthening error would involve formation of
a connection between a new spine originating at dendrites
involved in the current connection, and a bouton forming
on an axon terminal that is near to the axon making the
original connection. These neighbouring axons would
form synapses onto K-neurons that compute correlations
across ‘incipient’ connections (K�1 and K1 in figure 6b),
which would, in turn, inhibit the ‘current’ K-cell K0,
which detects the correlation between the neurons con-
tributing to the current connection. In this case, the out-
put of K0 would be used to control the plasticity of the
current connection postsynaptically.

6. COMPARISON WITH THALAMOCORTICAL
CIRCUITRY AND FUNCTION

Both figure 6a and 6b are reminiscent of some of the
universal features of thalamocortical wiring. In particular,
Callaway (1998) has pointed out that in primate striate
cortex layer-6 neurons receive a copy of the input to layer-
4 cells (via collaterals of relay cells) and of the outputs
of these cells (via descending branches; see also Tarczy-
Hornoch et al. 1999). In the present scheme, this would
arise because layer-6 neurons are essentially evaluating the
hypothesis that the spikes fired by layer-4 cells are ‘caused
by’ spikes in the relay cells to which they are connected.
They also evaluate the alternative hypothesis that some of
these layer-4 cells spikes are ‘caused’ by relay cells to
which they are not currently connected, but could easily
become connected. The definition of ‘causation’ that
layer-6 cells use is simply appropriate temporal contiguity.
The relative strengths of these two hypotheses are then
used to decide whether to allow the existing connections
to be modified by the ongoing neural activity. The reason
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Figure 7. A more realistic version of figure 6a, based on the
LGN (T) projection to striate cortex (layers 4, 6). In this
figure the J-cells are shown explicitly as thalamic relay cells
(T) , the I-cells as cortical layer-4 cells (4), and the K-cells
as cortical layer 6. The corticothalamic feedback connections
(arrows) terminate on the distal dendrites of relay cells,
where they can activate metabotropic glutamate receptors,
which depolarize relay cells and shift them from burst
(‘implastic’) to tonic (‘plastic’) mode. Several relay cells
converge on a given layer-4 cell, in this case three relay cells
responding to a bar of light or darkness on the retina
innervate a single ‘simple’ layer-4 cell. This simple cell in
turn innervates, via a fixed connection, the soma of its
corresponding layer-6 partner, which also receives, on its
distal apical dendrite, input from branches of the relay cell
axons that innervate the layer-4 simple cell. For simplicity,
the extended electrotonic structure of layer-6 cells, sketched
in figure 6, is not shown here. The central layer-6 cell
would, by virtue of either of these two types of input, itself
be simple. (Complex layer-6 cells also occur, but these
would correspond to the K-cells shown in figure 6b.) Note
that the activation of the layer-6 cells would depend, in this
scheme, on the conjunction of action potentials in its input
cells. The firing of the central layer-6 cell then depends on a
comparison of its own activation with those of its neighbours
(shown as dotted circles), which receive their proximal
inputs from the neighbours of the layer-4 cell (also shown
dotted). Note also that the central layer-6 cell feeds back to
all the thalamic relay cells that innervate its layer-4 partner.
Although these postulated connections and properties are
consistent with the known anatomy and physiology of
thalamic and cortical cells, they venture slightly beyond it.
However, the circuitry shown here, and in figure 6, can
easily be established by two types of offline calibration
signals applied in alternation while either the T–6 or 6–T
connections are selectively plastic.

why plasticity is rationed in this way is because it is a dou-
ble-edged weapon—it allows refinement of the existing set
of weights, but at the potential cost of forming inappropri-
ate connections.
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Is there any evidence that layer-6 cells do compute such
‘correlation selectivity’ signals? In cat striate cortex, layer-
6 cells fall into two major physiological groups, ‘simple’
cells and ‘complex’ cells (e.g. Hirsch et al. 1998). The
majority of those layer-6 cells that project back to the
LGN appear to be simple (Grieve & Sillito 1995). These
cells seem to have similar response properties to the ‘sim-
ple’ and ‘complex’ cells in the overlying cortical column.
Simple cells in layers 4 and 6 could have identical recep-
tive fields either because they receive identical afferents or
because the layer-6 cell is driven by the layer-4 cell, but
in either case the relevant connections would have to be
quite strong. Since the connections are weak, it is more
plausible that a layer-6 cell mimics a layer-4 cell because
it receives both sets of input, which reinforce each other,
as shown in figures 6 and 7. However, although neurons
elsewhere in the brain act as coincidence detectors
(Agmon-Snir et al. 1998), there is so far no direct evidence
for this in layer 6.

