
 1 

Supplementary Materials 
 
A.  Parameter estimates and Assumptions adopted in the model  
 
1). The 13 protofilaments of the microtubule are assumed to be identical; namely, the 
GDP-tubulin dimers form the 13_0 lattice. As a result of this simplification, the tip of the 
microtubule consists of all the 13 GDP-tubulin dimers from the 13 constituent 
protofilaments as shown in Fig. 1(B), instead of a blunt one. Therefore, the MT 
configuration is fully represented by one of its 13 protofilaments, 
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stands for the ith GDP-tubulin dimer within the protofilament, )(tr
i

and )(th
i

are the radius 

and the height of ith dimer according to its upper end position, respectively (see Fig.1). 
The index for the GDP-tubulin dimer within the protofilament starts at the bottom as 1, 
and stops at the tip tubulin-dimer. In this paper, we assume the kinetochore ring as a 
geometric object with all the interaction is concentrated on the mass center, although it 
does have 5nm in thickness (1).  
 
2). The electrostatic interaction at the nanometer length scale could be complicated by the 
geometries as well as the charge distributions of the charged objects. In other words, the 
point-charge form of the electrostatic interactions could be compromised. Therefore, to 
account for such deviations for the electrostatic interactions, the charge MTQ  and 

� 

qkt  in 
our model shall be taken as the effective point charges at the mass center for the GDP-
tubulin dimer and the kinetochore unit component, respectively. The electrostatic 
potential between the kinetochore and the microtubule is summed over all the GDP-
tubulin dimers from the 13 protofilaments and the 16 identical kinetochore complex 
components. In the following dynamic equations, we only include the electrostatic 
attraction for the kinetochore ring complex, while ignoring the electrostatic interactions 
for the microtubule. This is because of two reasons. (a). It can be shown that, for each 
GDP-tubulin subunit, the electrostatic attraction from the kinetochore is negligibly small 
compared to the mechanical bending forces. (b). The electrostatic repulsions among the 
bound GDP-tubulin subunits have already been taken into account of the lateral bonds as 
well as the bending energies.    
 
3). The binding energy in the model includes the electrostatic interactions, the steric 
repulsions as well as the specific interactions between the kinetochore ring complex and 
its attached GDP-tubulin subunits. This approximated harmonic potential has its 
minimum at the equilibrium distance between the kinetochore and the underlying 
dimer
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R
0
! r

0
= 3.5nm , which is deduced from the typical geometry of the kinetochore 

ring complex-microtubule system (1, 2). The magnitude of the binding potential is 
estimated from the following experiments (2, 3): since the dissociation constant for 
kinetochore bound with GTP-microtubule 
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K
d

= 0.2µM (2), the binding energy between 
kinetochore ring complex and GTP-microtubule is ~ 
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k
B
T logK

d
~ 15k

B
T . On the other 

hand, the kinetochore preferentially binds to GTP-microtubule as compared to the GDP-
microtubule with the ratio ~ 10:1 (3), we thus can estimate that, the binding energy 
between the kinetochore and GDP-microtubule is ~ TkTk

BB
5.2~10log less than that for 



 2 

the GTP-microtubule. Therefore, the binding energy between the kinetochore and the 
GDP- microtubule is ~ 12.5kBT. In simulations, the spring constant for the harmonic 

binding potential is chosen such that: 
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k 4nm( )

2

+ 3.5nm( )
2( ) ~ 12.5kBT , where 4nm and 

3.5nm correspond to maximum distance variations in the longitudinal direction and the 
radial direction of the binding, respectively. 
 

4). The bare dissociation rate for the individual protofilament )0(

offk  is taken as 
13

1
of that 

for the microtubule by assuming no cooperation among the protofilaments during the 
microtubule depolymerizations. In vivo, the concentration of free tubulin dimer in 
cytoplasm remains constant. The microtubule depolymerizations (polymerization) are 
tightly regulated by many microtubule plus-end associated proteins (4-8). The 
dissociation rate for kinetochore-coupled microtubule is usually about 10 times slower 
than the free plus-end. For simplicity, we also implicitly assume that the constriction 
from the kinetochore to the GDP-tubulin subunit dissociation is distinct from the 
regulations by other proteins in such way that: the bare off-rate is pre-determined by 
protein regulations, while the instantaneous effective off-rate is affected by kinetochores 

as Tk

E

offoff
Bekk

!
"

=
)0( , where

� 

!E is the potential energy stored by the tip subunits (see below). 

In the calculation, we choose 1)0( 105~ !
! skoff (4, 7, 8). Note: during anaphase A in cells, 

the dissociation of the microtubule plus-end is tightly regulated with many proteins 
involved (4, 7, 8). Therefore, its off-rate is always much slower than the free plus-end 
shrinkage in solutions. 
 
