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THE EFFECr e of a gene on a character being analyzed may be called
microphenic if small relative to a-, the phenotypic standard deviation (e < a-),
and megaphenic if large (E > a-). Variation due to microphenic and environ-
mental effects will be called continuous. We shall avoid the term polygene,
which in defiance of molecular biology implies a class of genes without any
megaphenic effects. A major gene has a megaphenic effect on the given
phenotype, causing variation which is in principle discontinuous and for
which, therefore, segregation analysis is peculiarly appropriate (Morton,
1965). We suppose that every gene has only one primary specificity, which is
unique unless made redundant by duplication, but its megaphenic and
microphenic effects are multiple, the discoverable number being limited only
by the patience and technique of -the investigator. Therefore genes with
megaphenic effects on a trait whose variation is nearly neutral with respect
to fitness are not, on the average, subject to more intense selection or at
different frequencies than genes with microphenic effects on the same pheno-
type.
We shall make one important assumption: Dominance is restricted to major

genes, so that continuous variation may be treated as additive. On this assump-
tion, two properties of continuous variation will be derived, the response to
inbreeding (B) and the segregation frequency (p) for high-risk families,
defined operationally by segregation analysis under any of several models
which assume that, among families capable of having affected children, some
families are particularly at risk (Morton, 1965). If the observed estimates of
these parameters significantly exceed the values predicted for continuous
variation, major genes are considered to be demonstrated. By this definition,
affection dependent on multiple homozygosis with high penetrance is attrib-
uted to major genes, which in high-risk families give large values of p,
while affection dependent on multiple homozygosis with low penetrance
(phenodeviants) is treated as continuous.
The distinction between megaphenic and microphenic effects has become

important in human genetics. On the one hand, various diseases of obscure
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MAJOR GENES AND CONTINUOUS VARIATION

MODELS OF DISCONTINUOUS AND CONTINUOUS VARIATION

I) DISCONTINUOUS VARIATION
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FIG. 1. Models of discontinuous and continuous variation.

etiology are attributed to the extreme deviations in a continuous distribution
(Edwards, 1960; Falconer, 1965): Might it be possible, however, to isolate
major genes causing a proportion of these defects? On the other hand, in-
breeding effects have been attributed to rare recessive genes maintained by
mutation (Morton, 1965; Crow and Kimura, 1965): Might a continuous model
be more valid? This paper is concerned with methods to discriminate major
genes under continuous variation, illustrated by limb-girdle muscular dystro-
phy, deaf-mutism, severe mental defect, malformations, and early fetal death.

THE THEORY OF ADDITIVE CONTINUOUS VARIATION

Penrose (1957) wrote: "The hypothesis of many genes, acting separately or
together to produce a threshold, is extremely plausible but unattractive because
it lacks precision." Recent developments in the theory of additive continuous
variation have made this hypothesis more attractive.
With Falconer (1965), let liability denote a continuous phenotypic scale

underlying affection, such that individuals with liability greater than a are
affected and those with smaller liability are normal. Then a will be called the
threshold for affection. Three situations are of interest (Fig. 1). In case 1,
major genes with complete penetrance create a distribution with mean b > a
which does not overlap the distribution of normal genotypes. In case 2, no
major gene may be discerned, but the extreme of a unimodal distribution is
affected. Contributory genetic factors may be large in number, but each is of
small effect. Case 3 is a mixed model, with major genes of incomplete
penetrance creating a high-risk distribution that broadly overlaps the dis-
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tribution of low-risk genotypes. Without loss of generality we may assume that
low-risk genotypes have mean liability 0 and proportion to, and we wish to
test the hypothesis that tv = 1. We suppose that both distributions are
Gaussian (normal) in form and have the same variance. With the liability
measured in normal deviates (t), the distribution of low-risk genotypes is

e - t2/2/\ 2iT

and the distribution of high-risk genotypes is

e- (t b)2/2/V 2r

In the low-risk population the frequency of affection is

Q(=V1 e-t2/2dt (1)
which for large a may be expanded into the series

e a2/2 1 + (3)k3... (2k- 1) (2)

(Abramowitz and Stegun, 1965, p. 932).
The theory of quantitative variation uses two more parameters. The

heritability, h2, is defined as the ratio of the additive genetic to the total
phenotypic variance. The coefficient of relationship, R, between two individuals
i and / is

