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1: Methods27
28

1.1: Models and parameter values29
30

Fig. 5: Models of T. castaneum population dynamics. The deterministic Larvae-Pupae-31
Adult model (LPA) is presented in the upper left corner, box [1]. The stochastic32
demographic Larvae-Pupae-Adult model (SD-LPA) is displayed in the upper right33
corner, box [2]. The lattice stochastic demographic Larvae-Pupae-Adult model (LSD-34
LPA) is shown in the lower right corner, box [3]. We consider the LSD-LPA model to be35
assembled starting with the LPA model, adding stochasticity first, then constraining to36
integer populations, rather than vice versa. [x] = max(x,0). The trivariate random37
variables Et = (E1t, E2t, E3t) were standard normal with covariance matrix Σ, and were38
independent for different values of t. See separate file for the figure.39

40
Table 1: The parameters used for the models of Fig. 5. These were obtained using time41
domain fitting methods (Dennis et al. 2001, Cushing et al. 2003). See separate file for the42
table.43

44
1.2: Power spectrum fit tests45
The “spectrum distance fit test” quantifies the frequency-domain fit between a model46
with specified parameters and an experimental time series, {x0, …, xT-1}. Steps for47
computing the p-value result of the test for a population model and data with life stages48
L, P and A are:49

50
• Use the model with initial conditions x0 to produce N simulated time series of length51

T.52
• Compute the log spectral estimate log(fX

(T)(λ)) of each life stage of each simulated53
time series (3*N log spectra) using a “consistent spectral estimate” of Brillinger54
(Brillinger 2001, p. 146). The variable λ denotes normalized frequency (n.f.).55

• For each λ = 2s/T (for s an integer from 0 to ⎣ ⎦2/T ), and for each life-stage, compute56
the mean of the N values of log(fX

(T)(λ)) that were computed for that life stage. Call57
the resulting three spectra (one for each life-stage) the "mean model log spectra,"58
ūL

(T)(λ), ūP
(T)(λ) and ūA

(T)(λ). 59
• For each log spectrum of a model-generated time series (the three life-stage60

components of which we denote uL
(T)(λ), uP

(T)(λ) and uA
(T)(λ)) compute the three61

distances:62
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This d(u, ū) gives N points from a distribution of d.66
• Denote log-spectra of the life-stage components of the experimental data time series67

by eL
(T)(λ), eP

(T)(λ), eA
(T)(λ), and compute d(e, ū).68
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• Generate an approximate p-value from the d distribution for this experimental69
replicate by computing the percentage of the d(u, ū) that are greater than d(e, ū).70

71
The distance in Eqn. 1 is the square root of the sum of the squared differences between72
the mean model spectrum values ūw(2s/T) and the individual spectrum values uw(2s/T).73
This quantity is small when the spectra uw and ūw are close for all values of s74
simultaneously. 75

Steps for computing the p-value result of the “spectrum shape fit test” for a76
population model and data with life stages L, P and A are:77

78
• Use the model with initial conditions x0 to produce N simulated time series of length79

T.80
• Compute the log spectral estimate log(fX

(T)(λ)) of each life stage of each simulated81
time series (3*N log spectra) using a “consistent spectral estimate” of Brillinger82
(Brillinger 2001, p. 146). The variable λ denotes normalized frequency (n.f.).83

• For each λ = 2s/T (for s an integer from 0 to ⎣ ⎦2/T ), and for each life-stage, compute84
the mean of the N values of log(fX

(T)(λ)) that were computed for that life stage. Call85
the resulting three spectra (one for each life-stage) the "mean model log spectra,"86
ūL

(T)(λ), ūP
(T)(λ) and ūA

(T)(λ). 87
• For each log spectrum of a model-generated time series (the three life-stage88

components of which we denote uL
(T)(λ), uP

(T)(λ) and uA
(T)(λ)) compute the three89

correlation coefficients c(uw
(T)(λ), ūw

(T)(λ)) for w = L, P, A, and compute their sum,90
c(u, ū). This gives N points from a distribution of c values.91

• Denote log-spectra of the life-stage components of the experimental data time series92
by eL

(T)(λ), eP
(T)(λ), eA

(T)(λ), and compute c(e, ū).93
• Generate an approximate p-value from the c distribution for this experimental94

replicate by computing the percentage of the c(u, ū) that are less than c(e, ū).95
96

These tests give approximate p-values because they are based on stochastic97
simulation: executing the same steps twice gives slightly different results. For this study,98
every p-value was computed 100 times, and means and standard deviations of the99
resulting distribution of approximate p-values were computed, as well as minima, 25th,100
50th, and 75th percentiles, and maxima. The variance of the p-value distributions obtained101
from the tests can be decreased by increasing N. Typical values of N used in this study102
were 5000 and 10,000. 103

