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Recent studies on human population structure have tried to predict the frequencies
of various types of consanguineous marriage to be expected under random mating
(Cavalli-Sforza, 1958; Barrai et al., 1962; Hajnal, 1963; Cavalli-Sforza et al., 1966).
An alternative approach is to describe phenotype (or genotype) and mating type
frequencies in terms of gene frequencies and factors which depend on the structure of
population and mating preference. In this paper, a possible model based upon
Wahlund's principle (Wahlund, 1928) is proposed to describe human population
structure in terms of gene frequency and the inbreeding coefficient. Application of
the model to a population from northeastern Brazil (Morton, 1964) will be com-
municated elsewhere (Yasuda, 1967b).

RANDOM MATING POPULATION

A diploid phase generation begins when gametes from a gene pool are combined by
pairs into zygotes in some regular manner; these zygotes experience migration, muta-
tion, and differential mortality and fertility, and the generation terminates with the
haploid phase gene pool of the next generation. By panmixia or random mating, we
mean that uniting gametes are drawn independently from the gene pool, without re-
strictions due to finite population size, inbreeding, or assortative mating, and are
enumerated before differential selection has acted. Accordingly, genotype frequencies
and mating type frequencies can be calculated by the Hardy-Weinberg binomial law.

Confusion in the definition of random mating can occur, since there can be random
mating with respect to gametes, genotypes, and phenotypes. The latter two as a unit of
random mating might occasionally be useful (for example, problems of self-incom-
patibility or intermixture), but, as far as a single locus is concerned, the gene as the
fundamental basis of population genetics is most pertinent both in practice and in
theory. Therefore, we will consider only random combination of gametes as random
mating.
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YASUDA

THE INBREEDING COEFFICIENT

Several interpretations of the inbreeding coefficient have been attempted (Wright,
1921; Bernstein, 1930; Malecot, 1948) and the same conclusion was reached with
respect to zygote frequencies in terms of gene frequencies and the inbreeding coeffi-
cient (Table 1). The inbreeding coefficient can be understood as a measure of non-
randomness that also describes zygote frequencies, the correlation between uniting
gametes (Wright, 1921), and the probability that two genes are identical by descent
(Malecot, 1948). Besides these, it can measure the degree of differentiation in sub-
divided populations and describe mating type frequencies.

Furthermore, the inbreeding coefficient of each allele ft, distinguishing from the
coefficientf of a locus, may also be defined from f = 2;fipi. The quantity fi may vary
among alleles in polymorphic systems (Yasuda, 1966).

TABLE 1

EXPRESSION OF GENOTYPE FREQUENCIES BY DIFFERENT AUTHORS

Hardy- Wright Wahlund Bernstein Malecot
Genotype Weinberg (1921) (1928) (1930) (1948)

(1908)

AA..... p2 p2+pqF p2+a2 P(P+aq) p2(1-f) +pf*
Aa 2pq 2pq(1-F) 2pq-2a2 2pq(1-a) 2pq(1-f)
aa .... q2 q+pqF q'+cr2 q(q+ap) q2(1-f)+qf

Total.. (p+q)2=1 1 1 1 1

* The expression is also given by Wright (1943).
NOTE.-Where p and q are frequencies of genes A and a, respectively, F is Wright's inbreeding coefficient, i.e., the corre-

lation coefficient of uniting gametes; f is the probability that two genes are identical by descent; a is the mean inbreeding
coefficient; and u2 is the gene frequency variance. Note that F = f = a = os/spq.

WAHLUND S PRINCIPLE AND ITS EXTENSION

Discrete Model
Suppose that a population is divided into many endogamous panmictic smaller

populations (isolates) restricted by geographical, racial, religious, social, and economic
barriers. Let wi(Zwi = 1) be the relative size of the ith isolate. If a genetic system
consists of two alleles A and a with frequencies pi and qi in the ith isolate, respective-
ly, then the frequency p of gene A is p = 2piwi and its variance a2 in the total
population is 2(p, - p)2W, = 2p&, - p2, where the summation is taken over all
isolates. Since the frequencies of AA, Aa, and aa genotypes in the total population
are given by Zii, 2;2piiwi, and 2qi2w, respectively, the subdivision results in
increasing homozygosity by an amount equal to the gene frequency variance a2
(Table 1). Wahlund (1928) discovered this principle and discussed it in the cases with
and without dominance.

Comparison of heterozygous frequencies with Wright's result leads to his formula
a2 = p(l- p)F (Wright, 1943).

All of the above arguments hold for an arbitrary number of alleles, for each of
which an inbreeding coefficient can be defined as in the last section, and this leads to
an interesting formula:
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WAHLUND'S PRINCIPLE AND MATING TYPES

F = .(I1-pi),

where the summation is taken for all alleles.
It should be borne in mind that an "artificial" subdivision of population does not

always result in increasing homozygosity. There would be no change observed
whenever a given gene frequency was exactly the same for all isolates; that is, gene
frequency variance was zero. This suggests an association between isolate size and
probability density of gene frequency.

The Breakup of Isolates
Although the Wahlund principle has been employed to explain why the breakup

of isolates decreases homozygosity, there has been no mathematical treatment of
how the homozygosity decreases by removing one or more barriers. The following
discussion may be helpful.

