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Pre-attentive segmentation and correspondence
in stereo

Li Zhaoping
Department of Psychology, University College London, Gower Street, London WC1E 6BT, UK (z.li@ucl.ac.uk)

Traditional stereo grouping models have focused on the problem of stereo correspondence between mono-
cular inputs. Recent physiological data revealed that the disparity selective V2 cells increase their responses
when (random-dot stereograms) stimuli within their receptive � elds are at or near the boundary of a depth
surface. Such highlights to depth (non-luminance) edges are seemingly not computationally required for
the correspondence problem. Computationally, these highlights make the boundaries of a depth surface
more salient, serving pre-attentive segmentation (between depth planes) and attracting visual attention.
In special cases, they enable the psychophysically observed perceptual pop-out of a target from a back-
ground of visually identical distractors at a different depth. To achieve the highlights, mutual inhibition
between disparity selective cells that are tuned to the same or similar depths is required. However, such
mutual inhibition would impede the computation for the correspondence problem, which requires mutual
excitation between the same cells. In this work, I introduce a computational model that, I believe, is the
� rst to address both stereo correspondence and pre-attentive stereo segmentation. The computational
mechanisms in the model are based on intracortical interactions in V2. I will demonstrate that the model
captures the following physiological and psychophysical phenomena: (i) depth-edge highlighting; (ii) dis-
parity capture; (iii) pop-out; and (iv) transparency.
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1. INTRODUCTION

The random dot stereograms of Julesz (1971) convinc-
ingly demonstrate that stereo information alone (without
other image cues such as colour, shape and shading) suf-
� ces to recover 3D depth from two monocular 2D images.
Depth can be recovered by correctly matching the corre-
sponding image features (e.g. dots) in the monocular
images. This correspondence problem is ill-posed as there
are many possible false matches between individual dots,
as illustrated in � gure 1 for the wallpaper illusion. These
observations led to a substantial research focus on solving
the correspondence problem in early stereo vision, as
exempli� ed by the well-known model by Marr & Poggio
(1976, 1979) in the 1970s and many other models since
then (Prazdny 1985; Pollard et al. 1985; Qian & Sejnowski
1989; Nasrabadi et al. 1989; Geiger et al. 1995; Marshall
et al. 1996; McLoughlin & Grossberg 1998; Watanabe &
Fukushima 1999; Read 2002). These models employ
cooperative algorithms (or indirectly, using optimizations
or Bayesian approaches) that use contextual information
to � nd true binocular matches among all possible matches.
Each match is signalled by a unit modelling a disparity
selective cell with a � nite-sized RF in the cortex such as
V1 and V2 (Barlow et al. 1967; Hubel & Wiesel 1970;
Poggio 1992). The experimentally observed recurrent
intracortical connections (Rockland & Lund 1983; Gil-
bert & Wiesel 1983) could mediate the contextual in� u-
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ences in the cooperative algorithms. The two essential
ingredients in the model algorithms are

(i) a smoothness constraint encouraging nearby binocu-
lar matches that report the same or similar depths
to support each other; and

(ii) a uniqueness constraint enabling true matches to
suppress the competing false matches that share the
same monocular inputs.

Some of the previous models (Nasrabadi et al. 1989;
Geiger et al. 1995; McLoughlin & Grossberg 1998; Wat-
anabe & Fukushima 1999; Read 2002) also include a third
or alternative ingredient that takes into account the rela-
tively fewer unmatched monocular images for the percep-
tion of occlusions.

By comparison with the focus on the correspondence
problem, the segmentation problem in early stereo vision
has been relatively neglected. Psychophysically, a single
target can spontaneously pop out from a background of
visually identical distractors at a different depth
(Nakayama & Silverman 1986). Merely solving the corre-
spondence problem does not explain why a lone target of
a unique depth should be more salient than any other
identical item in the background depth plane. More gener-
ally, a boundary between two depth surfaces is perceived
sharply and spontaneously in spite of the random-dot nat-
ure of the underlying stereogram (Julesz 1971). The spon-
taneous nature of these phenomena indicates that such
segmentation is pre-attentive, with neural correlates prob-
ably situated in the early stages of the visual pathway.
Indeed, many disparity selective cells in V2 give higher
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Figure 1. The stereo correspondence problem with the
example of the wallpaper effect. The black circles are the
visual objects giving rise to the monocular images (of six
circles each). The white circles arise from possible false
matches between monocular circles. The wallpaper effect is
the illusion when the � lled circles are identical and equally
spaced in an extended depth plane, leading to illusory depth
planes nearer or further away.

responses when their RFs are near or at the boundary,
rather than the centre, of a random-dot surface of constant
depth (Von der Heydt et al. 2000). Such higher neural
responses to depth discontinuities are not required com-
putationally merely to solve the correspondence problem.
However, they certainly help to segment a depth plane
from its neighbours. A lone target against a background
depth plane is simply a special case of such depth disconti-
nuity.