A model for which the 25th percentile of a p-value distribution from one of the104
two tests above was bigger than 1% was considered to be well-fitting with respect to that105
test. Models that fit for both tests using this criterion produced time series with power106
spectra that looked visually very similar to those of the data time series (e.g., Fig. 2 A, B,107
C, E but not D, F).108

109
1.3: Non-equivalency of fit in the time and frequency domains110
A model that had good one-time-step forecasting ability did not always have to fit well in111
the frequency domain according to the spectrum distance fit test, nor conversely. A112
stochastic version of the Ricker model,113
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)X*0.03p
300
1exp(p*17p nnn1n +−=+ ,114

was used to generate three data time series d1, d2, d3 of length 128 starting from initial115
condition p0 = 14. The Xn were independent standard normal. One-step-forecasting116
maximum-likelihood techniques similar to those used in Cushing et al. (2003) were used117
to fit the model118

)X*0.13p
300

cexp(p*17p nnn1n +−=+119

with d1, d2, d3 (the coefficient 0.13 was intentionally different from the coefficient 0.03 in120
the above model); the best-fitting model had c ≈ 1. The spectrum distance fit test found121
best-fitting c ≈ 1.24. In the frequency domain, the model with c = 1 had p = 0.02%122
(spectrum distance fit test); the model with c = 1.24 had p = 7.76% (spectrum distance fit123
test). P-values of three replicates were combined into a single p-value by the Fisher124
method. The time-domain likelihood function evaluated at c = 1 was about 1.7x10181;125
evaluated at c = 1.24 it was less than 10-10. Thus the time-domain fitting indicates that c =126
1.24 is much less likely than c = 1, while the spectrum distance fit test indicates the127
reverse.128

A second-order-Markov relative of the stochastic Ricker model was used to129
generate three data time series e1, e2, e3 of length 128 starting from initial conditions p0 =130
14, p1 = 227.1485:131

)X*0.03p
300
1)exp(p*1.0p*17(p nn1nn1n +−+= −+ .132

The dependence of pn+1 on pn-1 can be interpreted as some eggs laid during time step n-1133
not hatching until time step n+1, although most hatch during time step n. The parameters134
17 and 0.1 in this model correspond to the biological hypothesis that 17/(17+0.1) =135
99.42% of eggs hatch after one time step, while the rest hatch after two time steps. One-136
step-forecasting maximum-likelihood techniques similar to those used in Cushing et al.137
(2003) were used to fit the model138

)X*σp
300
1exp(p*bp nnn1n +−=+139

with e1, e2, e3. This model corresponds to the reasonable but inaccurate biological140
hypothesis that all eggs hatch after one time step. The best-fitting model had b ≈ 17.62141
and σ ≈ 0.0688. The spectrum distance fit test found best-fitting b ≈ 16.60 and σ ≈142
0.0113; these parameters gave p = 15.24% in the frequency domain (spectrum distance fit143
test). The parameters b ≈ 17.62 and σ ≈ 0.0688 gave p = 0.56% in the frequency domain144
(spectrum distance fit test). P-values of three replicates were combined into a single p-145
value by the Fisher method. The time-domain likelihood function evaluated at (b, σ) =146
(17.62, 0.0688) was about 2.3x10208; evaluated at (b, σ) = (16.60, 0.0113) it was less than147
10-10.  148

To show that the methods of this study are capable of rejecting reasonable model149
functional forms based on data of 41-time-step length, we used the model150

)X*0.03p
300
1)exp(p*25.0p*17(p nn1nn1n +−+= −+151

to generate time series f1, f2, f3 of length 41 starting from the initial conditions p0 = 14, p1152
= 227.1485. The parameters 17 and 0.25 in this model correspond to the biological153
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hypothesis that 17/(17+0.25) = 98.55% of eggs hatch after one time step, while the rest154
hatch after two time steps. One-step-forecasting maximum-likelihood techniques were155
used to fit the model156

)X*σp
300
1exp(p*bp nnn1n +−=+157

with f1, f2, f3. The best-fitting model had b ≈ 18.84 and σ ≈ 0.1630; the frequency domain158
fit of the model with these parameters gave p < 0.0001 (spectrum distance fit test; the 3 p-159
values were combined via the Fisher method). The spectrum distance fit test found best-160
fitting b ≈ 16.00, σ ≈ 0.0767, with p = 2.44%. The time-domain likelihood function161
evaluated at (b, σ) = (18.84, 0.1630) was about 5.0x1020; evaluated at (b, σ) = (16.00,162
0.0767) it was less than 10-10. No single set of parameters (b, σ) produced a fit according163
to both time and frequency domain measures of fit, so we reject the model.164

