SUPPLEMENTARY MATERIAL

EXPERIMENTAL PROCEDURES

 Ca^{2+} titrations monitored by fluorescence spectroscopy. Ca²⁺-binding constants were determined by monitoring the intrinsic (tryptophan) fluorescence during Ca²⁺ titration in 0.15 M KCl, 2 mM Tris, pH 7.3. The protein concentration was 25 μ M, and Ca²⁺-free protein was titrated with increasing amounts of metal ion. The intensity at each point was corrected for dilution. Ca²⁺ titrations were also performed in the presence of 120 μ M ANS and 10 μ M secretagogin in 1 mM DTT, 0.15 M KCl 2 mM Tris/HCl, pH 7.3. The experimental data were fitted according to

$$I = I_0 + (I_p - I_0) \frac{Y \cdot K_A}{1 + Y \cdot K_A}$$

(I)

Where Y is the free Ca^{2+} concentration, K_A is the apparent binding constant, and I_0 and I_p are the intensities for the free and bound state, respectively.

RESULTS

Ca²⁺ binding to secretagogin as monitored by ANS- and Trp- fluorescence.

Secretagogin displays an increase in Trp fluorescence upon Ca²⁺ binding (Fig. 2A). The fluorescence intensity was monitored as a function of total Ca²⁺ concentration, and the response is changing in the range of calcium concentrations corresponding to the low affinity sites. The Ca²⁺ affinity was estimated by fitting equation 1 to the data (not shown) yielding an average affinity for the low affinity sites as $Log_{10}K = 4.5\pm0.3$, or $K_D = 28\pm14 \mu$ M, in 0.15 M KCl, 2 mM Tris/HCl pH 7.3, based on six replicates. We also fitted an extended binding model to the data allowing for multiple macroscopic binding constants. By this procedure, the data could be fitted by one high affinity site and one or more low affinity sites. The binding constants for the low affinity sites did not change by the inclusion of a strong site. Due to the

low protein concentration used in Trp fluorescence studies (30 times lower than the K_D of the weak sites) it is not possible to determine the stoichiometry of Ca^{2+} binding.

 Ca^{2+} binding to secretagogin in the presence of ANS leads to a large increase in ANS fluorescence (Fig. 2B), and provides an indirect means of studying the conformational changes following Ca^{2+} -binding to the protein. Fitting equation 1 to the Ca^{2+} titrations as monitored by ANS fluorescence yields $Log_{10}K = 4.3\pm0.3$, or $K_D = 52\pm26 \mu$ M, based on six replicates in 0.15 M KCl, 2 mM Tris/HCl pH 7.3. These numbers are in fair agreement with the results from titrations monitored by Trp fluorescence. However, several of the replicates were not well fitted by equation 1, and required analysis with a model including at least two macroscopic Ca^{2+} -binding constants. In these cases, the best fits were obtained with $Log_{10}K_2 > Log_{10}K_1$, implying positive cooperativity of Ca^{2+} binding among the low affinity sites. Although the titration monitored by Trp and ANS fluorescence does not provide the high precision obtained using the competitive chromophoric chelator method, it does confirm that the binding constants obtained by the chelator method are in the correct range.

TABLES

SUPPLEMENTARY MATERIAL Table 1. Analysis of peptides from limited proteolysis of secretagogin by MALDI-TOF mass spectrometry.

Ca ²⁺ 5 minutes digestion				Ca ²⁺ 30 minutes digestion			
Measured	Calculated	Δmass	position	Measured	Calculated	Δmass	position
mass	mass	(ppm)		mass	mass	(ppm)	
3882.000	3882.450	115.900	<u>24-56</u>	3881.420	3882.450	265.300	<u>24-56</u>
4379.700	4379.994	67.100	<u>12-47</u>	4379.350	4379.994	147.000	<u>12-47</u>
4446.000	4446.107	24.100	<u>24-61</u>	4445.590	4446.107	116.300	<u>24-61</u>
4673.370	4673.414	9.300	<u>24-63</u>	4672.200	4673.414	259.800	<u>24-63</u>
5341.000	5341.092	17.200	<u>12-56</u>	5341.000	5341.092	17.200	<u>12-56</u>
5561.400	5562.411	181.700	<u>30-77</u>	5561.180	5562.411	221.300	<u>30-77</u>
5905.250	5904.749	-84.800	<u>12-61</u>	5905.470	5904.749	-122.000	<u>12-61</u>
6132.290	6132.056	-38.100	<u>12-63</u>	6131.600	6132.056	74.300	<u>12-63</u>
6268.200	6268.133	-10.600	<u>24-77</u>	6268.600	6268.133	-74.400	<u>24-77</u>
7725.400	7726.775	177.900	<u>12-77</u>	6558.100	6558.485	58.700	<u>6-61</u>
22813.880	22816.087	96.700	<u>12-204</u>	7725.100	7726.775	216.800	<u>12-77</u>
				12869.000	12868.763	-18.400	<u>57-165</u>
				16185.800	16183.499	-142.100	<u>64-200</u>
				22814.000	22816.087	91.400	<u>12-204</u>

