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1 Derivation of the space-use and scent-marking equations

In this section we derive Eq.s (1)-(4) from underlying correlated random walk models of individual
movement and scent-marking behavior.

Let u(x, t) be the two-dimensional probability density function describing the expected location
of an individual at time t, where x is a vector indicating the (x, y) position of the individual. We
begin by writing a conservation equation describing change in u(x, t) as a result of movement by
an individual over a single time step τ :

u(x, t + τ) =
∫ ∞

−∞

∫ ∞

−∞
u(x′, t)k(x′,x − x′, τ, t) dxdy, (S1)

where k(x′,x− x′, τ, t)dx′dx is the probability of the individual moving from a small rectangle dx′

located at x′ at time t to a small rectangle dx located at x at time t + τ . Taylor expansion of the
integrand of Equation (S1) with respect to x′ about the point x, and then taking the limit as τ
becomes small, yields

∂u

∂t
+ ∇ · [c(x, t)u] =

∂2 (dxx(x, t)u)
∂x2

+
∂2 (dxy(x, t)u)

∂x∂y

+
∂2 (dyx(x, t)u)

∂y∂x
+

∂2 (dyy(x, t)u)
∂y2

, (S2)

where ∇ denotes ∇ = (∂/∂x, ∂/∂y)T . The advection term

c(x, t) = lim
τ→0

1
τ

∫
(x − x′)k(x,x − x′, τ, t)dx′, (S3)

is a vector and

dxx(x, t) = lim
τ→0

1
2τ

∫
(x′ − x)2k(x,x − x′, τ, t)dx′,

dxy(x, t) = lim
τ→0

1
2τ

∫
(x′ − x)(y′ − y)k(x,x − x′, τ, t)dx′,

dyx(x, t) = dxy(x, t),

dyy(x, t) = lim
τ→0

1
2τ

∫
(y′ − y)2k(x,x − x′, τ, t)dx′ (S4)
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are the diffusion coefficients. Making the standard isotropic diffusion assumption, that the second
and third terms in the above equation are both zero and the first and last terms are equal, Eq. (S4)
reduces to the following equation for the time-dependent pattern of space use by the individual:

∂u

∂t
(x, t) = −∇ · (c(x, t)u) + ∇2 (d(x, t)u) , (S5)

where ∇2u = ∇·∇u = ∂2u/∂x2 +∂2u/∂2y. Further details can be found in Bharucha-Reid (1960).
We assume that the individual’s redistribution kernel k(x′,x− x′, τ, t) depends upon the jump

length ρ = |x′ − x| and the angle to the home range center φ− φH , and therefore can be described
by an equation following form:

k(x′,x − x′, τ, t) =
1
ρ
fτ (ρ) · Kτ (φ − φ′

H),︸ ︷︷ ︸
Prob. density for moving from location x′ to x

where ρ is the distance between the starting point x′ and the finishing point x, φ is the angle of
the jump between the starting point x′ and the finishing point x (φ = tan−1((y − y′)/(x − x′)))
and φ′

H is the direction of a line from the starting point x′ to the home range center xH (φ′
H =

tan−1((yH − y′)/(xH − x′))) (Figure S1).1 Kτ (φ − φ′
H) is the probability density for the jump

direction and fτ (ρ) is the probability density for the jump distance. The 1/ρ that precedes fτ (ρ)
translates the probability of moving a given distance and direction into a probability of moving
from one area to another. In the coefficients of the forward Kolmogorov equation (S5), the first
argument to the redistribution kernel (starting point x′) is replaced by the point about which the
Taylor series is made (finishing point x, as in equations (S3) and (S4)). In this case,

k(x,x − x′, τ, t) =
1
ρ
fτ (ρ) · Kτ (φ − φH), (S6)

where φH is the direction from individual’s finishing point x to its home range center xH (φH =
tan−1((yH − y)/(xH − x)) (Figure S1).

To simplify notation, we use θ = φ − φH as the argument to Kτ in equation (S6). In general,
Kτ and fτ can have additional variation with the specific location x and time t.