We used the model165

)X*0.03p
300
1)exp(p*5.0p*17(p nn1nn1n +−+= −+166

to generate time series f1, f2, f3 of length 41 starting from the initial conditions p0 = 14, p1167
= 227.1485. The parameters 17 and 0.5 in this model correspond to the biological168
hypothesis that 17/(17+0.5) = 97.14% of eggs hatch after one time step, while the rest169
hatch after two time steps. One-step-forecasting maximum-likelihood techniques were170
used to fit the model171

)X*σp
300
1exp(p*bp nnn1n +−=+172

with f1, f2, f3. The best-fitting model had b ≈ 22.40 and σ ≈ 0.3850; the frequency domain173
fit of the model with these parameters gave p < 0.0001 (spectrum distance fit test; 3 p-174
values combined by the Fisher method). The spectrum distance fit test found best-fitting175
b ≈ 16.33, σ ≈ 0.08, with p = 0.0009. Frequency domain fit was not possible with this176
model functional form for any parameters in the range searched.177

178
1.4: Lag metric and relative lag metric179
Two “lag metrics” were used: one developed previously (King et al. 2004), and an180
adaptation of that method. The adapted method, called the “relative lag metric,” detected181
the presence of length-n approximately-periodic patterns in a time series. For the time182
series x0, …, xT-1, the “relative lag metric” method computed 183

nxxδD nii

t

nti
t ))/,((

1
1 −

+−=
∑=184

for t = 2n-1 to T-1. The notation δ1 represented distance under the 1-norm:185
||||||)),,(),,,((1 jijijijjjiii AAPPLLAPLAPLδ −+−+−= .186

The quantity Dt was the average distance between xi and xi-n for i ranging over the past n187
time steps; low values of Dt indicated that the data had been passing through an188
approximately repeating length-n periodic pattern for at least the last 2n time steps (one189
sequence of n points followed by one approximate repetition of that sequence). The190
distance Dt was plotted versus t, keeping track of the times for which it was less than 55191
(the value 55 was taken from a previous application of the lag metric to the T. castaneum192
system, King et al. 2004). The number of total t values for which Dt was less than 55 and193
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the maximum number of contiguous Dt values below 55 provided an indication of the194
degree to which approximately-repeating length-n patterns occurred.195

The original “lag metric” method (King et al. 2004) differed from the relative lag196
metric because it took a fixed length-n pattern c(n) as additional input. It measured the197
average distance between each n-long sub-time series xt-n+1, …, xt and c(n), and plotted198
this distance against t. The pattern c(n) had n possible rotations; the lag metric plotted the199
average distance to each possible rotation, giving n different lines on a single plot. When200
any one of these lines was below 55 the data were considered to be approximately201
repeating the pattern c(n).202

203
1.5: Extraction and significance of length-7 pattern204
This section gives the details of how an approximately-repeating pattern of length 7 was205
extracted from LSD-LPA model output and from experimental data with cpa = 0, and how206
the statistical significance of the presence of that pattern was determined. An207
approximately repeating pattern of length 6 was extracted from model output and208
experimental data with cpa = 0.5 using the same methods.209

210
Extraction:211

Starting with length-1024 output of the LSD-LPA model with cpa = 0 and µa =212
0.96, and other parameters equal to those of Table 1, all time steps for which the relative213
lag metric, with lag 7 (Section 1.4), was less than 75 were found. Of these, the time steps214
were kept that were part of a run of length at least 8 time steps with relative lag metric215
below 75. Such a run indicated that the time series was executing an approximately-216
periodic pattern of length 7, for at least 21 time steps (3 repetitions of the pattern). For the217
model output used, there were no runs of length greater than 10 time steps for which the218
relative lag metric was below 75. 219

If t was the first time step of each run of length 8 or greater, the population triples220
from t-13 to t+7 were extracted, giving 3 potential repetitions of a length-7 pattern. In this221
way, 27 potential patterns of length 7 were extracted from the length-1024 series. The222
first of these (an arbitrary choice) was labeled x. For y equal to each of the 26 other223
patterns, the average 1-norm distance between y and x was measured for each of the 7224
possible rotations of y. The patterns y for which no rotation had distance to x less than 90225
were discarded. No pattern y had more than one rotation with distance to x less than 90.226
This one rotation “lined up” with x. After discarding the patterns for which no rotation227
lined up, the adult life stage of 10 of the 19 remaining patterns was plotted, randomly228
chosen (Fig. 3D), and the median of the 19 population values for each time step and for229
each life stage was computed to get one median length-7 pattern. 230