Y. ( 1/2)n, + nj (1 + FAl)
V (1 + F1)(I + Fj)

where F,, Fj, FA are the inbreeding coefficients of i, j, and a common
ancestor A who is n1 generations removed from i and nj generations from i,
and the summation is over all acyclic paths through A. In man the inbreeding
coefficients are usually negligible, and we may therefore take

R = Y.(112)n, + n. (4)

or 1/2 for sibs and parent-child pairs, 1/4 for half-sibs and uncle-niece pairs,
1/8 for cousins, etc. Falconer (1960) gives an elementary treatment of these
concepts.
Two theorems involving these parameters have been applied to attributes

in man. Falconer (1965) showed that if QS, Qr are the frequencies in the
population and in relatives of probands, respectively, and if all genetic
variation is additive and the relevant environment is random among families,
and if the distribution of liability among relatives is to a sufficiently close
approximation normal and with the same variance as in the general population,

h2=Qo(to -tr)/Rc 0 h2 1 (5)
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where t0, t, are the normal deviates corresponding to Qo and Q, respectively,
and c is the ordinate at to. Edwards (1960) gave the approximation

Qr QOd (6)
where d = In(1 + e-80/7)/ln 2

and z = tanh-1 Rh2 = - In 0 < Rh2 < 1
2 l 1-Rh2

However, it is not necessary to use this crude estimate of Qr, since Falconer's
theorem provides the inverse solution

tr = to - cRh2/Qo (7)
The value of Qr corresponding to t, is the predicted risk in relatives on the
microphenic hypothesis.
We need one other result from quantitative genetics (Wright, 1951, p. 343).

If the contributions of genes and environmental factors are additive, the effect
of an inbreeding coefficient F is to change the variance from cr2 to
o-2 (1 + h2 F), which is equivalent to changing the threshold a to

a/V 1 + h2F (8)
To apply these results, we commonly have to make two kinds of calculations:

(1) given Qo and Rh2, compute Qr by Edwards's and Falconer's theorems
and (2) given Qo and Qu, compute to, C, tr, and Rh2. Since Q, a, and c are
parameters used by the above theory, which is sometimes designated quasi-
continuous, the program for the CDC 3100 computer which performs these
calculations is called QUAC.
The computational methods were suggested by Dr. N. Yasuda (Abramowitz

and Stegun, 1965, pp. 932-3).

COMPARISON OF THE THEOREMS OF EDWARDS AND FALCONER

Edwards (1960) remarked of his theorem that "the approximation becomes
progressively less exact as the distance of the dichotomies from the centre
increases." Figure 2 compares his approximation with the result of Falconer
for Rh2 = .05, .30, .,0, and .80. Edwards's theorem overestimates Qr by about
5% for Rh2 = .05, and the relative error increases with Rh2. For Rh2 = .5 and
Qo < .16, Edwards provided the inequality Q, > VQ0, which is true but
gives only a rough approximation to Q,. We shall use Falconer's more exact
solution in the remainder of this paper.

SEGREGATION ANALYSIS

Risks in relatives are best estimated by maximum likelihood segregation
analysis (Morton, 1959). Many special cases and refinements have been
considered (Barrai et al., 1965), only the most important of which will be
given here.

In sibships including at least one proband the distribution of r affected
among s sibs under incomplete selection is

P(r) = (s)pr(l - p) - r[1 - (1 - ,)r]/{l - (1 -p()9)
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where p is the segregation frequency and Xr is the ascertainment probability.
Under complete selection the parameter p may be estimated more efficiently
from

P(r= 0) =H+ (1-H)( 1-p)8
P(r,>0) = ( 1-H)(s)pr( p)8- r (1)

where H is the frequency of families that cannot segregate the trait in question
(Morton, 1959). With HI estimated from the data, p under both models has the
same significance: It is an unbiased estimate of Qr for R = 1/2, the frequency
of affection among sibs of affected individuals when proper allowance is made
for the mode of ascertainment.
The above two equations assume that the risk in families able to segregate

is uniform. More generally, there may be a group of high-risk families. For
example, under incomplete selection a proportion x of cases in the population
may be sporadic, with an unknown recurrence risk in sibs not much greater

P Qr=0 H + (I1-H)(I-p)(11thaneQH I isnot hesgegtofrequencyfffmle htcnor highriskethcrases, qusto