Suppose that a population consists of three isolates 1, 2, and 3, whose relative sizes
are wi, w2, and W3, respectively. In this population, the gene frequency PiII and its
variance alII are PIII = pIW1 + p2W2 + p3W3 and aII, = p2W, + p2W2 + p3W3 - pfI,
respectively. Suppose that the barrier between the isolates 2 and 3 is removed, creat-
ing a new isolate in which mating ultimately continues at random (perhaps after a
few generations in which a gene dine persists). The relative size W of this new pan-
mictic isolate and its gene frequency P are W = W2 + W3 and P = (W2p2 + W3p3)/W,
respectively.

The gene frequency PII and its variance alh in the total population become, there-
fore,

PII = P1w1 + PW
= P1W1 + p2W2 + p3W3 = PIII

and
alh = p2W1 + P2W pi,

or

a2 =~0-2 W2W3 (P2-P3)2.aII = III- (W +- W p p

Apart from mutation, selection, and random genetic drift, the population gene fre-
quency does not change, whereas the gene frequency variance decreases in an amount
that depends on the relative sizes and differences of gene frequencies of isolates whose
barrier was removed. As a corollary, the change in the inbreeding coefficient is given
by using Wright's formula and pII = pIln = P.

F1, = FIlI - FB

where FB is a contribution due to the breakup of isolates and, in our terminology,

W2W3 ((P2-P3 )2

(W2 +W3 P ( 1-P)

More general treatment is given in Appendix I.
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This elaboration of Wahlund's results can be applied to human populations. For
instance, the barrier that was removed might be racial endogamy, and the effect of
this on the inbreeding coefficient is immediately apparent. On the other hand, when
new barriers are created under a certain circumstance, it is clear from the above dis-
cussion that the inbreeding coefficient increases by the amount FB.

Continuous Model
Although it has been assumed that the barriers are discrete, an actual barrier is

usually continuous, or we may not know what type of barrier it is. One of the ap-
proaches to bridge the gap is, then, an extension of Wahlund's model to continuous or
mixed barriers. Since the result from Wahlund's discussion is described in terms of
mean and variance of population gene frequencies, sums can be replaced by integrals.
In this continuous model, each individual gene has a "probability density" to con-
tribute to population gene, genotype, or mating type frequencies. Therefore, gene
frequency and its variance in the population can be expressed by Lebesgue-Stieltjes
integrals (Cramer, 1946),

p = fp,,d and a2 = fp'dlV - p2

where sums are taken for the discrete model and integrals for the continuous case. In
the mixed case, the barrier may be separated into discrete and continuous types.
Thus, Wahlund's principle covers any type of heterogeneous population. For instance,
a continuous model where a population is divided by physical distance has been stud-
ied by Holgate (1964). Furthermore, in case of subdivision by time or generation, the
probability density may correspond to a solution of the Fokker-Planck equation in
population genetics (Wright, 1945). The situation in man is so complicated by factors
such as time, space, population size, and human behavior that it may be difficult to
find, even approximately, the appropriate probability density function or pattern of
subdivision.

It should be emphasized here, however, that Wahlund's principle holds even for
unknown density functions, and this extension replaces the concept of "isolate size"
by "probability density of gene frequencies." A genetical interpretation of the proba-
bility density could be a tendency of genes to combine that would be affected by
several genetic barriers.

Moments of a Subdivided Population
Since gene and genotype frequencies of a population are given by the first and the

second moments with respect to possible isolates in the population, it seems worth-
while to consider the biological meanings of the moments. The first moment gives the
gene frequency and the second moment the genotype frequency. The third and the
fourth moments give the mating type frequencies at a sex-linked and an autosomal
locus, respectively, since three and four genes are concerned in each gene combina-
tion.* Mlore generally, whenever we consider a set of genes, the order of moment
corresponds to the number of genes involved. These higher moments appear in studies
of linkage, illegitimacy, polyploidy, heritability, and so on, but we shall restrict at-

* Mother-child combinations of autosomal genes will also be obtained from the third moments.
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WAHLUND'S PRINCIPLE AND MATING TYIPES

tention to the fourth and lower moments that correspond to mating type frequency
for the study of population structure in man, although the results are completely
general.

Let us consider a locus with two alleles A and a whose frequencies are p and q, re-
spectively, in a subdivided population with inbreeding coefficient a. Suppose that
the difference between gene frequency of an isolate, pa, and of the population, p, is
ApU', whose kth moment is expressed by Mik:

mk = f (Ap," )kdlV = f (p,'-p)kdIfr,

where integrals are understood in the Lebesgue-Stieltjes sense. For the first and the
second moments, the following relations hold precisely:

ml = 0 ,

m2 = p(l - p)a.

For the population moment, M,,
Ma= fpadV= J'(p±+Ap1,)adw1r

= E [(a) pa-rf(Apv) rdll,
r

=E (a)pa M;
r

or

Ma pa± paal(-p)a+0( 3)M *
2

In the above expression, if the cubic and higher powers of ApV are negligible, the term
O(m3) can be ignored. For example,

ml = PX

M., = p2+p(1-p)a,

M3 p33p2(1- p) a,

M4 p4 + 6p3(1- p)a .

