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Current issues in the utility of 19F nuclear magnetic
resonance methodologies for the assessment of

tumour hypoxia

Simon P. Robinson* and John R. Griffiths
Department of Basic Medical Sciences, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK

It is now well established that uncontrolled proliferation of tumour cells together with the chaotic and
poorly regulated blood supply of solid tumours result in tissue hypoxia, and that hypoxic regions of
tumours are resistant to radiotherapy and chemotherapy. The development and application of non-invas-
ive methods to rapidly determine the degree and extent of tumour hypoxia in an individual tumour would
clearly enhance cancer treatment strategies. This review describes the current status of two 19F nuclear
magnetic resonance (NMR) methodologies that have been exploited to investigate tumour hypoxia,
namely: (i) 19F NMR oximetry following administration of perfluorocarbons, from which tumour pO2

measurements can be made; and (ii) 19F NMR measurements of the tumour retention of fluorinated
2-nitroimidazoles.
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1. INTRODUCTION

It is now well established that the characteristically chaotic
and poorly regulated blood supply of tumours causes
tissue hypoxia, and that hypoxic regions of tumours are
resistant to radiotherapy and many kinds of chemotherapy
(Horsman 1998). With the recent advances in the under-
standing of its molecular basis, hypoxia has been revealed
as a cause of genetic instability, tumour progression and
angiogenesis (Harris 2002).

The development and application of methods to rapidly
determine the degree and extent of tumour hypoxia in an
individual tumour would clearly enhance cancer treatment
strategies. The most commonly used technique for
determining the tumour oxygenation status has been the
invasive Eppendorf polarographic electrode. Measure-
ments of oxygen tensions in a range of human tumours
have clearly demonstrated the presence of hypoxia and
that the level of this hypoxia is prognostic for increased
tumour aggressiveness, metastasis and poor response to
treatment (Hockel et al. 1991, 1996; Brizel et al. 1994,
1996, 1997; Nordsmark et al. 1996; Fyles et al. 1998).

A non-invasive method for measuring the hetero-
geneous distribution of hypoxia in a tumour would be of
considerable use in the clinic. We review two 19F nuclear
magnetic resonance (NMR) methodologies that have been
used to investigate tumour hypoxia. The first is 19F NMR
measurements of tumour oxygenation following the
administration of perfluorocarbon (PFC) emulsions, and
the second involves 19F NMR measurements of the reten-
tion of fluorinated 2-nitroimidazoles by hypoxic tumour
tissue. The aim of this review is to describe the principles
behind both approaches, highlight some pertinent experi-
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mental studies and discuss some current issues concerned
with the utility of both techniques.

2. TUMOUR OXYGENATION MEASUREMENTS BY
19F NMR OF PERFLUOROCARBONS

(a) Principles of 19F NMR oximetry
19F NMR spectroscopy and imaging of PFC emulsions,

hydrocarbons whose protons have been replaced with flu-
orine nuclei, has been extensively exploited to measure the
oxygen tension of biological systems in preclinical studies.
There are several modes of administration: (i) intravenous
administration of emulsions; (ii) direct intratumoral injec-
tion of emulsions; and (iii) administration of PFC in oxy-
gen-permeable alginate capsules, either by direct
intratumoral injection or by growing the tumour around
the capsules (see below). Whatever the mode of adminis-
tration, the 19F MR signal of the PFC is sensitive to the
pO2

of the surrounding tumour tissue, and acts as an
oximeter. It is also possible to perform low-resolution 19F
magnetic resonance imaging (MRI) and to overlay these
images onto anatomical 1H MRI images, demonstrating
the location from which the signal is obtained.