5). The frictional drag coefficient of the configuration changes for the bound GDP-
tubulin subunit is inferred from the following estimates. Consider the free plus-end 
microtubule depolymerization, one dissociation event includes two consecutive steps: 
first, the tip GDP-tubulin subunit needs to fully curl out according to its preferred angle; 
secondly, this dimer falls off at this configuration. Here, we assume the second step is 
instantaneous. Therefore, in the mean-field approximation, the bare dissociation rate of 

protofilaments 
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koff
(0) determines the time (~

)0(

1

offk
) for the bound GDP-tubulin subunits to 

fully bend out for the first time. The dynamic equation for the position changes of the 

free-end bound GDP-tubulin subunits is: 
i
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bound GDP-tubulin subunits without the kinetochore influence freeV is 
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Starting from the up-straight configuration as the initial condition, we integrate this 
equation over time. We then equal the time for the tip subunit to fully curl out for the first 

time to
)0(

1

offk
. Thus, in this way, we numerically determine the average frictional drag 

coefficient for the configuration changes of the bound GDP-tubulin 

subunit:
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!
MT
~ 10 " 20

pN # sec

µm
for 1)0( 105~ !

! skoff (4, 7, 8). Meanwhile, the frictional drag 

coefficient for the kinetochore is 

� 

!
kt
~ 5 "10

pN # sec

µm
(9-11) if it is connected by the full 

chromatid, whereas it will be much smaller in the system that the chromatid arms are 
being severed (12). For the in vitro experiments (13), the frictional drag coefficient for 

Dam1 kinetochore ring could be estimated by the Einstein relationship
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Ddiff =
kBT

! kt

.  

Therefore, in this case, scmDdiff /104.5
210!

"= leads to

� 

! kt = 0.08
pN.sec

µm
. The 

kinetochore thus moves at a relatively faster time scale than the underlying GDP-tubulin 
subunits.  
 
6). There could be 1~50 kinetochore microtubules (kMTs) per chromatid depending on 
cell types (14). In our model, we only consider the situation that one kMT per chromatid. 
If we assume that the different kMTs in the same chromatid become quickly 
synchronized such that the individual kinetochore poleward translocation is at the same 
velocity, then the stalling force will be simply the stalling force from one microtubule 
multiplied by the number of the kMTs in the same chromatid.      
 
B.  Full dynamic equations 
 
The dynamic equation for the kinetochore is: 
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is the distance between the ith GDP-tubulin subunit of the nth protofilament and the 

mth kinetochore component.  
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hh  are the radius, the height of the mass center of the ith tubulin-

subunit, respectively. The first term comes from the electrostatic interactions; the second 
term originates from the harmonic binding potential; the third term stems from the local 
bound tubulin subunit bending strength. The thermal fluctuation 
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, where t=tip, or tip-1. 
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fbond is the force 

originated from the lateral bond.  
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bond breaks, no force is invoked, therefore

� 

fbond = 0. The lateral bond length between the 
neighboring tubulin subunits in the adjacent protofilaments 

is:
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fbinding is the force from the binding potential. For the tip 

GDP-tubulin subunit, 
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The dynamic equations for the rest of the subunits are: 

 
 
 
 
 
 
 

 
C.  Boundary conditions  
 
For the tip GDP-tubulin dimer, the boundary condition is open. For the bottom GDP-
tubulin subunit, the position is fixed as the radius
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r
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= 12.5nm , the height 
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h
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= 0nm and the 
orientation of the bottom subunit
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= 0  throughout the simulations. The kinetochore 
complex ring is rigid, which is realized by fixing the radius of the kinetochore as 16nm in 
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the simulations. The kinetochore is also not penetrable. In simulation, this constraint is 
enforced by the hard wall repulsion, which becomes effective if the distance between the 
kinetochore and the bound GDP-tubulin subunit is less than 0.2nm. We can show that the 
qualitative features of our results do not change much if the length cut-off varies.   
 
D.  Initial conditions  
 
The protofilament of the GDP-tubulin subunits is in the up-straight configuration 0=

i
!  

for Ni ,...2,1=  and the kinetochore is at same height of the mass center of the tip GDP-
tubulin subunit.   
 
E.  Simulation details 
 
In our simulations, there are 500 GDP-tubulin subunits in one protofilament (the 
microtubule is initially thus 

� 

4µm  long). The positions of each GDP-tubulin subunit and 
the kinetochore ring complex are calculated by integrating the corresponding dynamic 
equations over the time step dt. We choose 

� 

dt = 5 !10
"5
sec  to maintain good 

convergence (to test the convergence of the resulting dynamic trajectories, we also 
use

� 

dt = 5 !10
"6
~ 5 !10

"8
sec , and the results are essentially identical to the case of 

� 

dt = 5 !10
"5
sec). Because we focus on the deterministic forces for kinetochore 

translocation, we shut off the thermal noise throughout our simulations. In the simulation, 
the potential energy is scaled in 

� 

k
B
T  (

� 

1kBT ~ 4 pN ! nm ), the length is scaled in nm,  
 
At each simulation time step, we calculate the dissociating rate for the tip GDP-tubulin 

subunit
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 At each simulation step, we also obtain the potential landscape for the kinetochore 
( ))(tHV

kt
as the function of the kinetochore position H(t) while keeping the GDP-tubulin 

subunit positions fixed.   
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We keep tracks of the lifetime

� 

tlife  of the GDP-tubulin subunit as the tip. At mean field 

level approximation, if

� 

tlife >
1

koff
, then the tip will dissociate. Accordingly, the next GDP-

tubulin subunit becomes the tip, and the simulation continues. If the tip GDP-tubulin 
subunit dissociates before the kinetochore gets to the next subunit

� 

H t( ) > h
next

t( ) , then the 
kinetochore will fall off together with the tip GDP-tubulin subunit, and the simulation 
stops.   
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