Under complete selection, a proportion w of families may have low-riskma
and the remainder have high-risk p. Then x = wie[wi+ (1-w)p] and

Wm2 + (1 V)pv2Qr = m2±(ltv~2_(12)wm+ (1-w)p
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Given Qo for the general population and Qr for sibs from segregation
analysis, the theorem of Falconer permits estimation of h2. If this significantly
exceeds 1, either major genes or an important interfamily environmental
variation is indicated. Estimation of Qr for other values of R will give an
additional test of the theory of continuous variation. However, a more powerful
test may be provided by prediction of the segregation frequency in high-
risk families. Under incomplete selection, these are defined by the condition
r > 1 with distribution

P(r,r>l) = (s)pr(l p)s - r[l - (1 -r)r]/
{1 -(1 -pr)s Sp7T(l - p)8 (13)

Under complete selection, the distribution for all r is

P(r) = (3){wmr(1 m)s-r + (I -W)pr(l p)8-r} (14)

where w is the frequency of low-risk families. In either case, p estimates the
risk in high-risk families (which will be an underestimate for incomplete selec-
tion unless the contribution of low-risk families to the multiplex group with
r > 1 is negligible).
To compare p with its predicted value p' under continuous variation, we

note that the regression of relatives on an individual's phenotype goes from
Rh2 to nRh2/[1+(n-i) Rh2] when n individuals are observed (Falconer, 1960,
p. 234). Since r > 1 is the condition for a multiplex family, we may take n = 2
and R = 1/2 to obtain

Rh2 = h2/{1 + h2/2} (15)
as the value to be used in applying Edwards's and Falconer's theorems to
high-risk families. In so doing, we are making the greatest effort to admit a
model of continuous variation, since a sibship with r > 1 affected members
and s - r normals has on the average a lower mean liability than a family
chosen because both of two preassigned sibs are affected. By this simplifica-
tion, we avoid the problem of the symmetrically dichotomized multivariate
normal hypersurface to which Edwards (1960) referred.

INBREEDING EFFECrS

Morton (1960) derived the result

1 - Q = e-(A + BF) 1 - A - BF (16)

for nonaffection under inbreeding coefficient F, where A is called the panmictic
load and B the inbred load. Under additive continuous variation, the predicted
value of A + BF corresponds to the area beyond a normal deviate t/V1 + h2F
(8). For small F, we may use Maclaurin's series and write the deviate as

t + (O/OF)oF = t(1 - h2F/2)

Taking dQ/dF - B and retaining only the first term in (2), we find

B - Ah2( t2 + 1)1/2
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where t is the normal deviate corresponding to A. On this additivity assump-
tion, the predicted value of B may be compared with observation as a test of
continuous variation.

APPLICATIONS

The following five examples will illustrate the application of the method,
the computations being shown in some detail in the first example. An asterisk
denotes a quantity predicted from the model of additive continuous variation.
The symbols used have the following meanings:
QO= frequency of affection in the population
to= corresponding normal deviate
c = corresponding ordinate
Q = frequency in sibs of affected persons
tr= corresponding normal deviate
p = frequency in high-risk sibships
h2= heritability
R = coefficient of relationship
B = inbred load
A = panmictic load
A' = panmictic load for high-risk cases
To test the goodness of fit of predictions from a continuous model, we need

the error variances. For the prevalence Q(, the variance is usually small
(Barrai et al., 1965) and sometimes unknown. The variance of Qr from all data
is generally negligible by comparison with its value for high-risk families. We
shall therefore treat Qo and Q.. as constant, and hence the derived quantities
c, t, h2, and A, which give the predicted values p* and B*. If p and B are
estimates from the data, with standard errors -., and oa,, then (p - p ) lo
and (B - B*)I/cr, are normal deviates testing the goodness of fit of the pre-
dictions under additive continuous variation (Table 1). Falconer (1965)
gives formulae for the standard error of h2, which are useful when two or more
values are to be compared or combined.