The principle behind 19F MR oximetry relies on the lin-
ear increase of the NMR spin-lattice relaxation rate R1

(= 1/T1) of PFC emulsions with increasing oxygen tension
(Parhami & Fung 1983). Molecular oxygen has a very
high solubility in PFC emulsions, thus permitting oxygen
tension measurements in locations where the PFC is
sequestered from the PFC spin-lattice relaxation rates in
vivo. 19F MR oximetry provides a sensitive measure of
apparent tissue oxygen tension and promises to be a
powerful approach for monitoring tumour hypoxia. PFCs
are primarily selected on their ability to form stable emul-
sions with a good biodistribution and a reliable R1

response. One PFC that fits these criteria is perfluoro-15-
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Figure 1. Chemical structures of some commonly used
perfluorocarbons: (a) perfluoro-15-crown-5-ether (15C5),
(b) hexafluorobenzene, (c) perfluorotributylamine
(Oxypherol). Both 15C5 and Oxypherol have been typically
administered as emulsions, whereas hexafluorobenzene has
been administered neat.

crown-5-ether (15C5) (figure 1). It exhibits a strong
dependence of R1 on pO2

and has a single resonance
resulting from 20 chemically equivalent fluorine atoms,
giving a simple spectrum (suitable for MRI) and excel-
lent sensitivity.

(i) Intravenous administration of emulsion
Because of their low toxicity, large doses of PFC emul-

sions can be injected intravenously. The circulating PFC
emulsion particles are then cleared from the vasculature
by the reticulo-endothelial system, mainly into the liver
and spleen, but some are sequestered by macrophages in
abcesses and solid tumours. In tumours, which have
characteristically leaky vasculature, the PFC particles can
also pass through the vessel walls and accumulate in the
interstitial space. In preclinical studies, PFC emulsions
have generally been administered in this way to rodents
bearing subcutaneous transplanted tumours in their
flanks. However, the majority of the PFC is sequestered
in the liver and spleen and the amount taken up by the
tumour is often insufficient for determination of the
tumour pO2

. Typically the PFC emulsion is cleared within
a few days, thus confining the pO2

measurements to a lim-
ited time-window, although intravenously administered
Oxypherol has been shown to be retained in tumour tissue
for longer (Mason et al. 1994).
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(ii) Direct intratumoral injection of emulsions
This method affords greater sensitivity and precision of

pO2
measurements (Mason et al. 1996; McIntyre et al.

1999). However, the PFC can only record pO2
in the

regions of the tumour into which it has been injected. Fur-
thermore, the characteristically raised interstitial fluid
pressure could force the PFC out of the tumour. Another
problem is that the bleb of emulsion can migrate within
the tumour. As in the case of PFC emulsion administered
intravenously, the small boluses of PFC emulsion are
cleared within a few days.

(iii) PFC in oxygen-permeable alginate capsules
PFC-loaded alginate capsules overcome many of the

problems of direct intratumoral injection. The capsules do
not elicit a host immune response, they do not migrate
once implanted and they are retained indefinitely in the
tumour. These PFC-loaded capsules can be used for a
unique experiment in which the pO2

of an experimental
tumour is monitored from the time that the tumour cells
are implanted. This is done by mixing PFC-loaded algin-
ate capsules with the tumour cells prior to injecting into
the flanks of rodents (Nöth et al. 2001). The alginate cap-
sules become incorporated into the growing solid tumour
(figure 2). In this way, repeated measurements of tumour
pO2

can be made by 19F NMR over the whole period of
tumour growth.

(b) Applications of 19F NMR oximetry
Numerous studies by 19F NMR oximetry have reported

tumour pO2
measurements in a range of different rodent

tumour models (Hees & Sotak 1993; Dardzinski & Sotak
1994; Mason et al. 1994, 1996, 1998; Baldwin & Ng
1996; Le et al. 1997; Hunjan et al. 1998, 2001; McIntyre
et al. 1999; van der Sanden et al. 1999; Worden et al.
1999; Nöth et al. 2001; Song et al. 2002; Zhao et al. 2002)
and these have been summarized in table 1. For compari-
son, literature pO2