Exact expressions of the moments in terms of gene frequencies and the inbreeding
coefficient can be written if a distribution function of isolates is known. For instance,
one or two parameter probability functions such as binomial, Poisson, normal, ex-
ponential, gamma, and beta distributions have been applied to this case, the beta
probability being especially interesting because it corresponds to a steady-state dis-
tribution of gene frequency (Wright, 1931) (Appendix II). All these cases indicate
that a population moment can be expressed as a polynomial of a, with the quadratic
and higher order powers negligible when a is not greater than p or 1 - p.

* 0(x) stands for "any function which is at most of order x."
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However, as stated previously, it is extremely difficult to determine the distribu-
tion of isolate size in human populations. It is necessary, therefore, to approach this
problem without knowing any distribution function. In the general argument above,
we assumed that moments higher than the quadratic of Aph are negligible. This
limiting form is valid, provided that all gene frequencies exceed the inbreeding
coefficient, as is certainly the case for the polymorphisms to which this model will be
applied. Extensive studies with known distribution forms have suggested that when-
ever isolate size distributions are symmetrical, then m3 = 0 and m4 = O(a2). Even
when asymmetric functions such as gamma are assumed, the limiting form holds with
sufficient accuracy if the smallest gene frequency is greater than the inbreeding
coefficient, which does not exceed 2% in human populations (Wright, 1950).

The population moments as a function of gene frequencies and the inbreeding
coefficient can be obtained in the case of more than two alleles at a given locus
(Appendix III).

Mating Type Frequency
As mentioned in the preceding section, mating type frequencies of a given genetic

system can be obtained from the population moments. It is thus straightforward to
evaluate the frequencies in the case of two alleles at an autosomal and a sex-linked
locus (for autosomes, reciprocal crosses are grouped together). To illustrate, let us take
the intercross Aa X Aa and its relative frequency fr. In an isolate, the proportion of
this type is 4p2, (1 - p)2dW, so that

jr = f4p2(1 - pw)2dW

= 4M2 - 8M3 + 4M4

= 4p2q2 + 4pq(1- 6pq) a.

Mating type frequencies and the proportions of the possible children in the limiting
form are shown in Table 2 for an autosomal locus and in Table 3 for a sex-linked
locus. In the latter case, we assumed that gene frequencies are the same in both sexes.
Justification of the moment method to describe mating type frequencies is imme-
diate when frequencies of possible offspring are evaluated as p2 + pqa, 2pq(1- a),
and q2 + pqa for genotype AA, Aa, and aa, respectively, at the autosomal locus
without dominance as well as in the other cases. Mating type frequencies, when a
distribution is assumed, are also calculated for autosomal and for sex-linked loci
(Yasuda, 1966). (Incidentally, normal and rectangular distributions give exactly the
same frequencies for sex-linked mating types.) When a approaches unity, incross fre-
quencies go to corresponding gene frequencies with beta and binomial distributions,
as happens also for genotype frequencies. For the other distributions examined, a
convergency of incross frequencies to the gene frequencies fails when a -+ 1, since the
distribution must condense into two poles at 0 and 1. This cannot be represented by
one of these distributions. As our purpose is to describe human population structure,
we are not going to consider further the case when a -> 1.

Dominance does not create any difficulty in obtaining phenotype mating type
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WAHLUND'S PRINCIPLE AND MATING TYPES

frequencies, since it requires simple additions of terms of genotype mating type fre-
quencies whose phenotypes are the same (Tables 2 and 3).

The main effect of inbreeding on frequencies of zygotes is a decrease in hetero-
zygosity. The effects of inbreeding are greatest when both genes are of equal fre-
quency, but of course the maximum relative increase is seen as p -* 0.

This presentation will extend to mating type frequencies. Only a two-allelic locus
will be discussed here, since the essential features of the inbreeding effect can be il-

TABLE 2

FREQUENCY OF MATING TYPES AND THEIR OFFSPRING
(Two ALLELES AT AN AUTOSOMAL Locus)

A. No DOMINANCE

FREQUENCY OF OFFSPRING
MATING FREQUENC OF _ _
TYPE MATING TYPi.

AA Aa aa

A.A XAA ... P4+6P3qla p4+6p3qa ..................

AA XA4a ... 4p3q+ 12p'q(1(I - 2p)a 2p3q+6p2q(-2P)a 2p'q+6p2 (1 - 2p)a .................

AaXAa.... 4p2q2+4pq(1 -6pq)a p2q2+pq(l -6pq)a 2pgq2+2pq(1 -6pq)a p2q2+pq(l- 6pq))a
AA Xaa.... 2p2q2+2pq(1-6pq)a ............. 2p2q2+ 2pq(1-6pq)a ..........