1. Limb-Girdle Muscular Dystrophy (Morton and Chung, 1959)

The incidence at birth of individuals who will develop limb-girdle muscular
dystrophy is Qo = 65 x 10-6, from which c = 2.64 x 10-4, to= 3.826. Of
this incidence, the proportion 1 - x = .587 is estimated from the probability
distribution underlying (11) to be due to rare recessive genes and the re-
mainder to be sporadic, with the same risk in sibs as for the general population.
Thus from (11), Qr = .413Qo + .587(.25) = .147, and the corresponding
normal deviate is tr = 1.049, as may be verified from appendix A of Falconer
(1965). In high-risk families, the frequency at birth of individuals who will
develop the disease is p = .278 - .030, which is strongly suggestive of simple
recessive inheritance. With R = 1/2 for sibs, heritability is estimated by
Falconer's theorem (5) as

h2 = 65(3.826 - 1.049)2/264 = 1.37
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This is impossibly high. At the maximal value of Rh2 = ½/2, Falconer's theorem
(7) gives

tr= 3.826 - (264) (.5)/65 = 1.795

The corresponding value of Qr* is .036, which is far less than Qr. Continuing
the analysis with h2 = 1, we obtain Rh2 = 1/(1.5) = 2/3 for multiplex families
(15), which by (7) gives t = 3.826 - (264)(2/3)/65 = 1.118, and p* = .131.
This is significantly smaller than the observed value, with a normal deviate of

(.278 - .131)/.030 = 4.9 P < 10-6

The loads by (16) were found to be A = 60 x 10-6 and B = .0081 ± .0027.
The normal deviate corresponding to A is 3.846, and so by (17) the expected
value of B on the assumption of additivity is only

B*= 60(3.8462 + 1)(.5)10--6 =.00047 P < .003

These multiple inconsistencies with the microphenic hypothesis confirm the
evidence for major recessive genes as the cause of familial aggregations and
inbreeding effects for limb-girdle muscular dystrophy. Morton and Chung
(1959) went on to estimate the number of loci (two), the mean gene
frequency per locus (.0041), and the mean mutation rate per locus
(3.1 x 10-5).

2. Deaf-mutism (Chung et al., 1959)
Excluding recognized acquired cases, the frequency at birth of deaf-mutes

in Northern Ireland (Stevenson and Cheeseman, 1956) is Q, = 310 x 10-6,
and the inbreeding effects and the segregation frequencies from normal
parents are as given in Table 1.
As in the previous case, the estimate of h2 is 1.37, which is impossibly

large, and so we continue with h2 = 1. The value of p far exceeds its predicted
value for microphenic effects (P < 10-10), and the dominance deviation in
B is presumptive evidence for major genes.

3. Severe Mental Defect (Dewey et al., 1965)
Excluding mongols, hydrocephalics, and cases due to known trauma, neo-

plasm, or infection, the frequency at birth of severe mental defect from normal
parents is Q, = 3088 x 10-6, and the inbreeding effects and segregation
frequencies are as given in Table 1.
By (5), the estimate of h2 is .50, which gives Rh2 = .40 for multiplex

families (15). Under additive continuous variation (7), p significantly exceeds
its expected value (P < .0013), and by (17), the inbreeding effect is too
great for this model (P < .0025).
The inbreeding evidence against additive continuous variation is actually

stronger than this. The frequency of high-risk cases in a randomly mating
population is only A' = .000324, and all of the inbreeding effect apparently
is due to this high-risk group. The corresponding normal deviate is t = 3.41,
and so B* = .00164 (P < .002).

31



MAJOR GENES AND CONTINUOUS VARIATION

4. Malformations (Mi et al., 1965)
Excluding polydactyly, prehelicine fistula, and auricular appendage, the

frequency of defined malformations among surviving children from normal
parents is Q, = .0238 in a northeastern Brazilian population. The maximum
likelihood estimates by (14) are p' = .11375, m = .01594, and w = .92476,
where p = p' + m - p'm = .128. The proportion of low-risk cases is x = .605,
and the segregation frequencies and inbreeding effects are as given in
Table 1.
The estimate of h2 is .36, which gives Rh2 = .31 for multiplex families.

Since QO is relatively high, pa is too large to be significantly different from
the observed value. However, the inbreeding effect is significantly greater
than expected for additive continuous variation (P < .012).
Again the evidence is stronger when high-risk cases are considered sepa-

rately, since low-risk cases do not appear to increase with inbreeding. For
high-risk cases, A' = .0073 and B* = .0156 (P < .011).