The (original) lag metric (Section 1.4) was used to compare the experimental time231
series from the treatment with cpa = 0 (replicates 5, 12 and 15) to the median length-7232
pattern extracted from model output. For replicates 5 and 15, the metric never went below233
the threshold of 55, but for replicate 12 it did so for 4 consecutive time steps, indicating234
that this length-7 pattern occurred in experimental data. The minimum lag metric value235
for replicate 12 was 40.14 individuals, and for replicate 5 it was 62.57 individuals. The 7236
time steps ending at the time step with minimal lag metric were extracted from replicates237
5 and 12, and rotated to line up with the length-7 patterns extracted from typical model238
output. The adult life stages of these extracted patterns were plotted (Fig. 3D).239
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240
Statistical Significance:241

To test whether the median pattern extracted and displayed in Fig. 3D (open242
circles) occurred only by chance, we randomly permuted, in 1000 different ways, the243
same LSD-LPA model output from which the pattern was extracted. For each permuted244
time series, the same steps were undertaken as were used to extract the pattern from the245
un-permuted model output: the relative lag metric (Section 1.4) was applied to each246
permuted time series, and the length of the longest run of time steps for which the relative247
lag metric was below the threshold 75 was recorded. None of the 1000 permutations had248
a run longer than 6. Nine runs of length 8 or more occurred in the un-permuted model249
output.250

To test whether the median pattern displayed in Fig. 3D (open circles) was251
detected in experimental replicates 5 and 12 by chance alone, we randomly permuted, in252
1000 different ways, the experimental time series of replicates 5 and 12, and attempted to253
find the same median pattern in each permuted time series using the same methods with254
which it was detected in un-permuted experimental data: the lag metric was used to test255
for the presence of the median pattern in each permuted time series. The lag metric never256
went below the threshold of 55 for any of the 1000 permutations for either replicate. The257
same test was run on data from experimental replicate 15 (same treatment group), with258
the same results. 259

260
1.6: Plotting spectral peaks versus Σ factor (Fig. 4)261
For each of 101 log Σ factors evenly spaced from log(2 × 10-5) to 1, 1000 time series of262
length T = 1024 were generated using the SD-LPA model. The log periodogram spectral263
estimate (Brillinger 2001) of each life stage of each time series was computed. For each264
n.f. value of the form 2s/T for s an integer from 1 to ⎣ ⎦2/T , the median of the log265
periodogram values at that n.f. was computed for each life stage. The periodogram value266
at n.f. = 0 was removed before computing medians because it did not contain spectral267
information.268

The resulting median log periodograms (with the n.f. = 0 value omitted) were269
smoothed using local averaging to eliminate small spurious peaks and valleys. The270
smoothing was simple averaging of the median log-periodogram value at each frequency271
with the values at the 10 frequencies of the form 2s/T (for s an integer from 1 to ⎣ ⎦2/T )272
on each side of it. For most n.f. values, 21 quantities were averaged. The average of all273
available frequencies was used for normalized frequencies close to 0 or 1 not having ten274
frequencies on one side. 275

Locations of local maxima and minima were computed using the smoothed276
median log periodogram for each log Σ factor. A frequency was considered to be the277
location of a local maximum if its smoothed median log-periodogram value was at least278
as great as the values of the 10 frequencies on each side of it (or fewer for frequencies279
close to 0 and 1). Heights of the local maxima and minima were computed using the280
smoothed median log periodogram. Locations and heights of spectral peaks and valleys281
were plotted against log Σ factor (Fig. 4).282

Although not all trends of peaks appearing on plots produced in this way will be283
biologically meaningful (some are artifacts of the spectrum method), they will all be284
highly statistically significant for two reasons. First, computing the median of 1000 log-285
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periodigrams and subsequently smoothing the median eliminates peaks that are due to286
dramatic, chance departures of dynamics from central patterns. Second, the random287
components affecting simulations with adjacent log Σ factors are independent. Although288
a statistically rare and not dynamically meaningful peak may occasionally occur for a289
single value of the log Σ factor, the probability that an entire trend of peaks will290
materialize by chance is vanishingly small.291