AaXaa 4pq3+12pq2(1-2q)a ............. 2pq3+6pq2(1l-2q)a 2pq3+6pq2(1-2q)a
aaXaa.q46p3a. . . q4+6pq4a

Total .... 1 p2+pqa 2pq-2pqa q2+pqa

B. COMPLETE DOMINANCE

FREQUENCY OF OFFSPRING

MATING TYPE FREQUENCY OF MATING TYPE

A- aa

A-XA-. p2(1 +q)2-2pq(1- 3q2)a p2(1+2q)-3pq(1-2q)a p2q2+pq(l-6pq)a
A - Xaa .. 2pq2(1 +q) +2pq(1l- 6q'2)a 2pq2+2pq(1 -3q)a 2pq3+6pq2(1 -2q)a
aa Xaa..... q4+6pqSa ......................... q4+6pq3a

Total ..... 1 1-q2-pqa (±2+Pqa

NOTE.-Where A and a are alleles with frequency p and q (p + q = 1), respectively, and a is the inbreeding coefficient.
It 1s assumed that p, q > a.

lustrated by this case. Since mating type frequencies can be written in the form
R + Ia in the neighborhood of a = 0, whereR is the frequency in a panmictic popula-
tion and I is the inbred component, we will examine I as a function of p in order to
visualize inbreeding effects. Figures 1-4 are valid only when p > a and q > a,
although the graphs are presented for all possible values of p.

Autosome without dominance. Figure 1 gives the general features of the inbreeding
effects on six different types of mating. Both incrosses (A A X A A and aa X aa) are
always increasing. Interestingly, both backcrosses (A A X A a and aa X A a) decrease
if the gene frequency is small and are compensatory to all other types of mating if
p < 0.212 or q < 0.212. It is clear that the inbreeding effect is more striking in back-
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WAHLUND'S PRINCIPLE AND MATING TYPES

crosses than incrosses. As an extreme case, when p = 0.18, the I value for backcross
aa X Aa reaches a minimum of -0.93. If we take a = 0.006, which is a rather high
value in man, the decreasing proportion due to inbreeding is 0.93 X 0.006 = 0.0056,
which is 0.0056/0.3970 = 0.014, or about 2% of the mating type frequency calculated
from the Hardy-Weinberg law. Thus, an assumption of random mating for the esti-
mation of gene frequencies in polymorphic systems might be justified as a good ap-
proximation.

0.d

Freq uency of A

FIG. 1.-Effect of inbreeding on mating type (autosome). Two alleles, A and a, without dominance.

Autosome with complete dominance. In Figure 2, A - denotes the dominant pheno-
type. The effect of inbreeding is largest when the frequency of the dominant gene is
nearly 0.25. The cross of both dominant phenotypes (A - X A -) compensates for
the other two matings if p > 0.577.

Sex-linked without dominance. The general tendency of inbreeding effects is similar
to that of an autosomal locus without dominance. The effects are rather weaker in a
sex-linked than in an autosomal locus (Fig. 3).

Sex-linked with complete dominance. The effect of inbreeding is symmetrical when
mating type frequencies in the population are classified by male or hemizygote
(Fig. 4).

In summary, the frequency of incrosses is always enhanced by inbreeding, as are
homozygotes. The effect on the other type of crosses depends on the gene frequency.
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FIG. 2.-Effect of inbreeding on mating type (autosome). Two alleles, A and a, with complete
dominance.
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Frequency of A

FIG. 3.-Effect of inbreeding on mating type frequencies (sex-linked). Two alleles, A and a, with-
out dominance.



WAHLUND'S PRINCIPLE AND MATING TYPES

Roughly speaking, the effects of inbreeding or subdivision of population on mating
type frequencies are magnified when the gene frequency is nearly 0.25 or 0.75 in-
stead of 0.5. These predictions can be tested immediately with mating type frequen-
cies in man in the case of antigenic polymorphisms and serum variations (Yasuda,
1966).
When there are three alleles at a locus, the numbers of possible genotypes and mat-

ing types are six and 21, respectively; and, with ten alleles, the corresponding values
become 55 and 1,540. If a, g, and m stand for the numbers of alleles, genotypes, and

.5-

4-

.3-~~~~~~4

.23

.2

Frequency of A

FIG. 4.-Effect of inbreeding on mating type frequencies (sex-linked). Two alleles, A and a, with
complete dominance.

mating types, respectively, then m = g(g + 1)/2 = a(a + 1)(a2+ a + 2)/8 for
autosomal, and m = ag = a2(a + 1)/2 for sex-linked loci. In these large numbers of
mating types, however, there are only seven functionally different types which can be
made when one has a set of at least four multiple alleles at an autosomal locus and four
types with at least three alleles at a sex-linked locus. They are tentatively called in-
cross (AA X AA), backcross (AA X AB), intercross (AB X AB), outcross
(AA X BB), 3-way-intercross (AB X AC), 3-way-outcross (A A X BC), and 4-way-
intercross (AB X CD) for an autosomal locus; and incross (AA X A), outcross
(AA X B), backcross (AB X A), and intercross (AB X C) at a sex-linked locus,
where A, B, C, and D denote different alleles. Dominance between alleles will diminish
the number of mating types. These mating type frequencies are also derived from the
population moments (Tables 4 and 5).
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YASUDA

DISCUSSION AND PROBLEMS IN ASCERTAINING THE
MEAN INBREEDING COEFFICIENT IN MAN

The most common way to ascertain the inbreeding coefficient in human popula-
tions is to classify marriages into known degrees of inbreeding and to take their
average weighted by the observed numbers (Haldane and Moshinsky, 1939). This
method is called a "pedigree study;" it requires a complete knowledge of pedigrees
and assumes the nominal coefficient of consanguinity to be equal to the inbreeding
coefficient.