Computationally, it is not clear whether and how the
neural substrates assumed for the correspondence prob-
lem are really meant for, or can also be used for, pre-
attentive segmentation. Intuitively, there would appear to
be a con� ict. The smoothness constraint requires that
nearby cortical cells tuned to similar depths facilitate each
other’s activities, as implemented in traditional models
(Marr & Poggio 1976; Prazdny 1985; Pollard et al. 1985;
Qian & Sejnowski 1989; Marshall et al. 1996). However,
such mutual excitation implies that, for a stimulus com-
posed of a single target (e.g. a dot) from a background of
visually identical distractors at a different depth, the lone
target dot should evoke a weaker response than any back-
ground dot as the cell responding to the lone dot does not
receive any mutual excitation affecting cells responding to
the background. Such a response pattern would make the
pop-out of the unique depth target dif� cult to achieve.
Experimental observations of the depth-edge highlighting
(Von der Heydt et al. 2000) indicate that nearby cells
tuned to similar depths inhibit each other, so that cells
whose RFs are near the boundary of the depth plane
respond more vigorously in comparison to others because
they have fewer iso-depth neighbours that actively
inhibit them.

In this paper, I introduce a model of V2 that uses the
same machinery (based on physiological and anatomical
data) to solve the correspondence problem and address
pre-attentive stereo segmentation, in particular pop-out. It
is proposed here that the higher neural responses to depth
discontinuities serve pre-attentive segmentation by making
depth edges more salient to attract visual attention, and
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Figure 2. (a) The model structure and elements. To avoid
clutter, the background inputs Io to the excitatory cells are
omitted in this diagram. W denotes arrows from ‘1’ circles
to ‘2’ circles, H denotes arrows from ‘2’ circles to ‘1’
circles and J denotes arrows from ‘1’ circles to other ‘1’
circles. (b) The patterns and functions of the intracortical
connections, J, W and H, in the model are illustrated using
the wallpaper stimuli, each node represents a pyramidal cell
responding to a particular (true or false) match from the
stimuli. Computationally, the J connections serve the
smoothness constraint, the W connections serve to highlight
the depth edges, and the H connections serve the uniqueness
constraint.

that they are responsible for the corresponding behav-
ioural pop-out (Li 1999a, 2002). The model links physi-
ology with perception and to demonstrate the feasibility
of a single neural circuit implementing a cooperative
algorithm for an extended computational goal.

2. THE MODEL

(a) Structure and elements
The structure and elements of the model are based on

biological data (Barlow et al. 1967; Hubel & Wiesel 1970;
Rockland & Lund 1983, Gilbert & Wiesel 1983; White
1989; Poggio 1992; Von der Heydt et al. 2000; Bakin et
al. 2000) (see � gure 2). The model consists of pairs of
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principal excitatory (pyramidal) cells and inhibitory inter-
neurons. Each cell is binocular and tuned to a speci� c
depth and a local RF, and models a local cell population
in V2. To focus on the stereo domain, we adopt the same
simpli� cation as Julesz by omitting other visual features
such as orientation, colour and motion of the stimulus and
using random-dot stereograms as inputs. The principal
cell and the interneuron within a pair are reciprocally con-
nected (White 1989). The principal neurons receive exter-
nal visual inputs that signal binocular matches at the
corresponding locations and depths of the RFs, regardless
of whether the matches are true or false. This is in accord-
ance with the data showing that V1 cells, which are dispar-
ity selective and provide inputs to V2, respond to both the
true and false matches (Cumming & Parker 2000). The
responses of the principal cells are the model’s outputs.
Finite range horizontal connections, represented by J, W
and H in � gure 2 and the following equations, enable
nearby excitatory cells to in� uence each other, both
through monosynaptic excitation and disynaptic inhibition
via interneurons, as observed physiologically (Hirsch &
Gilbert 1991). The J and W connections link cells that
are tuned to the same or similar depth, as indicated by
experimental data (Ts’o & Gilbert 1988). The J connec-
tions mediate monosynaptic excitation between nearby
principal cells, whereas the W connections mediate disyn-
aptic inhibition between nearby principal cells via inter-
neurons. Both the monosynaptic excitatory J connections
and the disynaptic inhibitory W connections can exist
between a single pair of principal cells tuned to similar
depth. We will see later that J connections enforce the
smoothness constraint while W connections enhance
depth edges. The pre- and postsynaptic RFs, linked by J
and W, may displace from each other by up to multiple
times the RF size. In addition, H connections enable prin-
cipal cells tuned to different depth values but with the
same monocular RF in left or right eyes to inhibit each
other via interneurons to implement the uniqueness con-
straint. The model’s response is initialized by the external
inputs from V1 (which are sustained after onset) contain-
ing both the true and false matches, and is then modi� ed
by recurrent interactions. After a transient, the model
response is such that mainly the cells corresponding to the
true matches give signi� cant responses. In addition, model
cells for the depth edges or lone targets give signi� cantly
higher responses, even though their external inputs are no
stronger than those of the other true matches.