EDTA 5 minutes digestion				EDTA 30 minutes digestion			
Measured	Calculated	Δmass	position	Measured	Calculated	Δmass	position
mass	mass	(ppm)		mass	mass	(ppm)	
3582.300	3582.078	-62.000	<u>214-246</u>	3580.800	3582.078	356.800	<u>214-246</u>
4379.350	4379.994	147.000	<u>12-47</u>	3879.600	3880.398	205.600	<u>116-149</u>
5374.930	5375.223	54.400	<u>144-189</u>	4206.300	4206.859	132.800	<u>214-251</u>
5905.700	5904.749	-161.000	<u>12-61</u>	4379.550	4379.994	101.300	<u>12-47</u>
6290.100	6291.193	173.700	<u>205-260</u>	4669.200	4669.318	25.200	<u>205-246</u>
5562.700	5562.411	104.400	<u>30-77</u>	5064.510	5064.786	54.400	<u>116-159</u>
7726.700	7726.775	9.700	<u>12-77</u>	5561.830	5562.411	104.400	<u>30-77</u>
9838.140	9840.329	222.400	<u>190-276</u>	5907.270	5904.749	-426.700	<u>12-61</u>
22814.800	22816.087	56.300	<u>12-204</u>	9435.830	9439.843	425.200	<u>80-159</u>
				10040.700	10037.518	-316.900	<u>75-159</u>
				11388.940	11390.022	95.000	<u>160-257</u>
				12866.000	12868.763	214.700	<u>57-165</u>
				12866.000	12871.749	446.800	<u>136-246</u>
				13397.100	13402.377	393.800	<u>132-246</u>
				22809.900	22802.046	-344.300	<u>48-244</u>
				22809.900	22816.087	271.200	<u>12-204</u>

FIGURES

SUPPLEMENTARY MATERIAL FIG 1. Far UV Circular dichroism spectra of secretagogin. The far UV CD-spectrum (200-250 nm) at room temperature was recorded for a solution of 6 uM secretagogin in 1 mM DTT, 0.5 mM EDTA, 2 mM TRIS, pH 7.5 (aposecretagogin; dashed line). 5 mM MgCl₂ was then added (dotted line) and finally 5 mM CaCl₂ was then added to the same solution (solid line).

SUPPLEMENTARY MATERIAL FIG 2. **Tryptic digestion of secretagogin**. Human recombinant secretagogin was digested with trypsin as described in the materials and methods section. Fragments were generated in the presence of 1 mM CaCl₂ or in the presence of 1 mM EDTA and separated by SDS poly-acrylamide (16.5 %) gel electrophoresis in a Tris/Tricine buffer system.

SUPPLEMENTARY MATERIAL FIG 3. Mass spectrometric identification of protein fragments. Tryptic fragments of secretagogin generated in 1 mM EDTA or 1 mM CaCl₂ at various time-points were identified by MALDI-TOF mass spectrometry. The experimentally

measured peptide masses were compared with the theoretical peptides calculated from the human secretagogin sequence by the FindPept tool (<u>http://us.expasy.org/tools/findpept.html</u>). Spectra generated after 5 and 30 minutes of digestion are shown. Peptides that could be assigned to a specific mass within secretagogin are indicated by the first and last residue number. Identified peptides that are similar in both forms are shown within brackets.

Supplementary material, Fig 1

Supplementary material, Fig 3