CA Model:

In the Conspecific Avoidance (CA) model, Kτ is is described by a von Mises (circular Normal)
distribution

Kτ (θ,x, t) =
1

2πI0(κτ )
exp [κτ cos(θ)] (S7)

where I0(κτ ) is a modified Bessel function of the first kind and of zeroth order, and κτ is the
concentration parameter governing the degree of non-uniformity in the distribution of movement
directions. The value κτ for individuals in the ith pack depends explicitly on space and time,

1Here the arctan function is extended from its usual range of (−π/2, π/2) to (−π, π], by taking into account which
quadrant the point (x − x′, y − y′) is in.
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Figure S1: Angles and locations associated with movement from x′ at time t to x at time t + τ . The den
is located at xH . The vector 	x and the angles φ, φH and φ′

H are defined in the text.
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varying as a function of the density of foreign scent marks encountered by an individual belonging
to pack i, i.e.:

κτ (x, t) = bρτ

npack∑
j �=i

p(j)(x, t), (S8)

where p(j) is the density of scent marks of pack j, npack is the number of packs, ρτ is the mean move
length over a time step of length τ , and the parameter b is the bias per unit distance moved per unit
density of scent marks encountered, which governs the sensitivity of the individual’s distribution
of movement directions to foreign scent marks.

We now consider the case where the turning kernel Kτ is oriented with respect to the home
range center so that it is an even function of θ = φ−φH . We start by evaluating coefficients c, dxx,
dxy and dyy from Eq.s (S3) and (S4). For notational simplicity, we drop the explicit space, time
and pack depenencies of Kτ and κτ until Eq. (S21). The coefficients are

c = lim
τ→0

1
τ

∫ 2π

0

∫ ∞

0
(x − x′)fτ (ρ)Kτ (θ) dρ dθ, (S9)

and

dxx = lim
τ→0

1
2τ

∫ 2π

0

∫ ∞

0
(x′ − x)2fτ (ρ)Kτ (θ) dρ dθ,

dxy = dxy = lim
τ→0

1
2τ

∫ 2π

0

∫ ∞

0
(x′ − x)(y′ − y)fτ (ρ)Kτ (θ) dρ dθ,

dyy = lim
τ→0

1
2τ

∫ 2π

0

∫ ∞

0
(y′ − y)2fτ (ρ)Kτ (θ) dρ dθ. (S10)

Taking the vector dot product of Eq. (S9) with the vector pointing towards the den site, 	x =
(xH − x)/|xH − x|=(cos(φH), sin(φH))T (Figure S1), yields:

|c| = c · 	x = lim
τ→0

1
τ

∫ ∞

0
ρf(ρ) dρ

∫ 2π

0
cos(θ)Kτ (θ) dθ, (S11)

once the identity x− x′ = ρ(cos(φ), sin(φ))T , and the double angle formula expansion for cos(θ) =
cos(φ − φH) are used. Multiplying Eq. (S9) by a unit vector perpendicular to 	x, (−yH + y, xH −
x)T /|	x| yields a similar formula, but with cos(θ) replaced by sin(θ) in the integrand of (S11). The
even form of Kτ with respect to its argument θ = φ − φH causes the associated integral to equal
zero, and implies that no advection occurs in directions perpendicular to the direction of the den
site. Hence c = |c|	x points directly towards the den site, and |c| is the signed advection speed.