The model’s state follows the equations of motion

xÇ id = 2ax xid 2 gy( yid) 2 O
j,d9,d9 Þ d

Hid, jd9gy( yjd9) 1 Jogx(xid)

1 O
j,d9,d9| d

Jid, jd9gx(xjd9) 1 Iid 1 Io,

yÇ id = 2ayyid 1 gx(xid) 1 O
j,d9,d9| d

Wid, jd9gx(xjd9) 1 Ic.

Here, x and y model the states (e.g. membrane potentials)
of the principal cells and interneurons, respectively, and
gx(x) and gx( y) the cells’ output activities or � ring rates,
which are sigmoid-like functions of x and y. The index i,d
denotes a cell’s RF as at location i in the left monocular
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image and at depth d. The image location i is distributed
in a 2D plane, and, in the examples shown in this paper,
the depth takes � ve values d P {22, 21,0,1,2}. The decay
of model states to resting potentials is modelled by the
terms 2axxid and 2ayyid. Io and Ic are background inputs
including noise and suppressive normalization of the local
neural activities, and Iid are the inputs from V1 to xid. The
suppressive normalization component In orm aliza tio n(id ) in,
Io ; In orm aliza tio n(id ) 1 constant 1 noise, to cell id scales
with the squared weighted sum of the activities of the
neighbouring excitatory cells, i.e. Ino rm alization(id) ~
[Sjd9 P ne ig hbo urho od of id fjd9,idgx(xjd9)2], where the weights fid9,id

of the neighbouring activities decays with the distance
between the target cell id and its neighbours jd9. Some
components and structures of the model are similar to,
and others are signi� cantly different from, those of a
recent model of intracortical interactions in V1 for pre-
attentive segmentation in the texture domain (Li 1999b).
The quantitative values of the horizontal connections are
designed in this model by the constraints of our compu-
tational goal as well as the dynamic stability of the model.
It is not clear whether the corresponding physiological
weights are hardwired or learned. There are, as yet, no
known mathematical learning rules for networks of such
a dynamic nature and such a computational goal, although
there is physiological evidence for experience-driven
synaptic plasticities in sensory cortices (Zhang & Poo
2001).

3. MODEL BEHAVIOUR

Figure 3 illustrates the model’s behaviour using the
example of pop-out. The depth values of the stimuli, or
the preferred depths of the cells, are colour coded for vis-
ualization purposes. The visual scene (� gure 3a) contains
a random-dot depth plane at depth d = 22 and a lone tar-
get dot at depth d = 1. All stimulus dots have the same
input strengths. As the dots are identical, the actual input
to the model (� gure 3b) contains both the true and false
matches, distributed in all depth planes d P {22,
21,0,1,2}. Through intracortical interaction, the model
evolves from its early states (� gure 3c) that resemble its
inputs, to � nal states (� gure 3f ) that resemble the percep-
tion of the actual scene—the cells that respond are mainly
those corresponding to the true matches, and the most
responsive cells correspond to the lone pop-out target at
d = 1 and the dots near the boundary of the depth plane
(depth-edge highlighting). In all � gures in this paper, the
sizes of the dots are plotted to increase with the input or
output strengths for visualization purposes.