TABLE 4

FREQUENCY OF THE SEVEN FUNCTIONALLY DIFFERENT MATING TYPES
(AUTOSOMAL)

Mating Type Frequency

Incross (AA X AA) ............. PA4 + 6PA3(l - PA)a
Backcross (AA X AB)........... 4PA3PB + 12PA2PB( -2PA)a
Outcross (AA X BB) ............ 2PA2PB2 + 2PAPB(PA + PB - 6pAPB)a
Intercross (AB X AB)........... 4PA2PB2 + 4PAPB(PA + PB - 6pAPB)a
3-Way outcross (AA X BC) ...... 4PA2PBPC + 4PAPBPC(l - 6pA)a
3-Way intercross (AB X AC)..... 8PA2PBPC + 8PAPBPc(l - 6pA)a
4-Way intercross (AB X CD)..... 8PAPBPCPD(1 - 6a)
NOTE.-A, B,... and PA. PB.... are alleles and their corresponding frequencies, respectively

(PA + PB + * .- 1); a iS the inbreeding coefficient. It is assumed that PA, PB.... > a.

TABLE 5

FREQUENCY OF FOUR FUNCTIONALLY DIFFERENI MATING TYPES
(SEX-LINKED)

Mating Type Frequency

Incross (AA X A) ............... PA3 + 3PA2(l - PA)a
Outcross (AA X B) ............. PA2PB + PAPB(l - 3pA)a
Backcross (AB X A) ............ 2PA2PB + 2PAPB(l - 3PA)a
Intercross (AB X C) ............. 2PAPBPC(1 - 3a)
NOTE.-A, B, C andPBp, Pc are alleles and their corresponding frequencies, respectively

(PA + PB + Pc +... = 1); a is the inbreeding coefficient. It is assumed that PA, PB,... > a.

However, this does not cover unrecognized remote consanguinity. For instance,
under favorable circumstances, the ascertainment of consanguinity can extend several
generations into the past. In some areas, records of Roman Catholic marriage dis-
pensations go back hundreds of years (Moroni, 1962). Under these conditions, ascer-
tained consanguinity is likely to account for a large fraction of the total inbreeding
coefficient. Formally, we may represent the situation as

aT = a + aR, (1)

where aT, a, and aR denote the inbreeding coefficient due to total consanguinity,
ascertained consanguinity, and undetected remote consanguinity, respectively. Un-
fortunately, as we go backward in time, the proportion of ancestors who were mi-
grants increases, so that ascertainment of consanguinity will always be incomplete
even for populations with extensive marriage records.

Although we may hope that aR/a is small, doubt arises even in the most favorable
cases. For example, birth records in the Alpine village of Bosco-Gurin permit recon-
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WAHLUND'S PRINCIPLE AND MATING TYPES

struction of pedigrees for ten generations (M\Ioor-Jankowski and Huser, 1957). There
was little migration into the village. We might expect that all important consanguini-
ty had been ascertained. But, in fact, history shows that the villages migrated into
the area in the thirteenth and fourteenth centuries from the Valais. It is likely that
inbreeding during the ages before the birth records began had effects on gene frequen-
cies which are still appreciable and contribute to the aR of Switzerland.

Since no system of records, however complete, can ascertain the total inbreeding
coefficient, we must look for other ways. There are two approaches to pursue the
remote inbreeding coefficient: use of a biological indicator (bioassay) and of migration
and inbreeding functions with distance (correlation method). In both methods, the
remote inbreeding coefficient is calculated as the difference of the total inbreeding
and the close inbreeding ascertained by pedigree analysis. In this connection, we
define remote consanguinity as a relationship more distant than a first cousin once
removed (F < 1132).

The mean inbreeding coefficient can be estimated from individual phenotype and
mating type frequencies. Differential selection, illegitimacy, and misclassification are
the main sources to disturb an accurate estimate of the inbreeding coefficient, and,
generally speaking, they affect phenotype frequencies more than mating type frequen-
cies. Differential selection, especially against homozygotes, might tend to give
smaller or even a negative estimate of the inbreeding coefficient. Illegitimacy or mis-
classification has, in a statistical sense, the same effect on the biological indicator as
selection does. And genes whose frequencies are relatively small are excluded from the
probability models for mating types and should be pooled with more common alleles
to meet the restriction p > a.

Sanghvi (1955) reported the insensitiveness of inbreeding on genotype frequencies,
and Schull (1965) pointed out the instability of phenotype frequencies used to esti-
mate the inbreeding coefficient. Regardless of these statistical difficulties which have
been shown mathematically (Yasuda, 1967a), there is no such trouble in estimating
the inbreeding coefficient from mating type data (Yasuda, 1967b).

Use of migration functions, m(x), defined as the probability among all marriages
that the marital distance is x, requires determination of the function and evaluation
of the genetic correlation, f(x), of children whose parents had a marital distance x.
If these two functions with distance are found, the mean inbreeding coefficient is
calculated by

a = f (x) m (x) dx.