values measured for the same tumour
type by the invasive Eppendorf electrode are also shown
(Yeh et al. 1995; Adam et al. 1999; Robinson et al. 1999).
19F NMR oximetry has been predominantly used to moni-
tor changes in tumour pO2

in response to adjuvants that
modify tumour oxygenation, principally for enhancing
radiosensitivity. One such approach for increasing tumour
pO2

is through breathing high-oxygen content gases such
as carbogen (95% O2/5% CO2), to increase the amount
of dissolved oxygen in the plasma, provide more oxygen
at the capillary level and hence promote diffusion of oxy-
gen into hypoxic regions in order to radiosensitize them
(Rojas 1991). Several studies have shown that carbogen
breathing enhances rodent tumour radiosensitivity and, in
combination with nicotinamide (which reduces the occur-
rence of intermittent tumour blood flow and thereby also
increases tumour oxygenation and hence radiosensitivity;
Chaplin et al. (1991)), is currently being re-evaluated in
the clinic as a radiosensitizer (Kaanders et al. 2002a). Sev-
eral 19F NMR oximetry studies have demonstrated signifi-
cant increases in tumour oxygenation when the breathing
gas was switched from air to either oxygen (Hees & Sotak
1993; Mason et al. 1996, 1998; Le et al. 1997) or car-
bogen (Dardzinski & Sotak 1994; Hunjan et al. 1998,
2001; McIntyre et al. 1999; van der Sanden et al. 1999;
Worden et al. 1999; Nöth et al. 2001; Zhao et al. 2002).
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Figure 2. (a) Transverse 1H gradient echo scout image and (b) 19F gradient echo image through the abdomen of a rat bearing
a GH3 prolactinoma containing 15C5-loaded alginate capsules. The arrow indicates the tumour. The signal intensity is given
in arbitrary units. In (b) only the 19F NMR signal of the 15C5-loaded alginate capsules within the tumour can be seen. (c)
Calculated 19F NMR pO2

maps of the same slice, acquired while the rat was breathing air and (d ) carbogen (95% O2/5%
CO2). The pO2

values are given in mmHg. The average pO2
for this tumour was 22.8 mmHg during air breathing and

increased to 42.7 mmHg during carbogen breathing. This set of images was acquired 10 days after the co-inoculation of GH3
tumour homogenate and PFC-loaded alginate capsules. (Data courtesy of Dr Ulrike Nöth.)

19F NMR oximetry has also been used to examine changes
in the oxygenation status of RIF-1 tumours in response to
treatment with nicotinamide (Hees & Sotak 1993). Con-
sistent with the hypothesis that nicotinamide improves
tumour perfusion and hence oxygenation, there was a sig-
nificant increase in pO2

for treated tumours versus con-
trol tumours.

(c) Current issues
As previously described, the major application of 19F

NMR oximetry to oncology has been in the evaluation of
tumour oxygenation and the effects of approaches to over-
come tumour hypoxia and enhance the response to
irradiation. Whereas normal tissues typically have oxygen
tensions of ca. 40 mmHg, the large majority of tumours
have overall oxygen tensions less than 10 mmHg, with
localized tissue areas of less than 2.5 mmHg. These areas
of less than 2.5 mmHg are termed radiobiologically
hypoxic, since three times more radiation is required to
kill hypoxic than normally oxygenated cells (Hall 1994).
From a radiation oncologist’s point of view, this means
that tumours including such regions have impaired radio-
therapeutic response.

19F NMR oximetry is currently the only NMR method-
ology from which absolute tumour pO2

measurements can
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be derived. Despite this, the limited distribution of PFC
emulsions and hence the large sampling volume for 19F
NMR oximetry is clearly a limiting factor. Leaving aside
these drawbacks, the absolute pO2

values determined from
a range of different tumour models listed in table 1 high-
light two issues. First, in the majority of the studies, the
basal tumour pO2

measured by 19F NMR oximetry is gen-
erally much higher than those reported by the Eppendorf
electrode. Second, these high PFC pO2

results would pre-
dict very little radiobiological hypoxia, a prediction that is
clearly at variance with many results showing radioresist-
ance in these and other rodent tumour models.