292
1.7: Linearization theory293
Theory based on linearization uses the power spectrum to explain interactions between294
stochasticity and nonlinear dynamics in physical systems (Wiesenfeld 1985) and295
population models (Greenman & Benton 2005). We briefly review the main qualitative296
conclusions of the theory. Given a deterministic model xt+1 = f(xt) with a finite stable297
attractor A = (x1, x2, …, xn) consisting of n points periodically repeated, the spectral298
effects of adding normally-distributed stochasticity ε to the model, xt+1 = f(xt) + ε, can be299
predicted from the eigenvalues and eigenvectors of the “susceptibility matrix”300

11
... xxx JJJS

nn −
= , where Jx is the Jacobian of f at x. A negative real eigenvalue d1 with301

corresponding eigenvector v indicates that small perturbations h from x1 in the direction302
of v will become, in n time steps, approximately Sh = d1h, which has direction opposite303
that of h. This direction switching of perturbations has period 2n, twice that of the304
deterministic system. It is over-compensatory decay of the perturbation h. If ε has a305
component in the direction of v, and v has non-zero ith component, then direction306
switching of perturbations (over-compensatory decay) causes a stochastically-induced307
peak in the spectrum of the ith-component time series at n.f. 1/n (half the frequency of the308
deterministic system if n > 1, because the deterministic system has n.f. 2/n).309

If S has a complex-conjugate pair of eigenvalues d1 and d2 with phase angles α310
and -α, then there is a 2-dimensional space V such that S approximately rotates vectors in311
V by average angle α and then re-scales them by |d1|. Perturbations h from x1 that lie in V312
will be approximately Sh in n time steps: they will be approximately rotated by α and313
multiplied by |d1|. This amounts to oscillatory decay of the perturbation h, with314
oscillations of n.f. α/πn. If stochasticity produces perturbations with components in V,315
and if V contains vectors with non-zero ith component, then rotation causes a316
stochastically-induced peak at n.f. α/πn in the spectrum of the ith-component time series.317
Because rotation by α is the same as rotation by 2π – α in the other direction, a second318
peak at (2π-α)/πn also occurs if n > 1. 319

If S has a positive real eigenvalue d1 with corresponding eigenvector v, then small320
perturbations h from x1 in the direction of v will become approximately d1h in n time321
steps. By the assumed stability, d1 < 1, so perturbations h decay exponentially over time,322
with larger d1 causing slower decay. The decay is under-compensatory. If ε has a323
component in the direction of v and v has non-zero ith component, then under-324
compensatory decay of perturbations produces reddening in the ith-component time325
series: spectral power increases at low frequencies. 326

Because A is stable, all eigenvalues have magnitude less than 1. Larger eigenvalue327
magnitudes cause larger stochastically-induced peaks for any combination of328
eigenvalues. Larger stochasticity also causes larger peaks, up to the limit where329
linearization theory begins breaking down. Linearization theory also makes quantitative330
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spectral predictions (Wiesenfeld 1985; Greenman & Benton 2005); this study makes use331
of qualitative predictions only.332

333
1.8: Computations334
All logarithms were base 10. The Matlab function ‘fft’ was used for discrete Fourier335
transforms. All computations were done on a 3.2 GHz desktop PC using Matlab versions336
6.5.0 and 6.5.1, with one exception. An adaptation of the Nelder-Mead simplex algorithm337
was used to optimize the LSD-LPA model fit starting from parameters of Table 1. This338
algorithm was run on a cluster of 16 PC machines of 1.5 GHz each. The Matlab C339
compiler was used to translate code to the C programming language for this purpose. The340
algorithm was stochastic, so it was repeated many times. The computational power of the341
cluster of 16 machines was needed for this repetition.342
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2: Supporting Results343
344

2.1: Frequency-domain fit and predictive ability of the LSD-LPA model345
Using model parameters obtained by maximum-likelihood time-domain fitting (Section346
1.1), the frequency-domain fit of the LSD-LPA model with all 24 data replicates was347
tested (Fig. 1, box 2). The six replicates of length 213 were truncated to length 41 for this348
purpose. The fit-testing algorithms were based on stochastic simulations, so multiple tests349
of fit with the same data and parameters produced slightly different p-values; but the350
standard deviation of p-values for 100 tests was never more than 1.25% for any replicate,351
for both the spectrum distance fit test and the spectrum shape fit test. All replicates but352
one for the spectrum distance fit test and two for the spectrum shape fit test had at least353
75 of 100 approximate p-values above 1%. For all replicates and life stages, visual354
confirmation of fit was obtained (Fig. 2A). An adaptation of the Nelder-Mead simplex355
algorithm was used to make small modifications of parameters to decrease the L2356
distances between data log spectra and the mean of log spectra of model-generated time357
series. No significant improvement in frequency-domain fit occurred (according to the358
spectrum distance fit test). The model fitted better with the given parameters than with359
any nearby parameters; it fitted data well in both the time and frequency domains with360
the same parameters. 361