Using similar methods, the diffusion coefficients (Eq. S10) can be calculated as

dxx = lim
τ→0

1
4τ

∫ ∞

0
ρ2fτ (ρ)dρ

(
1 +

x2
1 − x2

2

|x|
∫ 2π

0
cos(2θ)Kτ (θ) dθ

)
,

dxy = dyx = 0,

dyy = lim
τ→0

1
4τ

∫ ∞

0
ρ2fτ (ρ)dρ

(
1 +

x2
2 − x2

1

|x|
∫ 2π

0
cos(2θ)Kτ (θ) dθ

)
. (S12)
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We evaluate the advection speed Eq. (S11) and diffusion coefficients Eq. (S12) using Eq. (S7)
for Kτ , and assuming that fτ and κτ approach zero as τ becomes small. We define the first two
moments of the probability density function for jump distances fτ (ρ) as

ρτ =
∫ ∞

0
ρfτ (ρ) dρ, (S13)

and
ρ2

τ =
∫ ∞

0
ρ2fτ (ρ) dρ. (S14)

We use the identity ∫ 2π

0
cos(nθ)Kτ (θ) dθ =

In(κτ )
I0(κτ )

(S15)

and series expansions for the modified Bessel functions

I0(κ) = 1 +
1
4
κ2 + h.o.t, (S16)

I1(κ) =
1
2
κ + h.o.t, (S17)

I2(κ) =
1
8
κ2 + h.o.t, (S18)

to evaluate Eq. (S11), retaining terms to leading order, as

|c| = lim
τ→0

ρτκτ

2τ
, (S19)

and Eq. (S12) as

dxx = dyy = d = lim
τ→0

ρ2
τ

4τ
. (S20)

Inserting (S19 and S20) into (S11) and (S12) and then inserting the resulting expressions into
(S5) yields

∂u(i)

∂t
(x, t) = d∇2u(i)︸ ︷︷ ︸

random motion

− ∇ · (c	xu(i)

npack∑
j �=i

p(j)(x, t))

︸ ︷︷ ︸
scent mark avoidance

(S21)

where

c = lim
τ→0

bρτ
2

2τ
, (S22)

Scent-Marking Equations: The CA model is completed by equations expressing how the spatial
distribution of scent marks change as a result of scent marking by individuals. Suppose that in the
absence of foreign scent-marks individuals scent mark at a rate l, and that the marks decay as a
result of aging at rate μ. Suppose further that consistent with observation (ii) (see main paper),
encounters with foreign scent marks causes individuals to increase their marking rate by an amount
proportional to the local density of foreign scent marks encountered. Recalling that p(i)(x, t) is the
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expected density of scent marks for pack i, we can write equations describing the rate of change of
p(i) at each point in space x = (x, y):

∂p(i)

∂t
(x, t) = Nu(i)(x, t)(l + m

npack∑
j �=i

p(j)(x, t)) − μp(i)(x, t), (S23)

where m denotes the sensitivity of the marking response to foreign scent marks and N is the number
of individuals in each pack.

Non-dimensionalization: Equations (S21) and (S23) can be nondimensionalized by introducing
the following variables:

x∗ =
x

L
, y∗ =

y

L
, t∗ = tμ, u∗ = L2u,

v∗ = L2v, p∗ =
L2μp

Nl
, q∗ =

L2μq

Nl
, (S24)

d∗ =
d

μL2
, c∗ =

clN

μ2L3
, m∗ =

mN

μL2
,

where L is a characteristic length scale that is related to the area A (L = A
1
2 ), of the domain Ω

over which the equations are to be solved (the study area).
Making the above substitutions into Equations (S21) and (S23), and then dropping the asterisks

for notational simplicity, gives:

∂u(i)

∂t
= d∇2u(i) − c∇ ·

⎡
⎣u(i)	xi

npack∑
j �=i

p(j)

⎤
⎦ , (S25)

∂p(i)

∂t
= u(i)(1 + m

npack∑
j �=i

p(j)) − p(i), (S26)

The home ranges of each pack are assumed to correspond to time-independent solutions of the
above equations. Applying a steady-state condition to Eq.s (S25–S26) yields the following system
of equations:

0 = ∇2u(i) − β∇ ·
⎡
⎣u(i)	xi

npack∑
j �=i

p(j)

⎤
⎦ , (S27)

0 = u(i)(1 + m

npack∑
j �=i

p(j)) − p(i), (S28)

where β = c
d . These are Eq.s (1) and (2).