One reason for this discrepancy could be the presence
of a systematic error in the 19F NMR measurement.
Tumour pO2

maps are derived from quantitative 19F T1

relaxation maps of the PFC emulsion by interpolation
onto a calibration curve. This curve is usually derived in
vitro from 19F NMR T1 measurements of pure PFC emul-
sion equilibrated to different oxygen tensions using nitro-
gen, air or oxygen. Using the resulting curve, the oxygen
tension can then be derived using the equation

pO2
= (1/T1 � A)/S,

where S is the slope of the linear fit of 1/T1 versus pO2
and

A the anoxic intercept. The calibration constants A and
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S for a PFC emulsion depend on temperature, magnetic
field strength and the environment of the PFC molecules.
Small changes in the anoxic intercept A can result in large
differences in measured pO2

(Lutz et al. 1997). Tempera-
ture can also give rise to a significant source of error in
absolute pO2

determination. For example, in the case of
Oxypherol, a 2 °C error in tumour temperature can lead
to an error of 12 mmHg in tissue pO2

(Mason et al. 1994).
Tumour temperature is not usually determined or con-
trolled in routine experiments, even when the animal’s
body temperature is carefully maintained. Subcutaneous
tumours or those on the extremities of the limbs might be
significantly below core body temperature, and deepening
anaesthesia could change the gradient between core and
peripheral temperature. Worse still, some of the inter-
ventions intended to modify tumour oxygenation (e.g.
hypotensive drugs such as hydralazine, which ‘steal’ blood
from the tumour into the host tissues) act by altering
blood flow, and may thus change tumour temperature.

Another problem is that the environment of the PFC
emulsion in a test tube will be very different from that
experienced within a solid tumour, which could result in
artificial pO2

measurements. For instance, if the tumour
contains metal ions (such as Mn2�) or free radicals that
can diffuse into the PFC, they may alter T1 and thus lead
to a false estimate of pO2

. 19F NMR oximetry studies in
which a pO2

calibration curve is accurately derived from a
phantom that more closely resembles the in vivo situation
at a carefully controlled temperature would be highly
revealing in this regard.

The route of administration of PFC emulsion could also
result in relatively high pO2

values (McIntyre et al. 1999).
By definition, chronically hypoxic areas of tumours arise
where the rapidly proliferating tissue outstrips its blood
vessels, resulting in deprivation of oxygen and nutrients
from the tumour cells. Intravenous administration tends
to deliver PFC emulsion to well-perfused tumour regions
where it is sequestered in macrophages around the blood
vessels, and thus reports relatively high pO2

values. Intra-
venously administered PFC emulsion has impaired access
to the poorly vascularized areas that are likely to be
radiobiologically hypoxic. By contrast, direct intratumoral
administration of PFC emulsion has been shown to give
lower pO2

values, with a skewed oxygen-tension-frequency
histogram that more closely resembled that obtained by
the Eppendorf electrode (McIntyre et al. 1999). In this
situation the PFC emulsion does appear to be interrogat-
ing poorly vascularized tumour regions that are hypoxic,
and thus affords a more realistic tumour hypoxic profile
that would be more informative to the radiation oncologist
(figure 3). The approach does, however, suffer from poor
distribution of the PFC emulsion, as described earlier.