Spectral estimates from length-41 time series lack resolution. To make spectral362
predictions of higher resolution, we generated many time series of length 213 using the363
LSD-LPA model (parameter values were the same as those of Section 1.1); spectral364
estimates based on these time series were model-based hypotheses of population spectra365
(Fig. 1, box 3). We tested the predictive ability of the model and the strategy of this study366
(Fig. 1, fourth box) by comparing these hypotheses with spectral estimates from the 6367
experimental replicates of length 213 (control and cpa=0.35 replicates). Hypotheses and368
data-based estimates agreed qualitatively and quantitatively: a second spectral peak at369
normalized frequency (n.f.) 0.33 was predicted by the model and confirmed by the370
length-213 experimental time series for cpa=0.35 (Fig. 2B); every replicate had at least 75371
of 100 approximate-p-values above 1% for both spectrum fit tests. Standard deviations of372
p-value distributions were always less than 0.7%. 373

374
2.2: Fits of constrained models375
We examined the fit in the time and frequency domains between several variants of the376
LSD-LPA model and the three experimental replicates with imposed cpa = 0.35. Models377
used were: the constrained LSD-LPA model; and the constrained LSD-LPA model with378
additional constraints cel = 0 and cea = 0, imposed separately. Parameters were computed379
that produced the best time-domain fit between each model and the three experimental380
replicates truncated to length 41 (Table 2). For all models, the time-domain-optimal381
parameters also gave a good fit with short time series in the frequency domain, according382
to both the spectrum distance fit test and the spectrum shape fit test (Table 3).383

An adapted Nelder-Mead simplex algorithm was used to adjust model parameters384
to decrease the L2 distance between log spectra of short experimental time series (length385
41) and the mean of log spectra of many model-generated time series of the same length;386
the goal was to optimize frequency-domain fit. Because the algorithm optimized a387
stochastic objective function, it was run 5 times for each model, starting from initial388



Supporting Online Material Reuman, Desharnais, Costantino, Ahmad, Cohen
Page 11 of 15

parameters equal to the time-domain optimum. Results represent local minima of the389
mean of the stochastic objective function. Frequency-domain-optimized parameters often390
produced a slightly but not substantially better frequency-domain fit than did the time-391
domain-optimal parameters (Table 3); they sometimes fell outside the 99% confidence392
intervals of the time-domain-optimal parameters (Table 2).393

Models with optimized parameters were used to generate many time series of394
length 213; the log spectra of these long time series were compared with log spectra of395
the three length-213 experimental time series with imposed cpa = 0.35. P-values were396
produced describing the degree of similarity between model and experimental spectra397
(Table 3); these p-values reflect the ability of each model to make accurate predictions of398
spectra of long time series when optimized using short time series. Both time-domain-399
optimized and frequency-domain-optimized parameters were used, separately. The400
constrained LSD-LPA model was the only model capable of making accurate predictions,401
although all models fitted adequately with short time series in the time and frequency402
domains. This difference in predictive ability of the models arises because the403
constrained LSD-LPA model is the only model, among those considered here, that did404
not incorrectly omit a known biological mechanism.405

The analytic strategy of this study (Fig. 1) combines the qualitative, biological406
information contained in a model functional form with quantitative information contained407
in short time series to produce the best available estimate of population spectra. A408
mechanistic model with the wrong mechanism will produce incorrect spectral predictions409
for long time series even though it may fit well with short time series.410

411
Table 2: Optimized parameter values in the time domain (column 2), and in the412
frequency domain according to the spectrum distance fit test (columns 4-8), with respect413
to the length-41 experimental replicates with cpa = 0.35 only. Values in brackets do not414
fall within the confidence intervals in column 3. Time-domain fitting used the maximum415
likelihood one-step forecasting methods of Dennis et al. (2001). Frequency-domain416
optimization used an adaptation of the Nelder-Mead simplex algorithm to minimize the417
distance between the mean log spectrum of model-generated time series and data log418
spectra. The time-domain-optimal parameters (column 2) were used as initial conditions.419
Confidence intervals for the time-domain-optimal parameters other than Σ were420
computed as in Dennis et al. (2001). Confidence intervals for entries of Σ were computed421
by re-sampling (with replacement) from the set of residuals of data from one-step422
forecasts of the model with time-domain-optimal parameters. See separate file for the423
table.424