Eq. (S27) is solved subject to ‘zero flux’ boundary conditions indicating that movements and
interactions remain in a finite, self-contained region corresponding to the study area:⎡

⎣∇u(i) − βu(i)	xi

npack∑
j �=i

p(j)

⎤
⎦ · 	n = 0, (S29)

(S30)
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where 	n is the outwardly oriented unit vector normal to the edge of the domain ∂Ω. Since u(i) is
a probability density function, Eq.(S27) is also subject to the following integral constraint

∫
Ω

u(i)dx = 1. (S31)

We refer to this as the pack conservation condition.

The STA+CA model

In the Steep Terrain Avoidance plus Conspecific Avoidance (STA+CA) model (Eq. 3), an individ-
ual’s distribution of movement directions is a weighted sum of two separate, non-uniform circular
distributions that respectively represent the influence of foreign scent-marks and terrain steepness
on an individual’s probability of moving in a particular direction, yielding the following redistribu-
tion kernel for an individual from pack i:

k(x,x − x′, τ, t) =
1
ρ
fτ (ρ)

(
ψKP

τ (φ − φH ,x, t)

+ (1 − ψ)KS
τ (φ,−φz,x)

)
. (S32)

The kernels KP
τ and KS

τ are again taken to be Von-Mises distributions (Eq. S7), but with concen-
tration parameters

κP
τ (x, t) = bρτ

npack∑
j �=i

p(j)(x, t), (S33)

κS
τ (x) = aρτ |∇z(x)|. (S34)

Substituting these into Equation (S5), and following procedures similar to those used to derive
the CA model, we obtain the following non-dimensionalized equation for the expected steady-state
pattern of space-use:

0 = ∇2u(i)︸ ︷︷ ︸
random motion

−∇ ·
⎡
⎣β	xiu

(i)

npack∑
j �=i

p(j)

⎤
⎦

︸ ︷︷ ︸
scent-mark avoidance

(S35)

+ ∇ ·
[
αzu

(i)∇z
]
,︸ ︷︷ ︸

avoidance of steep terrain

(S36)

where β is the strength of the scent-mark avoidance relative to the random component of motion,
and αz is the strength of the steep terrain avoidance relative to the random component of motion.
This is Eq. (3). A nondimensionalization similar to that for the previous model yields an unchanged
form for Eq. (S36), but with the pack conservation equation (S31), and Eq. (S28) for the steady state
scent mark. Finally, the model formulation requires zero-flux boundary conditions for Eq. (S36).
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The PA+CA Model

In the Prey Availability plus Conspecific Avoidance (PA+CA) model (Eq. 4), the distance between
relocations, ρτ , is a decreasing function of local resource density h(x). Substituting ρτ (h(x)) into
Eq. (S21) we obtain the following equations for expected space use:

0 = ∇2
[
d(x)u(i)

]
︸ ︷︷ ︸

foraging response

−∇ ·
⎡
⎣cP (x)	xiu

(i)

npack∑
j �=i

p(j)

⎤
⎦

︸ ︷︷ ︸
scent-mark avoidance

, (S37)

where

d(x) = ρ2
τ (h(x))/(4τ) and cP (x) = bρτ (h(x))

2
/(2τ).

(S38)

The first term in Eq. (S37) can be expanded to yield

0 = ∇ ·
[
d(x)∇u(i)

]
︸ ︷︷ ︸
random motion

−∇ ·
⎡
⎣cP (x)	xiu

(i)

npack∑
j �=i

p(j)

⎤
⎦

︸ ︷︷ ︸
scent-mark avoidance

+∇ ·
[
u(i)∇d

]
,︸ ︷︷ ︸

directed movement toward areas of high resource density

(S39)

indicating that the increased turning frequency that occurs in response to increasing resource
density results in a directed component of motion towards areas of high resource density. The
equations for scent-marking (S23) remain unchanged.

If, as is commonly observed, the distribution of step lengths is exponential with mean ρτ , we
can relate the first and second moments ρ2

τ = 2ρτ
2. Assuming that the relationship between mean

step length ρτ (h(x)) and prey density h(x) is also exponential, i.e.