Tumour pO2
measurements derived from implanted

PFC-loaded alginate capsules also appear to be higher
than those obtained by the Eppendorf electrode (Nöth et
al. 2001). In the light of the above discussion, these data
are surprising, as there is no reason to think that the cap-
sules would be preferentially distributed near blood vessels
as the tumour grows, which would be one reason for their
reporting misleadingly high pO2

values. In this situation, it
is more likely that a systematic error in the 19F NMR oxi-
metry method has arisen from the translation of the in
vitro pO2

calibration curve derived from neat PFC emul-
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Figure 3. Oxygen-tension-frequency histograms obtained
from GH3 prolactinomas measured by (a) Eppendorf
histography and (b) 19F MR oximetry following intratumoral
administration of hexafluorobenzene. Note that the skewed
histogram profile obtained closely resembles that obtained by
the Eppendorf electrode, suggesting that the PFC is
interrogating poorly vascularized tumour regions that are
hypoxic. (Data courtesy of Dr Dominick J. O. McIntyre.)

sion to the data acquired in vivo. Calibration curves are
often derived using PFC emulsion equilibrated with very
high-oxygen-content gases and then extrapolated back to
the much lower radiobiologically significant oxygen ten-
sions in solid tumours. It would be more pertinent to
derive these calibration curves using gas mixtures with
oxygen tensions of less than 10 mmHg, as used by Mason
et al. (1996). Experiments should also be performed to
investigate the possibility that PFC T1 values are system-
atically altered in vivo.

Despite being the only NMR methodology currently
affording absolute pO2

tumour measurements, 19F NMR
oximetry has not evolved into a routine pre-clinical NMR
experiment for the assessment of tumour oxygenation, lar-
gely because of the numerous issues described herein. The
ability of 19F NMR oximetry to detect changes in tissue
oxygenation in response to modifiers of the tumour
microenvironment is less questionable, but its application
and validity in determining absolute pO2

values from
unperturbed tumours needs further validation.
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Leaving aside these issues, could 19F NMR oximetry
have a clinical role? Of the two main methods for adminis-
tering PFCs, intratumoral implantation is clearly invasive,
and it would have to compete with established invasive
methods, notably the Eppendorf electrode. Most interest
has therefore centred on the possibility of administering
PFC emulsions to patients intravenously, but a combi-
nation of factors makes this approach appear impractical,
at least for the present generation of clinical MRI/
magnetic resonance spectroscopy (MRS) instruments.
The first problem is sensitivity: in the currently available
1.5 T routine clinical MRI instruments the signal-to-noise
is about one-third of that in a typical 4.7 T laboratory
instrument. This, combined with the small fraction of the
emulsion taken up by the tumour means that very high
doses (of the order of hundreds of millilitres) of emulsion
would have to be infused into a patient, even if the opti-
mum PFC, 15C5, were used. The toxicity of PFCs,
though very low, is not zero, and at these doses, it can
begin to be a problem. The majority of the agent is seques-
tered in the liver and spleen where very large quantities
are stored in the reticuloendothelial cells. High-molecular-
weight PFCs such as 15C5 have extremely low biological
elimination rates and this state of hepatic and splenic over-
load could last indefinitely. Lower-molecular-weight PFCs
are eliminated more quickly, probably through the lungs,
but they have lower NMR sensitivity so even higher doses
would be required. Also, there is a risk of a vapour
embolus forming in a blood vessel when a volatile agent
is administered intravenously. All of these issues currently
prevent clinical application of PFC oximetry. One conse-
quence of this is that 1H MRI methodologies, with their
high temporal and spatial resolution, are being investi-
gated to provide surrogate markers of tumour hypoxia
(Robinson et al. 1998; Fan et al. 2002; Wang et al. 2002).

3. FLUORINATED 2-NITROIMIDAZOLES AS 19F MRS
PROBES FOR TUMOUR HYPOXIA

(a) Principles of 19F MRS of 2-nitroimidazoles
A number of 2-nitroimidazole probes, such as pimonid-

azole (Raleigh et al. 1998), have been developed specifi-
cally for immunohistochemical assessment of tumour
hypoxia. Nitroimidazoles undergo a hypoxia-dependent
bioreductive metabolism of the nitro group catalysed by
cellular nitroreductase enzymes via a number of reactive
intermediates. One of these intermediates, the hydroxy-
lamine four-electron nitroimidazole, is unstable and highly
reactive, and undergoes binding to cellular macromol-
ecules such as proteins, nucleic acids and non-protein sul-
phydryl compounds. It is this bound hydroxylamine that
reflects cellular hypoxia and can be detected by immuno-
histochemistry with monoclonal antibodies, giving
detailed morphological information about the distribution
of hypoxia at the cellular level (Evans et al. 1997). In an
extensive pre-clinical study, pimonidazole binding was
shown to correlate with both tumour pO2