The schemes shown in figures 6 and 7 suggest that a
layer-6 cell’s projection back to the thalamus should
innervate the relay cells that drive the layer-4 cell that con-
tributes to that layer-6 cell’s receptive field properties. A
rather similar wiring arrangement has been postulated on
quite different grounds by Sillito et al. (1994), for which
they have obtained some evidence. However, the detailed
pattern of the connections to and from layer-6 cells is still
unknown. There is no evidence that individual spikes or
bursts of spikes in relay cells are more or less likely to
generate LTP at thalamocortical synapses, as postulated
above.

7. WIRING UP THE ERROR CONTAINMENT
CIRCUITRY

Although the above account concentrates on the issue
of maintaining appropriate connections in the presence of
noisy input and synaptic learning errors, the postulated
circuitry cannot prevent error entirely. Most of the errors
that do still occur will impair the efficiency with which
neural circuits process information, but occasionally a new
connection will be useful, especially if environmental
changes allow it to support a high level of correlated firing.
In these circumstances, feed-forward circuits could actu-
ally rewire, requiring an adjustment of the error-preven-
tion circuitry. These changes are illustrated in figure 8.
Figure 8a shows the initial connections. If cell J0, which
(as a result of a previous high degree of correlation) is
currently wired to cell I0, accidentally makes a synapse on
cell I1, activity patterns might change such that the new
connection replaces the old connection (as shown in figure
8b). The K-cell connections that ‘guarded’ the original J0–
I0 connection are no longer appropriate for guarding the
new connection. In particular, the connections shown as
dotted in figure 8a must be broken, and the connections
shown as dashed in figure 8b must be created. This could
be done if the circuit is taken ‘offline’ so it is no longer
exposed to the patterned activity that caused the initial J–
I rewiring, and is instead subjected to certain internally
generated ‘calibration signals’. While offline, the J–I syn-
apses would, by the action of a suitable neuromodulator,
be rendered implastic, and unable to respond to the cali-
bration signals. Conversely, the connections to and from
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Figure 8. Generation of K-cell circuitry by offline recalibration. (a) Recapitulation of the circuitry sketched in figure 6a. If,
despite the operation of this circuitry, an error does occur, with the formation of a ‘mutant’ synapse onto neuron I1, and this
new connection strengthens at the expense of the original connection (because the pattern of correlations that led to the
original connection has changed), a different set of connections to and from layer K is required, if future errors in the
strengthening of the new connection are to be prevented, as shown in (b). In order to reconfigure the K-layer connections
from (a) to (b), the connections shown as dotted lines must be broken, and the connections shown as dashed lines must be
created. This can be done in a two-stage process if the entire circuit is taken offline and suitable internally generated
recalibration signals are played into the J-layer. First, individual J-cells (for example J0) should be strongly activated while the
J–I connections are all rendered implastic, and the J–K connections are rendered plastic (these global plasticity changes could
be procured through release of suitable neuromodulators such as acetylcholine or norepinephrine). This strong J0 activation
should, in turn, cause all the I-cells that are its current targets (in this case, I1) to fire. This could be achieved if a wave of
‘burst’ activity sweeps over the J-layer. This will strengthen the J0–I1 connection, which will create (via uncontrolled error) the
desired new J0–K2 connection. The unsupported J0–I�1 connection withers. In the second stage, the plasticity of K–J
connections is selectively enabled, and J-cells are randomly activated (for example by random activation of cholinergic
brainstem inputs). If the set of J-cells that innervates I1 (in the case shown, just J0) happens to fire, then K1 will also fire
(since it detects the relevant correlations). If (due to previous uncontrolled errors) K1 makes a connection onto J0, this
connection will be appropriately strengthened, while the unsupported K0–J0 connection will wither.

the K-cells would be rendered plastic (they would be fixed
when online). In particular, the required new J0–K2 con-
nection could be created if cell J0 fires selectively and
powerfully so that it causes I1 to fire. The conjoint firing
of J0 and I1 would then cause K1 to fire, strengthening
the J0–K1 connection. Errors in the strengthening of this
connection would then create the desired J0–K2 connec-
tion. The old, dotted J0–K�1 connection is neither sup-
ported by correlated firing nor the beneficiary of errors,
so it will disappear. The feedback connections from K to
J would then be modified in a second phase of offline
learning, via the correlated firing of J0 and K1 (Cox &
Adams 2000). In both cases, the crucial neighbourhood
relations underlying the circuitry are established by
exploiting error, since a ‘neighbour’ is defined as a cell
onto which, or from which, errant synapses form.