ρτ (h(x)) =
√

τρ0 exp(−ρ1h(x)), (S40)

then substitution of Eq. (S40) into the above definitions for d(x) and cP (x) yields a simplified
version of Eq. (S39):

0 = ∇ ·
[
e−αrh(x)∇u(i)

]
︸ ︷︷ ︸

random motion

−∇ ·
⎡
⎣e−αrh(x)cP (x)	xiu

(i)

npack∑
j �=i

p(j)

⎤
⎦

︸ ︷︷ ︸
scent-mark avoidance

−∇ ·
[
e−αrh(x)u(i)∇h

]
,︸ ︷︷ ︸

directed movement toward areas of high resource density

(S41)

where β = b and αr = 2ρ1. The effect of prey density on movement behavior is reflected in the
exponential terms and the last term of the equation, which is a classic ‘prey taxis’ term (Kareiva and
Odell 1987). A nondimensionalization similar to that for the previous model yields an unchanged
form for Eq. (S41), but with the pack conservation equation (S31), and Eq. (S28) for the steady state
scent mark. Finally, the model formulation requires zero-flux boundary conditions for Eq. (S41).
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2 Model Fitting

The mechanistic home range models were fitted to the relocation datasets using the method of
maximum likelihood. The log-likelihood l of obtaining the observed set of relocations is:

l(θ) =
n∑

i=1

nri∑
j=1

ln u(i)(xij , yij), (S42)

where θ is a vector of model parameters whose values are to be maximized; u(i)(xij , yij) is the height
of the probability density function for expected space-use by pack i at point (xij , yij), given by the
steady-state solutions of the mechanistic home range model; (xij , yij) are the spatial coordinates
of relocations for individuals belonging to pack i (i = 1 . . . n, where n is the number of packs, and
j = 1 . . . nri , where nri is the total number of relocations for pack i); and k is an additive constant.

For the CA model, θ = [β,m], and u(i)(xij, yij) is given by the solution of Equation (1); for the
STA+CA model, θ = [β,m,αz ], and u(i)(xij , yij) is given by the solution of Equation (3); and for
the PA+CA model, θ = [β,m,αr], and u(i)(xij , yij) is given by the solution of Equation (4).

Equation (S42) was maximized with respect to the model parameters using a numerical maxi-
mization algorithm, solving the space-use equations numerically for each set of parameter values.
For further information on numerical maximization methods see Press et al. (1992), or Press et al.
(1992b). For further details on the method of maximum likelihood see Edwards (1992).

3 Estimates of Small Mammal Biomass

Densities of the primary coyote small mammal prey species–mice (microtus), pocket gophers, ground
squirrels and voles–were estimated in six different habitat types found within Lamar Valley (see
Table 1). Density estimates for each habitat type were obtained by mini-grid trapping (Crabtree and
Harter unpubl.). The total small mammal biomass density in each habitat was then calculated by
multiplying the habitat-specific density estimate for each species by the species’ mean body weight,
and summing the resulting numbers (see Table 1). The spatial distribution of total small mammal
biomass density (Figure 1b) was then calculated by combining the biomass density estimates for
each habitat with the spatial distribution of habitat types obtained from the National Park Service
Geographic Information System.
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Density (# per ha)
Habitat Mice Ground Pocket Red-backed

(Microtus) Squirrels Gophers Voles

Mesic Grass 79.76 0.0 15.02 0.0
Xeric Grassland 8.95 0.83 26.7 0.0
Sagebrush 8.13 0.17 8.48 0.0
Burned Sagebrush 4.47 1.82 10.8 0.0
Forest 0.0 0.0 8.53 8.33
Burned Forest 0.9 0.0 9.41 3.13

Mean weight (g) 50 250 100 20

Table 1: Estimates of small mammal density in the different habitats found in Lamar Valley and surrounding
areas. Density estimates for each species were estimated from mini-grid trapping (Crabtree and Harter
unpubl.).
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