and the radio-
biological hypoxic fraction under different levels of
tumour oxygenation, with strong adduct formation occur-
ring when the pO2

fell below 10 mmHg (Raleigh et al.
1999). Similar investigations are now being implemented
in the clinic (Nordsmark et al. 2001; Kaanders et al.
2002b).
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Figure 4. Chemical structures of 2-nitroimidazoles used as
hypoxia markers.

Fluorinated 2-nitroimidazoles have also been developed
to detect the reduced adducts and hence tumour hypoxia
non-invasively using 19F MRS or MRI. These include
hexafluoromisonidazole (CCI-103F) (Raleigh et al. 1986,
1991; Maxwell et al. 1989), the monofluorinated 2-nitro-
imidazole Ro 07-0741 (Maxwell et al. 1989; Workman et
al. 1992), EF5 (Lord et al. 1993) and SR-4554 (Aboagye
et al. 1997; figure 4). To quantify tumour hypoxia, it is
necessary to measure the generation and accumulation of
the reduced adducts. In pre-clinical studies, this has been
done by comparing the 19F MR spectrum of the retained,
reduced adducts acquired at a late time-point after admin-
istration of 2-nitroimidazole to the 19F MR spectrum
acquired at an early time-point, when parent 2-nitroimida-
zole predominates. The degree of tumour hypoxia is then
described by a retention index, i.e. how much of the 2-
nitroimidazole is retained within the tumour. In contrast
to immunohistochemical detection of 2-nitroimidazoles,
the retention index gives a global readout on hypoxia over
the whole tumour and no spatial resolution. Figure 5
shows a representative 19F MR spectrum acquired from a
tumour 45 min after administration of SR-4554.

(b) Applications
As the formation of reduced 2-nitroimidazole adducts

occurs under radiobiological hypoxic conditions, the
majority of 19F MRS studies of 2-nitroimidazoles have
focused on their utility for the assessment of tumour
hypoxia. The selective retention of CCI-103F and Ro 07-
0741 in murine tumours with a high radiobiological
hypoxic fraction (EMT6 and KHT) has been measured by
19F MRS (Maxwell et al. 1989). Similar observations have
been made in SCCVII and Dunning R3327 tumours (Jin
et al. 1990; Li et al. 1991; Kwock et al. 1992). In addition,
Kwock et al. (1992) used immunohistochemical staining
of the 2-nitroimidazole to correlate and validate the 19F
retention index. The retention index of SR-4554 has been
shown to correlate with the reported radiobiological
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Figure 5. 19F NMR spectrum obtained from a RIF-1
fibrosarcoma 45 min after administration of 180 mg kg�1

SR-4554 intraperitoneally. SR-4554 resonates at ca. 45 p.p.m.
relative to a 5-fluorotryptophan (5-FTP) external standard.

hypoxic fraction of four different murine tumour models
(Aboagye et al. 1997), but no correlation has been
observed between the retention index of SR-4554 and
tumour pO2

measured by the Eppendorf electrode
(Aboagye et al. 1998; Seddon et al. 2002). SR-4554 has
entered a Phase 1 clinical trial in which retention of 19F
MRS signals has been detected in a range of human
tumours (Seddon et al. 2003).