8. EVALUATION

The idea underlying these speculations is rather simple,
though it has been little discussed. The creation of com-
plex and precise neural networks requires that wiring
errors be minimized, and that weight adjustments be ana-
tomically specific. The size of any information-rich com-
plex object, be it a genome, a neural network or a
computer disk, is ultimately limited by the precision with
which the information can be written. If new synapses cre-
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ated by strengthening existing connections do not inherit
the original connectivity, they will impair network per-
formance. It might be argued that if these new, erroneous,
synapses are ‘silent’ (Isaac et al. 1995) they will not impair
performance, while providing a reservoir of novel and
potentially useful connections. However, since correlated
activity across new silent synapses will cause unsilencing,
network impairment cannot be avoided. In our termin-
ology new connections are created as a result of errors in
the strengthening of existing connections, but one could
also regard them as coactivity-induced ‘sprouts’. If,
instead, sprouting occurred at some activity-independent
basal rate S, then a similar equation to equation (3.5)
would result, with the term �E replaced by S. Under these
circumstances, the spread of synapses would depend on
the difference, not the ratio, of the mesa and plateau fit-
nesses, each relative to S. Accurate connections could still
be maintained by the circuitry of figure 6, except that K0

would have to compute the differences in the absolute lev-
els of correlations, rather than the ratio.

One way to ensure anatomically specific learning is to
build better synapses, with improved insulation, greater
separation and larger numbers of key molecules. However,
some residual non-specificity is inevitable, and if neural
correlations, deriving from subtle environmental regu-
larities, are relatively weak, self-organization may fail
entirely. Ultimately, the useful size of any complex system
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is limited by the accuracy with which its components oper-
ate, and the neocortex, perhaps the most complex object
known, is unlikely to be exempt. This suggests the possi-
bility that the neocortex has developed some unusually
effective way of minimizing the consequences of inevitable
synaptic learning errors. It seems unlikely that neocortical
synapses embody a new error-free design principle, and
more probable that instead some of the unusual features
of thalamocortical circuitry are involved.

Our viewpoint is orthogonal to traditional discussions
of neocortical function, which naturally focus on the issue
of how circuits can explain perception, memory, decision
and behaviour, and how such circuits can be established.
We propose that much circuitry is instead devoted to non-
information processing tasks. In figures 6 and 7, ‘infor-
mation processing’ is being done by one set of connections
(from layer J to layer I), while the other three sets of con-
nections are being used to prevent adverse consequences
of synaptic learning errors. None of this extra circuitry
would be needed if there were no errors in synaptic learn-
ing. It would not be needed either if mistakes could some-
how be ‘averaged out’ over time; however, our analysis
suggests that mistakes can only be averaged out if very
strong correlations are present. The real world is suf-
ficiently ambiguous, complex and noisy that efficient aver-
aging is unlikely. Under favourable conditions (negligible
error rates or strong correlation), our circuits default to a
traditional ‘wide-open’ learning condition.

Our viewpoint is also orthogonal to the notion that
somehow random wiring leads, magically, to efficient
information processing (Braitenberg & Schuz 1991). Cur-
rent evidence suggests, instead, that cortical wiring is very
precise (Reid & Alonso 1995). In other situations, there
are indications that wiring may be less precise, especially
during development (Chen & Regehr 2000). For example,
we have already alluded to the finding that while a typical
LGN relay cell gets its major input from a single retinal
ganglion cell, it also receives minor input from one or two
other ganglion cells. It is not clear whether such conver-
gence is ‘deliberate’ (so that LGN cells have non-relay
functions) or ‘accidental’ (a result of imprecision in Hebb-
ian wiring exacerbated by inevitable correlations in the fir-
ing of the ‘major’ and ‘minor’ inputs), though the finding
that such overlap greatly decreases during development
(Chen & Regehr 2000) favours the latter view.

The circuitry and physiology that we have proposed are
detailed and complicated, and although they are largely
consistent with the sketchy information that is available,
it will be important to subject both to experimental tests
(Elliott 2002). Is the logic itself faulty? We think there are
two areas of potential weakness. First, we have not really
justified the claim that learning errors can lead to complete
failure of self-organization. If one could guarantee that
such errors never ‘run away’, and at worse merely produce
some controllable degradation of network performance,
error avoidance would be less necessary. In particular, in
the simple model presented in § 3, although errors render
connections diffuse, the ‘correct’ neuron always receives
the most synapses, and progressive addition of alternative
target neurons never completely prevents selective wiring.
Second, in our diagrams neurons are conveniently lined
up in rows, so that neighbourhood relations are explicit.
In reality, neighbourhood relations are less explicit, and
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presumably reflect the accidents of particular wiring his-
tories. Nevertheless, some neurons are still more likely
error targets than others, and in this sense, the neighbour-
hood concept is valid. The real problem is that the neigh-
bourhood relations that are established for J–I connections
must be echoed by J–K connections.

In summary, we propose that much thalamocortical cir-
cuitry exists to ensure accurate wiring in the face of ana-
tomically imprecise learning rules combined with
environmental complexity. Although our model is specu-
lative and oversimplified, it focuses on issues that have
been neglected, and which might be relevant to the
assembly of extremely complex neural networks.
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GLOSSARY

AMPA: �-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid

LGN: lateral geniculate nucleus
LTP: long-term potentiation
NMDA: N-methyl-d-aspartate