Human migration does not follow a normal distribution expected from dispersion
of genes by a diffusion process (Cavalli-Sforza, 1958). This is not surprising because
of the many barriers which prevent random combination of gametes. Thus, at present,
a choice of a migration function is not completely specified except (1) the function is
leptokurtic, (2) the proportion of near-zero distances should be finite, and (3) the
function should be mathematically and statistically simple. Under these conditions,
some promising functions are exponential, square root exponential (Cavalli-Sforza,
1958), log normal, beta, bi-exponential, etc. A gamma function that includes an
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exponential distribution as a special case has been fitted to a northern Italian popula-
tion (Cavalli-Sforza, 1962). The fit is good, but the estimate of the dimension param-
eter is always less than one, so that m(O) tends to be infinite. This is unrealistic. It
is expected, however, that no distribution would fit well because of a practical diffi-
culty in estimating frequency near zero distance.

The genetic correlation with distance, f(x), is more intricate. This can be derived
if the migration function is known (Malecot, 1948; M. Kimura, personal communica-
tion), but it seems that the assumption of a migration function is not necessary
(Malecot, 1950; Kimura and Weiss, 1964). A difficulty in practice is the fact thatf(x)
depends on the dimension of human migration. Fortunately, f(x) can be determined
empirically as a gene frequency correlation with respect to locality:

f (x) =(PY -P) (PX+Y-P) (Malecot, 1955)

where the summation is taken over y location with gene frequencies py. This method
has been applied to Switzerland (Yasuda and Morton, 1966).

The separation of the total inbreeding coefficient into contributions due to ascer-
tained and remote consanguinity involves an important concept of population struc-
ture. Wahlund's principle tells that, if random mating is assumed within isolates, the
inbreeding coefficient due to barriers is always positive, since the coefficient is de-
fined with respect to gene frequency variance. The more barriers there are, the higher
is the inbreeding coefficient expected. However, all barriers would not be ascertained
in practice. If Fi designates the ascertained inbreeding coefficient by the ith level
procedure (for instance, the first level may be due to ascertainment of close con-
sanguinity less distant than second cousin once removed, the second level up to known
consanguinity, etc.), then the total inbreeding coefficient aT can be obtained from

aiT =zFi.

However, the assumption of random mating within isolates may not be justified in a
particular situation. For example, suppose an isolate consists of two types of homo-
zygotes, AA and aa, and mating occurs only between different genotypes. Obviously,
the inbreeding coefficient for the isolate is not zero but minus one in the sense of a
negative correlation between uniting gametes. This leads to

aT=ZFi +r, (2)

where r is the correlation coefficient due to nonrandom mating in isolates, and the
following relation holds:

-1 r_ 0_< Fi< 1.

In other words, all positive correlations of uniting gametes are considered due to
genetic barriers which might have been generated by random genetic drift and geo-
graphical, sociological, and other factors. In practice, however, the ascertainment of
2Fi is dependent on technique, so that

A T-A )
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where

£ and
A T-A

mean summations of ascertained inbreeding coefficients with respect to the level of
procedure and of unascertained positive correlation between uniting gametes, re-
spectively. This is equivalent to (1) if we put

a=-F
A

for the ascertained inbreeding and

aR (EFi+r)

for the remote consanguinity. aT and aR can be negative if the negative correlation in
isolates is high.
An alternative model has been proposed by Wright (1943) for consideration of

breeds of cattle. If a population has hierarchic structure, the total inbreeding coeffi-
cient, FIT, is related to the inbreeding coefficient within a subpopulation, FIs, and
due to subdivision, FST, in the following manner:

1 - FIT =(1 - FIS) (1 - FST), (3)

which can be extended into any degree of hierachic structure or

I -FIT=I (I1 -Fs ) .

This relation can be deduced from the moments of the population (Appendix IV).
It is thus obvious that a hierarchic pattern of barriers is specified in (3), whereas no

such scheme is made in (2). Genetic barriers are hard to recognize in human popula-
tions, while it is rather easy to set up such a model in experimental populations like
cattle. FST and FIs should be always positive with respect to genetic barriers and from
a probabilistic viewpoint, but Wright (1951, 1965) stated that F1s could be negative.
This is true only when mating is not random within a "basic" unit of population, since
the size is small. In this situation, Fis corresponds to r in our terminology, and,
whenever the F value becomes negative, the independence between the system of
mating and gene frequency breaks down, since no homozygote frequency can be less
than zero. Therefore r must be near zero in human populations. This implies that
each gene in an isolate has potentially an equal probability to unite with its neighbors
in the sense of probability density. On the other hand, the identification of isolates is
almost impossible in man without knowledge of the "original composition of the
population." At present we do not have any method to evaluate r, so we must assume
it to be zero for human populations. Further research is desirable.

The hierarchic discription may be a good approximation of population structure.
Taking the logarithm of a general form of (3) and expanding in series, we obtain ap-
proximately

FIT = 2Fs8 + Frs,
where F1s is zero if mating in isolates is at random, otherwise: - 1 < F1s < 0.
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Ultimately, the inbreeding coefficient should be determined by balance between
mutation and reproduction of genes in the course of evolution, following the direction
set by Malecot (1948).