Several studies have also investigated the effects of
modifiers of the tumour environment on tumour hypoxia
by measuring the retention of reduced adducts by 19F
MRS under modulated conditions. For example,
decreases in the tumour 19F retention index of SR-4554
have been shown when the host was administered nic-
otinamide and breathed carbogen, consistent with an
increase in tumour oxygenation. By contrast, adminis-
tration of the vasodilator hydralazine, which causes vascu-
lar steal by the systemic circulation away from the tumour,
or the anti-vascular drug combretastatin A-4 phosphate,
which results in a decrease in tumour perfusion, causes
increases in the 19F retention index of SR-4554, consistent
with an increase in tumour hypoxia (Aboagye et al. 1997;
Seddon et al. 2002).

(c) Current issues
One aspect that has not yet been resolved is the nature

of the adducts formed by the fluorinated bioreductive
probes detected by 19F MRS. It has been generally
assumed that bioreductive binding of the hydroxylamine
takes place on tissue macromolecules. Histochemical
studies using radioactive bioreductives or antibody detec-
tion clearly detect macromolecular adducts, as any low-
molecular-weight adducts would have been washed away
during histological processing. The situation is not so clear
in the case of 19F MRS in vivo. One problem is that nar-
row spectroscopic peaks are seen only if the molecule
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bearing the label is free to tumble in the magnetic field,
hence the length of the fluorine-bearing side chain (figure
4). Significant loss of 19F signal from the 2-nitroimidazole
can occur due to a reduction in the NMR transverse
(spin–spin) relaxation time T2. This is associated with
broadening of the MRS signals, which accompanies the
binding of small molecules to macromolecules, such as
occurs with the reduced 2-nitroimidazole adducts. It is not
impossible that a bound nitroimidazole moiety retains suf-
ficient freedom on the surface of a protein for the 19F
atom(s) to behave as though they were free in solution,
but this would need to be experimentally verified. The
alternative possibility is that some of the adduct molecules
are small enough to tumble rapidly in the magnetic field.
One small molecule that might form adducts with 2-nitro-
imidazoles is the non-protein sulphydryl compound and
free-radical scavenger glutathione, which is present in
most tissues and tumours at millimolar concentrations and
protects cells against foreign oxidizing agents. According
to this hypothesis, some of the fluorinated 2-nitroimida-
zole binds to macromolecules and can be detected by
immunohistochemical methods, whereas the bulk of the
19F MR signal observed in vivo arises from glutathione
binding. Nitroimidazole bioreduction would thus be asso-
ciated with glutathione depletion, and the intensity of the
retained 19F signal would depend, in part, on the initial
concentration of glutathione in the tumour. Another ques-
tion that arises in this context is whether oxidation of a
large proportion of cellular protein sulphydryl groups
could be tolerated without evidence of toxicity.

Magnetic resonance spectroscopy is inherently an insen-
sitive method, and concentrations of adduct in the hun-
dreds of micromoles per litre of cell water usually have to
be present in a tissue for an adequate signal to be
observed. At such concentrations, many nitroimidazoles
are significantly neurotoxic. It should be noted that in
addition to binding to thiol-rich macromolecules, the
hydroxylamine four-electron product has a number of
other possible fates, including conjugation and ring frag-
mentation, such that only a proportion of the administered
parent 2-nitroimidazole will be detectable.

A third observation suggesting that most fluorinated
bioreductive adducts detected by 19F MRI are small mol-
ecules is their pharmacokinetics: the retained signal is usu-
ally undetectable 24 h after administration. This could be
explained by a rapid reversal of the bioreduction reaction,
or some other process eliminating the fluorine, but a sim-
ple explanation would be that the bioreductive adducts are
small enough molecules that they can be lost from the
tissue quite rapidly, albeit more slowly than the parent
compounds.