Closer examination of the evolution of activity in � gure
3 reveals that the false matches are removed soon after the
onset of the input, whereas the highlighting of the lone
target and the depth edges are achieved later, via lateral
inhibition W between cells tuned to similar depths. Very
soon after the onset of the stimuli at zero time, the model
exhibits (� gure 3c) a strong transient response to all input
matches, whether they are true or false. About one mem-
brane time-constant later, mutual excitation between
nearby matches of similar depths sustain the responses to
true matches in the background depth plane, while inhi-
bition implementing the uniqueness constraint and the
general suppression for activity normalization have sup-
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Figure 3. (a) Scene, (b) model input, (c2e) model activities at (c) t = 0.6, (d ) 1.6, and (e) 2.8 membrane time-constant after
stimulus onset, and � nally, ( f ) the time-averaged model activities after the initial transients. The stimulus onset at t = 0. In
each plot, the dot coordinates indicate the 3D locations in space, and the sizes of the dots plotted increase monotonously with
the output (or input) strengths in a nonlinear fashion for better visualization. The scale of the dot size used in ( f ) is different
from that in (c)–(e) for optimal visualization purposes. The depth values are colour coded for clarity.

pressed the response to almost all false matches as well as
the response to the lone target (� gure 3d). Due to their
disynaptic nature, mutual inhibition between cells that are
tuned to similar depths become effective only after another
membrane time-constant (� gure 3e), suppressing the
response to the background depth plane. This weakens
the general suppression on the cell responding to the lone
target, and hence its response recovers. Meanwhile, the
inhibition H implementing the uniqueness constraint
remains effective in suppressing the responses to the false
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matches. Although the inhibitory H connections for the
uniqueness constraint are also disynaptic in nature, they
are designed to be much stronger than the disynaptic W
connections. Consequently, they act faster and become
effective almost immediately after the mutual excitation
within the background depth plane takes effect (� gure
3d). Within a few membrane constants, the network
settles into a dynamic cycle in which the network state
oscillates between activity patterns resembling � gure 3d,e.
This cycle leads to the temporal mean activities shown in
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� gure 3f. In other words, this model can address the stereo
correspondence problem and the segmentation problem
using the same neural circuit mainly because of the tem-
poral dynamics that are intrinsic in such biological cir-
cuits. The monosynaptic J facilitation between cells tuned
to the similar depth acts on a faster time-scale to
implement the smoothness needed for stereo matching.
The strong activities of the true depth plane help suppress
the false matches, as well as the lone true target. This is
due to the inhibition that implements the uniqueness con-
straint and local activity normalization. The disynaptic W
inhibition between principal cells at similar depths acts on
a slower time-scale (due to the relay via interneurons) to
suppress the cells away from the surface boundary and
disinhibit the lone target at a different depth. This leads
to the saliency highlights for segmentation. The different
time-scales of different interactions allow the two compu-
tational problems—correspondence and segmentation—to
be addressed during two different time-windows within a
single dynamic cycle of the neural assembly. Incidentally,
these temporal dynamics also help de-synchronize the
neural activities that are associated with different depth
planes or targets, adding another useful segmentation sig-
nature.

The dynamics of the model exhibit similar character-
istics, for example, oscillatory activities, synchrony within
a depth plane and asynchrony between different depth
planes, and highlighting the depth discontinuities, when
processing other input stimuli. Figure 4 shows how the
model accounts for the physiological observation (Von der
Heydt et al. 2000) that there are relatively higher responses
to the boundaries of depth surfaces. Highlighting the
depth discontinuity, or the lone target dot, certainly serves
to segment the two depth planes by attracting visual atten-
tion to the boundary or the target.

Figure 5 shows how the model accounts for disparity
capture, which, like depth-edge highlighting, is another
physiologically observed manifestation of contextual
in� uences in V2. The centre of a wallpaper-like grating
stimulus (or stimulus of a regular structure such as in � g-
ure 5a), which is far from the boundary, presents ambigu-
ous depth signals, since many binocular matches are
possible (see � gures 1 and 5b). However, a V2 cell whose
RF is exposed to the centre of the grating often responds
as if it receives an unambiguous global depth signal from
the grating boundary beyond its RF (Bakin et al. 2000).
The model shows the same behaviour (� gure 5c).