SUMMARY

A new theory for describing human population structure has been proposed by
replacing the concept of isolate size, in Dahlberg's sense, or neighborhood size, in
Wright's sense, by an idea of probability density of a gene, or a tendency that a gene
shall combine with its neighbors in order to form the genotype, the mating type, and
other gene combinations. These genetic quantities can be described in terms of
moments of the population whose order corresponds to the number of genes com-
bined. The main result when the inbreeding coefficient is not greater than the smallest
gene frequency is that mating type frequencies are given as a function of gene fre-
quencies and the inbreeding coefficient both at autosomal and sex-linked loci.
A method of estimating the total, ascertained, and remote inbreeding coefficients

has been discussed. Two components in describing a system of mating in terms of the
correlation coefficient between uniting gametes should be distinguished: positive and
negative correlations. The positive correlation, which measures effects of genetic
barriers on combinations of genes, consists of ascertained and unascertained con-
sanguinity. The negative correlation, which may be observed in a small population,
is also included in the unascertained inbreeding coefficient. The ascertained inbreeding
coefficient consists of positive correlations, and the remote inbreeding may include
both components. The total inbreeding coefficient is thus due to contributions from
both close and remote consanguinity.

Comparison with Wright's hierarchic structure of population is also discussed.
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APPENDIX I

BREAKUP OF ISOLATE

The conclusion in the text is not altered when we consider more than three isolates.
Although several models may be developed, we shall discuss only two of them: (1)
breakup of isolates in a part of the total population and (2) a hierarchic model of re-

moving barriers.
1. Suppose that a population consisted of n isolates, and k of the n(k < n) isolates

were grouped into a new panmictic isolate by removing barriers so that the population
now consists of n - k isolates.

At the first phase, the population is characterized by:

S~i = 1 ,
i=I
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n

PN= Piwi

and
n

o2N = ~WPi- PN
i-1

where wi and pi are the relative size and gene frequency of the ith isolate, respectively,
and also, PN and q2 are the gene frequency and its variance in the total population.
Let us assume that the first k isolates are grouped. The present population is now
specified by

W+ Ewi=l,
i=k+1

PN-K PW + EPiWi,
i =k+l1

and
n

0'2 =P2W+ 2pWi pN-K
i=k+1

where
k k

W= wi, P=piwi/W,

and PN-K and 2N-K stand for gene frequency and its variance in the present popula-
tion.

Comparison of the two phases results in

PN = PN-K( P)
and

2 = P2W+ p2Wi-p K
i =k+ 1

= L2[(y i Pi)i / wij
or

k k

2N-KN Wi(Pi pi)2 W
i>i i=l

The relation among the inbreeding coefficients will be

FNK = FN - FB,
where

FB = ,WiW(
i>j



2. Although the breakup of isolates has occurred in several parts of the popula-
tion, some barriers still remain, so that the population consists of a number of new
isolates. We can easily verify the relation among the inbreeding coefficients between
the two phases of population: FN.. -x = FN- FB, where FN-... _x stands for
the inbreeding coefficient at the second phase, and

FB= E pi)1 2

The first summation is taken for new isolates.
Example. The comparison of the endogamy coefficient in three racial ancestral

populations with the inbreeding coefficient of a triracial mixture population: Suppose
that three racial groups are Indian, Negro, and Caucasian whose relative sizes I, N,
and C are pi, p., and p, respectively. Let FM and FE be the inbreeding coefficient of
the triracial mixture population and the endogamy coefficient in the. ancestral popu-
lations. We obtain

FB = FE- FM

IC(pi-Pc)2 +CN(P- pn)2+ NI (pn- pi)2
p(1-p)

since p = Ipi + Np. + Cp, and I + N + C = 1. Consideration of several genes
will provide more information about FB.

In the above discussion, we assumed no mutation, selection, and accidents of
sampling which might change the mean gene frequency of the population. Since it is
always difficult to estimate gene frequencies in ancestral populations, FB may be
taken as a first approximation. Examining the mean gene frequency of populations at
different stages, we may justify the method if the difference from zero is not signifi-
cant.

APPENDIX II

MOMENTS OF A SUBDIVIDED POPULATION, GIVEN
A DISTRIBUTION OF ISOLATE SIZE

A general idea to obtain the moments knowing a distribution function of isolates
can be demonstrated by the beta distribution in a locus with two alleles, since this
case might represent a steady state distribution of gene frequency under Wright's
island model, where the population consists of isolates of equal size and each isolate
constantly exchanges individuals with the total gene pool. Only the third and fourth
moments will be given in the other distributions for the sake of comparison. For the
higher moments, a method of moment generating function would be helpful.

Beta Distribution
Suppose that a density function is given by

dW = (a-)b(b-1)! _Wq-ldpw (p,+ qw= l)
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where a and b are distribution parameters and p,,, is the gene frequency in the neigh-
borhood of point w. The moment of population will be

Mk fpwdW

(a~b-l~ljXpwa+k-1 lpw) -dpw

= (a+b- 1)!(a+k- 1)!/(a- 1)!(a+b+k- 1)!

(k = O.7 1, .. . ,
which gives

M, = a/(a + b) and M2 = Mi(a + 1)/(a + b + 1).