Another anomaly is that some studies have failed to find
evidence of 19F retention in certain animal tumour mod-
els. Raleigh et al. (1991) reported that no 19F signal could
be measured 40 min after administration of CCI-103F in
50% of the excised R3327 Dunning prostate HI subline
tumours that they studied. Under such conditions, these
tumours should be extremely hypoxic and hence all the
CCI-103F reduced, and thus a strong 19F signal antici-
pated. These data do, however, correlate with the studies
of Zhao et al. (2002), which demonstrate that these same
tumours have a low hypoxic fraction. A more recent study
attempted to measure the degree of retention of SR-4554
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Figure 6. 19F NMR spectra obtained from (a) a vial
containing 6 mg ml�1 SR-4554 resonating at ca. 45 p.p.m.
relative to a 5-fluorotryptophan (5-FTP) external standard,
and in vivo 19F spectra acquired from (b) a wild-type C6
glioma; (c) a RIF-1 fibrosarcoma; and (d ) an HT29 colon
adenocarcinoma all acquired 45 min after administration of
180 mg kg�1 SR-4554 intraperitoneally. The degree of
retention of the reduced adducts of SR-4554, measured by
19F MRS, affords a non-invasive assessment of tumour
hypoxia. No 19F resonance was detected in either C6 wild-
type or D27 gliomas 45 min after administration of SR-
4554. To confirm that this observation was not due to a
technical failure, two other murine tumour models, the
RIF-1 fibrosarcoma grown in C3H mice and HT29 colon
adenocarcinoma grown in nude mice, were administered
SR-4554 and 19F MR spectra acquired under identical
conditions. A clear 19F resonance from SR-4554 was
observed from these tumours 45 min after administration,
thereby validating the acquisition protocol and
demonstrating that the observation of a 19F resonance from
SR4554 is not dependent on the tumour host.

in vivo using 19F MRS to assess the degree of hypoxia non-
invasively in wild-type and mutated C6 gliomas grown in
the flanks of nude mice (Robinson et al. 2002). Surpris-
ingly, no 19F resonance was detected in any of the tumours
studied 45 min after administration of SR-4554 (figure 6).
The lack of signal in the C6 gliomas was unexpected,
especially as retention of pimonidazole had been detect-
able by immunohistochemistry in the same tumour types.
Whether C6 gliomas express the appropriate nitroreduct-
ases required to metabolize SR-4554 specifically is
unknown (Workman 1992; Joseph et al. 1994), but the
data appear to suggest caution in their use with this parti-
cular tumour model.
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The lack of visibility of the reduced adducts by 19F
MRS in these two studies may be a consequence of T2

shortening. It has recently been suggested that all of the
bound adducts of EF5 may have significantly short T2

values, resulting in extremely broad line widths and thus
calling into question the ability of 19F MRS to detect the
bound, hypoxia-related adducts in vivo (H. W. Salmon,
M. Arreola and D. W. Siemann, personal communication).
If true, this would imply that the signals detected by 19F
MRS in vivo are from the parent 2-nitroimidazole, and
that the retention index is a measure of tumour blood flow
per se, rather than hypoxia. In this context, it is also note-
worthy that the majority of agents used to perturb the
tumour environment, such as nicotinamide, hydralazine
or combretastatin A-4 phosphate, are primarily modifiers
of tumour blood flow that indirectly cause changes in
tumour hypoxia. The reported changes in 19F MRS reten-
tion index with these modifiers (Aboagye et al. 1997; Sed-
don et al. 2002) are also consistent with the expected
changes in tumour blood flow, and hence could be
reflecting trapping or a reduced clearance of parent 2-
nitroimidazole within the tumour vasculature, rather than
the reduced adducts. Alternatively, the tumours used in
these studies may have abnormally low levels of gluta-
thione, which, as discussed earlier, would result in less
nitroimidazole bioreduction.

It is apparent that further experiments are required to
establish categorically if 19F MRS is reporting on parent
or reduced 2-nitroimidazole. It would also be informative
to measure the tumour 19F MRS retention index of a 2-
nitroimidazole in response to a modifier that directly per-
turbs tumour hypoxia, perhaps through modification of
oxygen consumption by the tumour cells, which has been
shown theoretically to be more efficient at affecting oxy-
gen transport than direct modification of delivery (Secomb
et al. 1995; Snyder et al. 2001).
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