5. Early Fetal Deaths (Krieger, 1966)
The same northeastern Brazilian population gives p' = .1352, m = .0415,

and w = .7193 for early fetal deaths (less than six months gestation). There-
fore, p = .171 and the frequency of low-risk cases is x = .383. The segregation
frequencies and inbreeding effects are as given in Table 1.
The estimate of h2 is .27, and Rh2 = .24 for multiplex families. The estimate

of p is not significantly greater than its expected value, but the inbreeding
effect significantly exceeds the prediction for additive factors (P < .034).
When high-risk cases are considered separately, B* = .0338 (P < .035).

DISCUSSION

A generation ago, it was common for geneticists to fit monohybrid and
dihybrid models to traits like skin color, weight, egg production, and extensibil-
ity of the thumbs. Such excesses of Mendelian zeal were bound to provoke
an equal and opposite reaction, and it has become fashionable in recent
years to attribute diseases of unknown etiology to the extreme deviations in a
continuous distribution. This hypothesis is hard to disprove, and may in some
cases be true, but the supporting evidence is entirely negative. That no major
gene producing pyloric stenosis has yet been demonstrated does not establish
the nonexistence of a major gene with this effect, nor does it justify relaxation
of effort to identify major genes. One is reminded of serum cholinesterase,
which shows a normal distribution of activity, yet more precise biochemical
techniques have isolated two major loci responsible for much of the variation
(Harris et al., 1963). As more powerful methods are used to detect major
genes, less of normal variation will be assumed continuous.

Sex-influenced incidence is equally consistent with continuous variation or
a major genetic determinant with sex-modified penetrance (Fig. 3). Only
segregation and inbreeding analysis can distinguish these two possibilities.
It is unfortunate that data claimed to support continuous variation have not
been published in sufficient detail to permit segregation analysis.
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ALTERNATIVE HYPOTHESES OF SEX-INFLUENCED INCIDENCE

a) CONTINUOUS VARIATION

FEMAL DISTRIBUTION-L
NORMAL

FEMALE DISTRIBUTION AFFECTED
MALE DISTRIBUTION AFFECTED

0 a

b) DISCONTINUOUS VARIATION
LOW RISK

FEMALE DISTRIBUTION-//\\
LOW RISK /H/\HIGH RISK FEMALE DISTRIBUTION

MALE DISTRIBUTION HIGH RISK MALE DISTRIBUTION

o a

FIG. 3. Alternative hypotheses of sex-influenced incidence.

The assumption that microphenic effects are additive is not contradicted by
any evidence and is required to give precision to the continuity hypothesis.
Without this restriction, it seems impossible to argue convincingly for or
against major genes except in the extreme case of patent discontinuity. This
has been clearly recognized by Newcombe (1964) and Falconer (1965).
The discrimination of major genes is favored by a low population incidence

QO, a large inbreeding effect, and a high segregation frequency undisturbed
by incomplete penetrance or selective mortality before the age of examination.
Limb-girdle muscular dystrophy, deaf-mutism, and severe mental defect meet
these conditions. Malformations as defined are less satisfactory because of the
relatively high incidence Q, and the reduced segregation frequency, due in
large part to mortality before the age of examination. Fetal deaths are least
suitable because of the high population incidence, coupled with incomplete
ascertainment of early deaths.
The methods of this paper are quite general. Thus affection may be defined

on a quantitative, graded, or discrete variable, such as "at least two standard
deviates below the mean,, reaction + + or greater," or "with a count of N
or more." Also truncation may be low ("less than y"), high ("greater than
Y") or double ("less than y or greater than Y"), all of these being mappable
as t > a on the liability scale.

SUMMARY

Some consequences of additive continuous variation for recurrence risks and
inbreeding effects are derived, using the concept of high-risk families defined
operationally by segregation analysis. Limb-girdle muscular dystrophy, deaf-
mutism, severe mental defect, malformations, and fetal deaths all give evi-
dence of segregation of major genes, the evidence being strongest with a low
population incidence, a large inbreeding effect, and a high recurrence risk.
When these favorable conditions are lacking, it may be impossible to detect
major genes. This does not constitute proof that the distribution of liability
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3iMAJOR GENES ANI) CONTINUOUS VARIATION

is continuous or all relevant genes of small additive effect, these auxiliary
hypotheses serving merely to provide a defined alternative to major genes
and to predict recurrence risks in relatives for traits of unknown etiology.
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