Since the first and second moments correspond to the population gene frequency p
and homozygous frequency p2 + pqa, where a is the inbreeding coefficient, the
parameters can be written in terms of gene frequency and the inbreeding coefficient or

a/(a+ b) =p

(a + 1)/(a + b + 1) = p + qa,
so that a = p(l- a)/a and b = q(1 - a)/a.
We obtain, therefore,

M3 ( ) [P3+ P2(1 +2q)a+ pq(1 +q)a2],
and

(1+a)(1+2a) [p4+3p3(1+q)a+p2(2+6q+3q2)a2
+pq(1 + q)(2 + q)a3

or, if a is small (say less than 2%),
M3 = p3+ 3p2qa- pq(l + 3q)a2 + 2q(1 - 2q)a3 +

and
M4 = p4 + 6p3qa - p2q(8 - 19q)a2 + 2pq(7 - 27q + 23q2)a3 + ....

In the island model, a = 4Nmp and b = 4Nmq, whereN is the effective size of isolates
and m is migration rate. Thus a = 1/(1 + 4Nm) (Wright, 1931).

The following results are straightforward. (The form of the distribution function
may be found in Mood and Graybill, 1963.)

Binomial Distribution

M3 = p3 + 3p2qa - pq(l - 2q) a2,

M4 = p4 + 6p3qa - p2q(4 - 11q)a2 + pq(l- 6q + 6q2)a3.

Poisson Distribution

M3 = p3 + 3p2qa + pq2a2

M4 = p4 + 6p3qa + 7p2q2a2 + pq3a3.
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Rectangular Distribution

M3 = p3+ 3p2qa,

M4 = p4 + 6p3qa + (9/5)p2q2a2

Normal Distribution

M3 = p3 + 3p2qa,

M4 = p4 + 6p3qa + 3p2q2a2

Gamma Distribution (p < q)

M3 = p3 + 3p2qa + 2pq2a2

M4 = p4 + 6p3qa + 11p2q2a2 + 6pq3a3

Thus the square and higher powers of a may be ignored when a I is not greater than
the smallest gene frequency.

APPENDIX III

DERIVATION OF A GENERAL FORMULA FOR
THE MOMENT OF POPULATION

When the number of alleles increases beyond two, the covariance moments, which
are given in Wahlund's principle as the frequency of the heterozygote, become im-
portant.

Let p and q be population gene frequencies and p. and qw be those of an isolate.
(It is not required that p + q = 1 and p. + qw = 1.) Denoting differences in gene
frequencies between the isolate and the population by Ap, and Aq11, their covariance
moment is given by

mij= f(Apw)i(q.)idW =E(Ap.)i(AqO)i
where E is an operational symbol denoting expectation. For example,

mlo = mol = °)

m20 =p(l-p)a, m =-pqa and mo2 = q(1-q)a,

where a is the inbreeding coefficient. The moment of population is now

Mab = E ( PwPw )

=Ep +Ap )a(q + Aq)b

(a)(b) pa-rqb-sm
r,s

10 ~~01 2 20b 11=paqb+apa lqbm10+ bpaqb 'ml + (a)pa ~2Ob2 +abpa lqb lm

+ (b)paq2mpa +. *
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or, ignoring the higher terms of m,,(r + s > 2, r _ 0 and s . 0),

Kab = Paq [2a(a I )p (1 _p ) qb + 2_ paqb-1 q a bpaqb| a

Justification to ignore the higher moments, mfS, is also seen in a series of calculations
for moments assuming distribution functions. The sufficient condition is again that the
smallest gene frequency is greater than the inbreeding coefficient.

Generalization is now straightforward. The moment of population is

[nI

where pi is the frequency of ith allele. By expansion of binomial product terms and by
replacing mr, in terms of gene frequencies and the inbreeding coefficient, we obtain

Malttan r|Pai + ( |Pa.bl) (ai)(1P)(r
M i1 ... la" 2 i

-(IPi) (E ajaj) a.

The assumptions for deriving the general formula are the same as the previous argu-
ments.

APPENDIX IV

A PROOF THAT WRIGHT'S HIERARCHIC STRUCTURE CAN BE
CONSIDERED AS A SPECIAL CASE OF THE GENERALIZED

WAHLUND'S PRINCIPLE
Suppose that a population consists of isolates whose size and gene frequency are

Wij( Wij

and pij, respectively, and within which mating is at random. Then, the total frequency
of homozygotes in question is

pljij~ =p2 + p ( 1-p) F.,i T

where

Pa E pijwij-

On the other hand, when we consider barriers with respect to i, within the ith
aggregate of isolates, the homozygote frequency is then

21
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where

pi= S ijwijlwi, Wi EWij,
i i

and Fi is the inbreeding coefficient of the ith aggregate. The total homozygote
frequency is therefore

E[ p2+ pi ( I1- pt) F, ] wi P2;pWi+2pi ( Il-Pi ) Fvit

where
p2W&,= p2 + p(l -p)FST,

so that
p2 + p(1 - p)FIT = p2 + p(l -p)FST + lpi(l -pj)Fjw,

or

FIT = FST+ 2 F(1 -p)w

If the inbreeding coefficients for all aggregates are the same or F. = FIS for all i,
we obtain

FIT = FST + FIS(1 - FST)

which is equivalent to (3) in the text.
The corresponding result can also be shown with respect to heterozygote frequency.
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