Figure 6 demonstrates how the model accounts for
transparency, i.e. the perceptual segregation of two over-
lapping depth planes. Again, the responses to the surface
boundaries are stronger. In addition, responses to a few
false matches did survive; a phenomenon (ghost dots) also
observed in human vision for stereo transparency
(Weinshall 1989). Note that transparency has been tra-
ditionally dif� cult to model, since it requires the model to
accommodate two discrete depth values at a given visual
angle. Although the original model by Marr & Poggio
(1976) could not account for it because of its particular
implementation of the smoothness constraint, more recent
stereo models that solve the correspondence problem
(Qian & Sejnowski 1989; Marshall et al. 1996) do success-
fully model it.
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Figure 4. Modelling depth discontinuity in a scene of two
depth planes (with depths d = 22 and d = 1) with a depth
edge (or depth step, marked by dashed lines) between them.
Note the enhanced response near the depth edge and the
boundary of the planes. (a) 3D scene, (b) actual input to the
model and (c) time-average model activity.

4. SUMMARY AND DISCUSSION

I propose in this paper that pre-attentive segmentation
in the stereo domain is addressed in the brain by awarding
relatively stronger neural responses to more salient depth
features. Salient features include a target of a unique
depth in the scene or a depth discontinuity, and are
important as an initial step towards segmentation and for
attracting visual attention for further processing. I believe
that this model is the � rst to address computational mech-
anisms for pre-attentive stereo segmentation in the sense
of pop-out or saliency highlights by depth, in addition to
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Figure 5. Modelling disparity capture. Note that the actual
input to the model contains four illusory depth planes as do
occasionally occur in human vision. The outputs are
strongest at the boundary of the true depth plane at a depth of
d = 0. (a) 3D scene, (b) actual input to the model and
(c) time-average model activity.

solving the stereo correspondence problem that has been
extensively studied previously (Marr & Poggio 1976;
Prazdny 1985; Pollard et al. 1985; Qian & Sejnowski
1989; Marshall et al. 1996). Addressing both seg-
mentation and correspondence at the same time is
important since there was an apparent con� ict at the level
of neural mechanism between these two computational
goals—segmentation requires mutual inhibition and the
correspondence requires mutual excitation between
nearby cells that are tuned to similar disparities. We dem-
onstrate that it is possible that the same, biologically
based, neural circuit of intracortical interactions can achieve
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Figure 6. Modelling transparency of two depth planes at
depths of d = 21 and d = 2. Note that there are a few ghost
dots outside the two depth planes in the model outputs, as
occurs in human vision (Weinshall 1989). (a) 3D scene, (b)
actual input to the model and (c) time-average model
activity.

both goals in such a model. In particular, not only does
the model � nd the correct binocular matches given
ambiguous inputs, but it also gives response highlights to
more salient input features, even though the input
strengths for these features are no stronger than those for
the less salient ones. The dynamics of the model involve
recurrent interactions to address different computational
goals, correspondence and segmentation at different time-
scales. Such dynamics are essential for the model’s suc-
cessful performance. Our model thus accounts for recent
physiological data (Von der Heydt et al. 2000; Bakin et
al. 2000; Cumming & Parker 2000) and links them with
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psychological behaviour (Julesz 1971; Prazdny 1985;
Nakayama & Silverman 1986).

The model predicts that there should be positive tem-
poral correlation at zero time-delay between activities of
V2 cells responding to the same depth object (surface),
and this correlation should be negligible or negative
between cells that respond to different depth objects. The
model neural connection structure also predicts that, in
addition to intracortical connections linking cells tuned to
similar depth (Ts’o & Gilbert 1988), there should be di-
synaptic inhibitory connections between pyramidal cells
that are tuned to different depths but have the same or
overlapping monocular RFs.

To focus on the problem of stereo correspondence and
pre-attentive depth-edge highlights, our model is highly
simpli� ed, and lacks the elements and mechanisms
needed to process scale, orientation, colour and motion in
visual inputs. However, the conceptual lessons obtained
from this focused study are expected be applicable to
extended studies in the future to address more complex
phenomena and process more realistic inputs such as
slanted or curved surfaces. Better computational perform-
ances are expected in an extended model that includes
other input dimensions through cooperation between dif-
ferent feature dimensions.

I thank Y. Petrov, A. Popple, N. Qian, S. Ullman and
especially P. Dayan for discussions, P. Dayan and P. Adams
for very helpful comments on an earlier draft, and the Gatsby
Charitable Foundation for support.
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