425
Table 3: Frequency domain fit of models with cpa = 0.35 data, parameters as specified in426
Table 2. Table entries are p-values as given by the spectrum distance fit test (columns 2-427
3) and the spectrum shape fit test (columns 4-5). They describe the fit between models428
and length-41 (columns 2, 4) or length-213 (columns 3, 5) versions of the three cpa = 0.35429
experimental time series. See separate file for the table.430

431
Figure 6: Frequency domain fit between the constrained LSD-LPA model (with no432
further constraint) and observed adult population time series of (A) length 41 and (B)433
length 213 from the three experimental replicates with cpa = 0.35. The heavy dashed lines434
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are data log spectra. Light solid lines give the minimum, the 5th, 25th, 50th, 75th, and 95th435
percentiles, and the maximum values at each frequency value of 1000 log spectra of436
model-generated time series of (A) length 41 and (B) length 213. Triangles highlight the437
5th and 95th percentiles. Parameters were optimized for length-41 data in the time438
domain (Table 2). Fit was similar when frequency-domain-optimized parameters were439
used (Table 3). Fit with other life stages was similar. Aliasing of fundamental (i.e., non-440
harmonic) frequencies of population fluctuation is unlikely to have occurred because the441
biology of Tribolium suggests that little fluctuation occurs for n.f. greater than 1. See442
separate file for the figure.443

444
2.3: Analogues of Fig. 4 for other life stages and cpa values445

446
Figure 7: (A) Fig. 4A, reproduced here for easy comparison with the other panels. The447
analog of Fig. 4A for the pupal (B) and larval (C) life stages. (D) Fig. 4B, reproduced for448
comparison. The analogue of Fig. 4B for the pupal (E) and larval (F) life stages. See449
separate file for the figure.450

451
Figure 8: Log power versus n.f. and log Σ factor, cpa = 0, µa = 0.96, for the adult (A),452
pupal (B), and larval (C) life stages. The smoothed median log periodogram estimate was453
used. As in Fig. 4B and Fig. 7, n.f. = 0 values have not been plotted. This is the 3-454
dimensional version of Fig. 4B. There appear to be differences among Figs. 7D-F. This455
figure shows that the differences are minor; they may not have biological significance.456
See separate file for the figure.457

458
Figure 9: Analogues of Fig. 4 for other cpa values. Adult life stage only. See separate file459
for the figure.460

461
2.4: Limiting behavior of deterministic models for cpa = 0462
The limiting behavior of the LPA model is described by its attractor (Fig. 10). This463
attractor, an invariant loop, consists of two small circles: c1 and c2. All points on one of464
the circles have few larvae (33 to 39), many pupae (92 to 99), and few adults (30 to 35): a465
pupae-dominated age distribution. All points on the other circle have many larvae (115 to466
124), few pupae (26 to 32) and many adults (93 to 100): a bimodal age distribution. 467
Oscillations between heavily-pupae-dominated and heavily-bimodal distributions468
correspond to switching between opposite sides of c1 and c2; oscillations between469
moderately-pupae-dominated and moderately-bimodal distributions correspond to470
switching between the sides of c1 and c2 that are closest to each other.471

472
Figure 10: The attractor (circles) and unstable equilibrium (x) of the LPA model for cpa =473
0, µa = 0.96. See separate file for the figure.474

475
2.5: Explanation of spectral changes with stochasticity476
This section gives the details of: 1) the approximation made to apply linearization theory477
to the treatment with cpa = 0; and 2) the experimental support for the proposed478
mechanisms behind the spectral changes depicted in Fig. 4.479

480
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Application of linearization theory to the cpa=0 treatment:481
The main text notes that linearization theory cannot immediately explain peak-482

change patterns for cpa=0 because the square-root-scale LPA model with cpa=0 has a non-483
finite attractor. However, the components of the attractor, 1c  and 2c , can substitute484
for a stable 2-point attractor. If xt and xt+1=f(xt) are square-root-scale population vectors485
in 1c  and 2c , respectively, then the product of Jacobians 

ttt
JJS xxx 1+

=  approximates486

a susceptibility matrix because xt+2 is close to xt. Using 5000 points xt covering 1c , the487
coefficient of variation of each matrix entry of 

t
Sx  was never more than 7.9%. The488

matrices 
t

Sx  all had similar eigenvalue and eigenvector structure. A negative eigenvalue489
-0.12 ≤ d1 ≤  -0.15 always occurred (mean value -0.13); a complex-conjugate pair of490
eigenvalues rexp(±iθ) with 0.97 ≤ r ≤ 1.03 and 40.8° ≤ θ ≤   47.7° always occurred (mean491
θ was 44.4°, mean r was 0.999). The dominant eigenvalue was always complex, with492
mean phase angle 44.4°, so theory predicts a component of oscillatory decay of493
perturbations from the stable attractor of the square-root-scale model, and corresponding494
spectral peaks in the adult life stage at n.f. 44.4°/(180°*2)=0.123 and495
(360°-44.4°)/(180°*2)=0.877. The magnitude of the negative eigenvalue is small, and its496
corresponding eigenvector is almost perpendicular to the largest component of stochastic497
perturbations that affected the Tribolium system, so theory predicts that the498
corresponding stochastically-induced spectral peak will not be noticeable. Predicted499
stochastically-induced peaks are in the same place as deterministic model peaks. Linear500
theory predicts that locations of spectral peaks for cpa=0 will not change with the addition501
of stochasticity.502

For cpa=0, linearization theory predicted changes in spectral peaks correctly for503
weak noise but incorrectly for stronger noise: the main (deterministic) LPA model peaks504
at 0.123, 0.887 and 1 were not greatly affected by weak demographic stochasticity (log Σ505
factors less than about -2.5), but were shifted unexpectedly for larger Σ factors (Fig. 4B).506
How can peak motion for higher Σ factors be explained? We answer this question in Fig.507
11 below, and in the main text. 508

509
Experimental support for spectral changes:510

We supported the theoretically-proposed mechanism producing the n.f. 0.33511
spectral peak for cpa = 0.5 with experimental data by examining perturbations of real512
population vectors from points in the LPA model attractor (Fig. 11A).513

The LPA model with cpa=0 had an unstable equilibrium, e, about midway514
between c1 and c2. The distance from any population vector to the attractor comprised of515
c1 and c2 was defined to be the minimum distance to any point in the attractor. For a516
range of Σ factors, means and 2.5th and 97.5th percentiles of this minimum distance were517
computed across all population vectors in a model-generated time series (Fig. 11B).518
Spectral peaks began to move for about the same Σ factors that 97.5th percentiles of519
distance distributions exceeded the distance between e and the attractor (Fig. 4B). Peaks520
began to shift when stochasticity was strong enough to move population vectors521
occasionally at least as far from c1 and c2 as e. Linearization theory failed when this522
occurred because linearization at points in the attractor does not capture the dynamical523
behavior of the LPA model at points farther from the attractor than e. 524
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For weak stochasticity, the SD-LPA model initialized with a population vector525
near ci will produce in one time step a vector nearer cj (j≠i) than ci. Stronger stochasticity526
will cause the model to occasionally produce a vector closer to ci, shifting the phase of527
the n.f. 1 oscillation of the system (Henson et al. 1998). The relative frequency of phase528
shifting, as a function of the Σ factor, becomes appreciably greater than 0 for the same529
range of Σ factors at which stochasticity becomes strong enough to move populations530
further from the attractor than e, and peak motion begins (Fig. 11C).531

532
Figure 11: Explanation of peak motion patterns with increasing stochasticity for (A) cpa533
= 0.5 and (B, C) cpa = 0 in the SD-LPA model. First panel of (A): for every square-root-534
scale experimental population vector xt with both xt and xt+3 within 10 units of a1 (text),535
the components ht and ht+3 of xt – a1 and xt+3 – a1 in the direction of v1 were computed,536
and the signed length (s.l.) of ht+3 was plotted against the signed length of ht. Other537
panels of (A): same as the first panel but using a2, v2 and a3, v3 respectively. Plotted538
linear regression slopes were significantly negative (99% level), and took values greater539
than -1, demonstrating over-compensatory decay of perturbations from ai in the direction540
of vi in three time steps and supporting the mechanism by which theory explains the peak541
at n.f. 0.33 for cpa = 0.5. (B) The increasing trend gives the mean, across length-1024 SD-542
LPA-model-generated time series, of the distance between each population vector and the543
attractor comprised of c1 and c2. Vertical bars stretch between the 2.5th and 97.5th544
percentiles; they extend beyond the axes for large Σ factors. The solid horizontal line545
gives the distance between e and the attractor. Means of distances between experimental546
population triples and the attractor were 47.7, 51.2, and 48.1 for the three replicates with547
cpa = 0, agreeing with simulated values. (C) We used the SD-LPA model with each of a548
range of Σ factors to generate 50 time series of length 1024. For each time series, the549
percentage of steps at which populations failed to switch from being closer to c1 to being550
closer to c2 or vice versa was calculated. The increasing trend gives mean percentages551
across the 50 time series; vertical bars span the 2.5th and 97.5th percentiles. See separate552
file for the figure.553
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